Skip to main content
Springer logoLink to Springer
. 2013 Jun 14;73(6):2469. doi: 10.1140/epjc/s10052-013-2469-8

Search for a standard-model-like Higgs boson with a mass in the range 145 to 1000 GeV at the LHC

The CMS Collaboration1, S Chatrchyan 2, V Khachatryan 2, A M Sirunyan 2, A Tumasyan 2, W Adam 3, T Bergauer 3, M Dragicevic 3, J Erö 3, C Fabjan 3, M Friedl 3, R Frühwirth 3, V M Ghete 3, N Hörmann 3, J Hrubec 3, M Jeitler 3, W Kiesenhofer 3, V Knünz 3, M Krammer 3, I Krätschmer 3, D Liko 3, I Mikulec 3, D Rabady 3, B Rahbaran 3, C Rohringer 3, H Rohringer 3, R Schöfbeck 3, J Strauss 3, A Taurok 3, W Treberer-Treberspurg 3, W Waltenberger 3, C-E Wulz 3, V Mossolov 4, N Shumeiko 4, J Suarez Gonzalez 4, S Alderweireldt 5, M Bansal 5, S Bansal 5, T Cornelis 5, E A De Wolf 5, X Janssen 5, A Knutsson 5, S Luyckx 5, L Mucibello 5, S Ochesanu 5, B Roland 5, R Rougny 5, H Van Haevermaet 5, P Van Mechelen 5, N Van Remortel 5, A Van Spilbeeck 5, F Blekman 6, S Blyweert 6, J D’Hondt 6, A Kalogeropoulos 6, J Keaveney 6, M Maes 6, A Olbrechts 6, S Tavernier 6, W Van Doninck 6, P Van Mulders 6, G P Van Onsem 6, I Villella 6, B Clerbaux 7, G De Lentdecker 7, A P R Gay 7, T Hreus 7, A Léonard 7, P E Marage 7, A Mohammadi 7, T Reis 7, L Thomas 7, C Vander Velde 7, P Vanlaer 7, J Wang 7, V Adler 8, K Beernaert 8, L Benucci 8, A Cimmino 8, S Costantini 8, S Dildick 8, G Garcia 8, B Klein 8, J Lellouch 8, A Marinov 8, J Mccartin 8, A A Ocampo Rios 8, D Ryckbosch 8, M Sigamani 8, N Strobbe 8, F Thyssen 8, M Tytgat 8, S Walsh 8, E Yazgan 8, N Zaganidis 8, S Basegmez 9, G Bruno 9, R Castello 9, L Ceard 9, C Delaere 9, T du Pree 9, D Favart 9, L Forthomme 9, A Giammanco 9, J Hollar 9, V Lemaitre 9, J Liao 9, O Militaru 9, C Nuttens 9, D Pagano 9, A Pin 9, K Piotrzkowski 9, A Popov 9, M Selvaggi 9, J M Vizan Garcia 9, N Beliy 10, T Caebergs 10, E Daubie 10, G H Hammad 10, G A Alves 11, M Correa Martins Junior 11, T Martins 11, M E Pol 11, M H G Souza 11, W L Aldá Júnior 12, W Carvalho 12, J Chinellato 12, A Custódio 12, E M Da Costa 12, D De Jesus Damiao 12, C De Oliveira Martins 12, S Fonseca De Souza 12, H Malbouisson 12, M Malek 12, D Matos Figueiredo 12, L Mundim 12, H Nogima 12, W L Prado Da Silva 12, A Santoro 12, L Soares Jorge 12, A Sznajder 12, E J Tonelli Manganote 12, A Vilela Pereira 12, T S Anjos 14, C A Bernardes 14, F A Dias 13, T R Fernandez Perez Tomei 13, E M Gregores 14, C Lagana 13, F Marinho 13, P G Mercadante 14, S F Novaes 13, Sandra S Padula 13, V Genchev 15, P Iaydjiev 15, S Piperov 15, M Rodozov 15, S Stoykova 15, G Sultanov 15, V Tcholakov 15, R Trayanov 15, M Vutova 15, A Dimitrov 16, R Hadjiiska 16, V Kozhuharov 16, L Litov 16, B Pavlov 16, P Petkov 16, J G Bian 17, G M Chen 17, H S Chen 17, C H Jiang 17, D Liang 17, S Liang 17, X Meng 17, J Tao 17, J Wang 17, X Wang 17, Z Wang 17, H Xiao 17, M Xu 17, C Asawatangtrakuldee 18, Y Ban 18, Y Guo 18, Q Li 18, W Li 18, S Liu 18, Y Mao 18, S J Qian 18, D Wang 18, L Zhang 18, W Zou 18, C Avila 19, C A Carrillo Montoya 19, J P Gomez 19, B Gomez Moreno 19, J C Sanabria 19, N Godinovic 20, D Lelas 20, R Plestina 20, D Polic 20, I Puljak 20, Z Antunovic 21, M Kovac 21, V Brigljevic 22, S Duric 22, K Kadija 22, J Luetic 22, D Mekterovic 22, S Morovic 22, L Tikvica 22, A Attikis 23, G Mavromanolakis 23, J Mousa 23, C Nicolaou 23, F Ptochos 23, P A Razis 23, M Finger 24, M Finger Jr 24, Y Assran 25, A Ellithi Kamel 25, M A Mahmoud 25, A Mahrous 25, A Radi 25, M Kadastik 26, M Müntel 26, M Murumaa 26, M Raidal 26, L Rebane 26, A Tiko 26, P Eerola 27, G Fedi 27, M Voutilainen 27, J Härkönen 28, V Karimäki 28, R Kinnunen 28, M J Kortelainen 28, T Lampén 28, K Lassila-Perini 28, S Lehti 28, T Lindén 28, P Luukka 28, T Mäenpää 28, T Peltola 28, E Tuominen 28, J Tuominiemi 28, E Tuovinen 28, L Wendland 28, A Korpela 29, T Tuuva 29, M Besancon 30, S Choudhury 30, F Couderc 30, M Dejardin 30, D Denegri 30, B Fabbro 30, J L Faure 30, F Ferri 30, S Ganjour 30, A Givernaud 30, P Gras 30, G Hamel de Monchenault 30, P Jarry 30, E Locci 30, J Malcles 30, L Millischer 30, A Nayak 30, J Rander 30, A Rosowsky 30, M Titov 30, S Baffioni 31, F Beaudette 31, L Benhabib 31, L Bianchini 31, M Bluj 31, P Busson 31, C Charlot 31, N Daci 31, T Dahms 31, M Dalchenko 31, L Dobrzynski 31, A Florent 31, R Granier de Cassagnac 31, M Haguenauer 31, P Miné 31, C Mironov 31, I N Naranjo 31, M Nguyen 31, C Ochando 31, P Paganini 31, D Sabes 31, R Salerno 31, Y Sirois 31, C Veelken 31, A Zabi 31, J-L Agram 32, J Andrea 32, D Bloch 32, D Bodin 32, J-M Brom 32, E C Chabert 32, C Collard 32, E Conte 32, F Drouhin 32, J-C Fontaine 32, D Gelé 32, U Goerlach 32, C Goetzmann 32, P Juillot 32, A-C Le Bihan 32, P Van Hove 32, S Beauceron 33, N Beaupere 33, O Bondu 33, G Boudoul 33, S Brochet 33, J Chasserat 33, R Chierici 33, D Contardo 33, P Depasse 33, H El Mamouni 33, J Fay 33, S Gascon 33, M Gouzevitch 33, B Ille 33, T Kurca 33, M Lethuillier 33, L Mirabito 33, S Perries 33, L Sgandurra 33, V Sordini 33, Y Tschudi 33, M Vander Donckt 33, P Verdier 33, S Viret 33, Z Tsamalaidze 34, C Autermann 35, S Beranek 35, B Calpas 35, M Edelhoff 35, L Feld 35, N Heracleous 35, O Hindrichs 35, K Klein 35, J Merz 35, A Ostapchuk 35, A Perieanu 35, F Raupach 35, J Sammet 35, S Schael 35, D Sprenger 35, H Weber 35, B Wittmer 35, V Zhukov 35, M Ata 36, J Caudron 36, E Dietz-Laursonn 36, D Duchardt 36, M Erdmann 36, R Fischer 36, A Güth 36, T Hebbeker 36, C Heidemann 36, K Hoepfner 36, D Klingebiel 36, P Kreuzer 36, M Merschmeyer 36, A Meyer 36, M Olschewski 36, K Padeken 36, P Papacz 36, H Pieta 36, H Reithler 36, S A Schmitz 36, L Sonnenschein 36, J Steggemann 36, D Teyssier 36, S Thüer 36, M Weber 36, V Cherepanov 37, Y Erdogan 37, G Flügge 37, H Geenen 37, M Geisler 37, W Haj Ahmad 37, F Hoehle 37, B Kargoll 37, T Kress 37, Y Kuessel 37, J Lingemann 37, A Nowack 37, I M Nugent 37, L Perchalla 37, O Pooth 37, A Stahl 37, M Aldaya Martin 38, I Asin 38, N Bartosik 38, J Behr 38, W Behrenhoff 38, U Behrens 38, M Bergholz 38, A Bethani 38, K Borras 38, A Burgmeier 38, A Cakir 38, L Calligaris 38, A Campbell 38, F Costanza 38, D Dammann 38, C Diez Pardos 38, T Dorland 38, G Eckerlin 38, D Eckstein 38, G Flucke 38, A Geiser 38, I Glushkov 38, P Gunnellini 38, S Habib 38, J Hauk 38, G Hellwig 38, H Jung 38, M Kasemann 38, P Katsas 38, C Kleinwort 38, H Kluge 38, M Krämer 38, D Krücker 38, E Kuznetsova 38, W Lange 38, J Leonard 38, K Lipka 38, W Lohmann 38, B Lutz 38, R Mankel 38, I Marfin 38, M Marienfeld 38, I-A Melzer-Pellmann 38, A B Meyer 38, J Mnich 38, A Mussgiller 38, S Naumann-Emme 38, O Novgorodova 38, F Nowak 38, J Olzem 38, H Perrey 38, A Petrukhin 38, D Pitzl 38, A Raspereza 38, P M Ribeiro Cipriano 38, C Riedl 38, E Ron 38, M Rosin 38, J Salfeld-Nebgen 38, R Schmidt 38, T Schoerner-Sadenius 38, N Sen 38, M Stein 38, R Walsh 38, C Wissing 38, V Blobel 39, H Enderle 39, J Erfle 39, U Gebbert 39, M Görner 39, M Gosselink 39, J Haller 39, K Heine 39, R S Höing 39, K Kaschube 39, G Kaussen 39, H Kirschenmann 39, R Klanner 39, J Lange 39, T Peiffer 39, N Pietsch 39, D Rathjens 39, C Sander 39, H Schettler 39, P Schleper 39, E Schlieckau 39, A Schmidt 39, T Schum 39, M Seidel 39, J Sibille 39, V Sola 39, H Stadie 39, G Steinbrück 39, J Thomsen 39, L Vanelderen 39, C Barth 40, C Baus 40, J Berger 40, C Böser 40, T Chwalek 40, W De Boer 40, A Descroix 40, A Dierlamm 40, M Feindt 40, M Guthoff 40, C Hackstein 40, F Hartmann 40, T Hauth 40, M Heinrich 40, H Held 40, K H Hoffmann 40, U Husemann 40, I Katkov 40, J R Komaragiri 40, A Kornmayer 40, P Lobelle Pardo 40, D Martschei 40, S Mueller 40, Th Müller 40, M Niegel 40, A Nürnberg 40, O Oberst 40, J Ott 40, G Quast 40, K Rabbertz 40, F Ratnikov 40, N Ratnikova 40, S Röcker 40, F-P Schilling 40, G Schott 40, H J Simonis 40, F M Stober 40, D Troendle 40, R Ulrich 40, J Wagner-Kuhr 40, S Wayand 40, T Weiler 40, M Zeise 40, G Anagnostou 41, G Daskalakis 41, T Geralis 41, S Kesisoglou 41, A Kyriakis 41, D Loukas 41, A Markou 41, C Markou 41, E Ntomari 41, L Gouskos 42, T J Mertzimekis 42, A Panagiotou 42, N Saoulidou 42, E Stiliaris 42, X Aslanoglou 43, I Evangelou 43, G Flouris 43, C Foudas 43, P Kokkas 43, N Manthos 43, I Papadopoulos 43, E Paradas 43, G Bencze 44, C Hajdu 44, P Hidas 44, D Horvath 44, B Radics 44, F Sikler 44, V Veszpremi 44, G Vesztergombi 44, A J Zsigmond 44, N Beni 45, S Czellar 45, J Molnar 45, J Palinkas 45, Z Szillasi 45, J Karancsi 46, P Raics 46, Z L Trocsanyi 46, B Ujvari 46, S B Beri 47, V Bhatnagar 47, N Dhingra 47, R Gupta 47, M Kaur 47, M Z Mehta 47, M Mittal 47, N Nishu 47, L K Saini 47, A Sharma 47, J B Singh 47, Ashok Kumar 48, Arun Kumar 48, S Ahuja 48, A Bhardwaj 48, B C Choudhary 48, S Malhotra 48, M Naimuddin 48, K Ranjan 48, P Saxena 48, V Sharma 48, R K Shivpuri 48, S Banerjee 49, S Bhattacharya 49, K Chatterjee 49, S Dutta 49, B Gomber 49, Sa Jain 49, Sh Jain 49, R Khurana 49, A Modak 49, S Mukherjee 49, D Roy 49, S Sarkar 49, M Sharan 49, A Abdulsalam 50, D Dutta 50, S Kailas 50, V Kumar 50, A K Mohanty 50, L M Pant 50, P Shukla 50, A Topkar 50, T Aziz 51, R M Chatterjee 51, S Ganguly 51, M Guchait 51, A Gurtu 51, M Maity 51, G Majumder 51, K Mazumdar 51, G B Mohanty 51, B Parida 51, K Sudhakar 51, N Wickramage 51, S Banerjee 52, S Dugad 52, H Arfaei 53, H Bakhshiansohi 53, S M Etesami 53, A Fahim 53, H Hesari 53, A Jafari 53, M Khakzad 53, M Mohammadi Najafabadi 53, S Paktinat Mehdiabadi 53, B Safarzadeh 53, M Zeinali 53, M Grunewald 54, M Abbrescia 55,56, L Barbone 55,56, C Calabria 55,56, S S Chhibra 55,56, A Colaleo 55, D Creanza 55,57, N De Filippis 55,57, M De Palma 55,56, L Fiore 55, G Iaselli 55,57, G Maggi 55,57, M Maggi 55, B Marangelli 55,56, S My 55,57, S Nuzzo 55,56, N Pacifico 55, A Pompili 55,56, G Pugliese 55,57, G Selvaggi 55,56, L Silvestris 55, G Singh 55,56, R Venditti 55,56, P Verwilligen 55, G Zito 55, G Abbiendi 58, A C Benvenuti 58, D Bonacorsi 58,59, S Braibant-Giacomelli 58,59, L Brigliadori 58,59, R Campanini 58,59, P Capiluppi 58,59, A Castro 58,59, F R Cavallo 58, M Cuffiani 58,59, G M Dallavalle 58, F Fabbri 58, A Fanfani 58,59, D Fasanella 58,59, P Giacomelli 58, C Grandi 58, L Guiducci 58,59, S Marcellini 58, G Masetti 58, M Meneghelli 58,59, A Montanari 58, F L Navarria 58,59, F Odorici 58, A Perrotta 58, F Primavera 58,59, A M Rossi 58,59, T Rovelli 58,59, G P Siroli 58,59, N Tosi 58,59, R Travaglini 58,59, S Albergo 60,61, M Chiorboli 60,61, S Costa 60,61, R Potenza 60,61, A Tricomi 60,61, C Tuve 60,61, G Barbagli 62, V Ciulli 62,63, C Civinini 62, R D’Alessandro 62,63, E Focardi 62,63, S Frosali 62,63, E Gallo 62, S Gonzi 62,63, P Lenzi 62,63, M Meschini 62, S Paoletti 62, G Sguazzoni 62, A Tropiano 62,63, L Benussi 64, S Bianco 64, F Fabbri 64, D Piccolo 64, P Fabbricatore 65, R Musenich 65, S Tosi 65,66, A Benaglia 67, F De Guio 67,68, L Di Matteo 67,68, S Fiorendi 67,68, S Gennai 67, A Ghezzi 67,68, P Govoni 67,68, M T Lucchini 67,68, S Malvezzi 67, R A Manzoni 67,68, A Martelli 67,68, A Massironi 67,68, D Menasce 67, L Moroni 67, M Paganoni 67,68, D Pedrini 67, S Ragazzi 67,68, N Redaelli 67, T Tabarelli de Fatis 67,68, S Buontempo 69, N Cavallo 69,71, A De Cosa 69,70, O Dogangun 69,70, F Fabozzi 69,71, A O M Iorio 69,70, L Lista 69, S Meola 69,72, M Merola 69, P Paolucci 69, P Azzi 73, N Bacchetta 73, M Bellato 73, D Bisello 73,74, A Branca 73,74, R Carlin 73,74, P Checchia 73, T Dorigo 73, U Dosselli 73, S Fantinel 73, M Galanti 73,74, F Gasparini 73,74, U Gasparini 73,74, P Giubilato 73,74, A Gozzelino 73, K Kanishchev 73,75, S Lacaprara 73, I Lazzizzera 73,75, M Margoni 73,74, A T Meneguzzo 73,74, M Nespolo 73, J Pazzini 73,74, N Pozzobon 73,74, P Ronchese 73,74, F Simonetto 73,74, E Torassa 73, M Tosi 73,74, S Vanini 73,74, P Zotto 73,74, G Zumerle 73,74, M Gabusi 76,77, S P Ratti 76,77, C Riccardi 76,77, P Vitulo 76,77, M Biasini 78,79, G M Bilei 78, L Fanò 78,79, P Lariccia 78,79, G Mantovani 78,79, M Menichelli 78, A Nappi 78,79, F Romeo 78,79, A Saha 78, A Santocchia 78,79, A Spiezia 78,79, P Azzurri 80,82, G Bagliesi 80, T Boccali 80, G Broccolo 80,82, R Castaldi 80, R T D’Agnolo 80,82, R Dell’Orso 80, F Fiori 80,82, L Foà 80,82, A Giassi 80, A Kraan 80, F Ligabue 80,82, T Lomtadze 80, L Martini 80, A Messineo 80,81, F Palla 80, A Rizzi 80,81, A T Serban 80, P Spagnolo 80, P Squillacioti 80, R Tenchini 80, G Tonelli 80,81, A Venturi 80, P G Verdini 80, C Vernieri 80,82, L Barone 83,84, F Cavallari 83, D Del Re 83,84, M Diemoz 83, C Fanelli 83,84, M Grassi 83,84, E Longo 83,84, F Margaroli 83,84, P Meridiani 83, F Micheli 83,84, S Nourbakhsh 83,84, G Organtini 83,84, R Paramatti 83, S Rahatlou 83,84, L Soffi 83,84, N Amapane 85,86, R Arcidiacono 85,87, S Argiro 85,86, M Arneodo 85,87, C Biino 85, N Cartiglia 85, S Casasso 85,86, M Costa 85,86, P De Remigis 85, N Demaria 85, C Mariotti 85, S Maselli 85, E Migliore 85,86, V Monaco 85,86, M Musich 85, M M Obertino 85,87, N Pastrone 85, M Pelliccioni 85, A Potenza 85,86, A Romero 85,86, M Ruspa 85,87, R Sacchi 85,86, A Solano 85,86, A Staiano 85, U Tamponi 85, S Belforte 88, V Candelise 88,89, M Casarsa 88, F Cossutti 88, G Della Ricca 88,89, B Gobbo 88, C La Licata 88,89, M Marone 88,89, D Montanino 88,89, A Penzo 88, A Schizzi 88,89, A Zanetti 88, T Y Kim 90, S K Nam 90, S Chang 91, D H Kim 91, G N Kim 91, J E Kim 91, D J Kong 91, Y D Oh 91, H Park 91, D C Son 91, J Y Kim 92, Zero J Kim 92, S Song 92, S Choi 93, D Gyun 93, B Hong 93, M Jo 93, H Kim 93, T J Kim 93, K S Lee 93, D H Moon 93, S K Park 93, Y Roh 93, M Choi 94, J H Kim 94, C Park 94, I C Park 94, S Park 94, G Ryu 94, Y Choi 95, Y K Choi 95, J Goh 95, M S Kim 95, E Kwon 95, B Lee 95, J Lee 95, S Lee 95, H Seo 95, I Yu 95, I Grigelionis 96, A Juodagalvis 96, H Castilla-Valdez 97, E De La Cruz-Burelo 97, I Heredia-de La Cruz 97, R Lopez-Fernandez 97, J Martínez-Ortega 97, A Sanchez-Hernandez 97, L M Villasenor-Cendejas 97, S Carrillo Moreno 98, F Vazquez Valencia 98, H A Salazar Ibarguen 99, E Casimiro Linares 100, A Morelos Pineda 100, M A Reyes-Santos 100, D Krofcheck 101, A J Bell 102, P H Butler 102, R Doesburg 102, S Reucroft 102, H Silverwood 102, M Ahmad 103, M I Asghar 103, J Butt 103, H R Hoorani 103, S Khalid 103, W A Khan 103, T Khurshid 103, S Qazi 103, M A Shah 103, M Shoaib 103, H Bialkowska 104, B Boimska 104, T Frueboes 104, M Górski 104, M Kazana 104, K Nawrocki 104, K Romanowska-Rybinska 104, M Szleper 104, G Wrochna 104, P Zalewski 104, G Brona 105, K Bunkowski 105, M Cwiok 105, W Dominik 105, K Doroba 105, A Kalinowski 105, M Konecki 105, J Krolikowski 105, M Misiura 105, W Wolszczak 105, N Almeida 106, P Bargassa 106, A David 106, P Faccioli 106, P G Ferreira Parracho 106, M Gallinaro 106, J Seixas 106, J Varela 106, P Vischia 106, P Bunin 107, I Golutvin 107, I Gorbunov 107, V Karjavin 107, V Konoplyanikov 107, G Kozlov 107, A Lanev 107, A Malakhov 107, P Moisenz 107, V Palichik 107, V Perelygin 107, M Savina 107, S Shmatov 107, S Shulha 107, V Smirnov 107, A Volodko 107, A Zarubin 107, S Evstyukhin 108, V Golovtsov 108, Y Ivanov 108, V Kim 108, P Levchenko 108, V Murzin 108, V Oreshkin 108, I Smirnov 108, V Sulimov 108, L Uvarov 108, S Vavilov 108, A Vorobyev 108, An Vorobyev 108, Yu Andreev 109, A Dermenev 109, S Gninenko 109, N Golubev 109, M Kirsanov 109, N Krasnikov 109, V Matveev 109, A Pashenkov 109, D Tlisov 109, A Toropin 109, V Epshteyn 110, M Erofeeva 110, V Gavrilov 110, N Lychkovskaya 110, V Popov 110, G Safronov 110, S Semenov 110, A Spiridonov 110, V Stolin 110, E Vlasov 110, A Zhokin 110, V Andreev 111, M Azarkin 111, I Dremin 111, M Kirakosyan 111, A Leonidov 111, G Mesyats 111, S V Rusakov 111, A Vinogradov 111, A Belyaev 112, E Boos 112, V Bunichev 112, M Dubinin 112, L Dudko 112, A Gribushin 112, V Klyukhin 112, O Kodolova 112, I Lokhtin 112, A Markina 112, S Obraztsov 112, S Petrushanko 112, V Savrin 112, A Snigirev 112, I Azhgirey 113, I Bayshev 113, S Bitioukov 113, V Kachanov 113, A Kalinin 113, D Konstantinov 113, V Krychkine 113, V Petrov 113, R Ryutin 113, A Sobol 113, L Tourtchanovitch 113, S Troshin 113, N Tyurin 113, A Uzunian 113, A Volkov 113, P Adzic 114, M Ekmedzic 114, D Krpic 114, J Milosevic 114, M Aguilar-Benitez 115, J Alcaraz Maestre 115, C Battilana 115, E Calvo 115, M Cerrada 115, M Chamizo Llatas 115, N Colino 115, B De La Cruz 115, A Delgado Peris 115, D Domínguez Vázquez 115, C Fernandez Bedoya 115, J P Fernández Ramos 115, A Ferrando 115, J Flix 115, M C Fouz 115, P Garcia-Abia 115, O Gonzalez Lopez 115, S Goy Lopez 115, J M Hernandez 115, M I Josa 115, G Merino 115, E Navarro De Martino 115, J Puerta Pelayo 115, A Quintario Olmeda 115, I Redondo 115, L Romero 115, J Santaolalla 115, M S Soares 115, C Willmott 115, C Albajar 116, J F de Trocóniz 116, H Brun 117, J Cuevas 117, J Fernandez Menendez 117, S Folgueras 117, I Gonzalez Caballero 117, L Lloret Iglesias 117, J Piedra Gomez 117, J A Brochero Cifuentes 118, I J Cabrillo 118, A Calderon 118, S H Chuang 118, J Duarte Campderros 118, M Fernandez 118, G Gomez 118, J Gonzalez Sanchez 118, A Graziano 118, C Jorda 118, A Lopez Virto 118, J Marco 118, R Marco 118, C Martinez Rivero 118, F Matorras 118, F J Munoz Sanchez 118, T Rodrigo 118, A Y Rodríguez-Marrero 118, A Ruiz-Jimeno 118, L Scodellaro 118, I Vila 118, R Vilar Cortabitarte 118, D Abbaneo 119, E Auffray 119, G Auzinger 119, M Bachtis 119, P Baillon 119, A H Ball 119, D Barney 119, J Bendavid 119, J F Benitez 119, C Bernet 119, G Bianchi 119, P Bloch 119, A Bocci 119, A Bonato 119, C Botta 119, H Breuker 119, T Camporesi 119, G Cerminara 119, T Christiansen 119, J A Coarasa Perez 119, S Colafranceschi 119, D d’Enterria 119, A Dabrowski 119, A De Roeck 119, S De Visscher 119, S Di Guida 119, M Dobson 119, N Dupont-Sagorin 119, A Elliott-Peisert 119, J Eugster 119, W Funk 119, G Georgiou 119, M Giffels 119, D Gigi 119, K Gill 119, D Giordano 119, M Girone 119, M Giunta 119, F Glege 119, R Gomez-Reino Garrido 119, S Gowdy 119, R Guida 119, J Hammer 119, M Hansen 119, P Harris 119, C Hartl 119, B Hegner 119, A Hinzmann 119, V Innocente 119, P Janot 119, K Kaadze 119, E Karavakis 119, K Kousouris 119, K Krajczar 119, P Lecoq 119, Y-J Lee 119, C Lourenço 119, N Magini 119, M Malberti 119, L Malgeri 119, M Mannelli 119, L Masetti 119, F Meijers 119, S Mersi 119, E Meschi 119, R Moser 119, M Mulders 119, P Musella 119, E Nesvold 119, L Orsini 119, E Palencia Cortezon 119, E Perez 119, L Perrozzi 119, A Petrilli 119, A Pfeiffer 119, M Pierini 119, M Pimiä 119, D Piparo 119, G Polese 119, L Quertenmont 119, A Racz 119, W Reece 119, J Rodrigues Antunes 119, G Rolandi 119, C Rovelli 119, M Rovere 119, H Sakulin 119, F Santanastasio 119, C Schäfer 119, C Schwick 119, I Segoni 119, S Sekmen 119, A Sharma 119, P Siegrist 119, P Silva 119, M Simon 119, P Sphicas 119, D Spiga 119, M Stoye 119, A Tsirou 119, G I Veres 119, J R Vlimant 119, H K Wöhri 119, S D Worm 119, W D Zeuner 119, W Bertl 120, K Deiters 120, W Erdmann 120, K Gabathuler 120, R Horisberger 120, Q Ingram 120, H C Kaestli 120, S König 120, D Kotlinski 120, U Langenegger 120, F Meier 120, D Renker 120, T Rohe 120, F Bachmair 121, L Bäni 121, P Bortignon 121, M A Buchmann 121, B Casal 121, N Chanon 121, A Deisher 121, G Dissertori 121, M Dittmar 121, M Donegà 121, M Dünser 121, P Eller 121, C Grab 121, D Hits 121, P Lecomte 121, W Lustermann 121, A C Marini 121, P Martinez Ruiz del Arbol 121, N Mohr 121, F Moortgat 121, C Nägeli 121, P Nef 121, F Nessi-Tedaldi 121, F Pandolfi 121, L Pape 121, F Pauss 121, M Peruzzi 121, F J Ronga 121, M Rossini 121, L Sala 121, A K Sanchez 121, A Starodumov 121, B Stieger 121, M Takahashi 121, L Tauscher 121, A Thea 121, K Theofilatos 121, D Treille 121, C Urscheler 121, R Wallny 121, H A Weber 121, C Amsler 122, V Chiochia 122, C Favaro 122, M Ivova Rikova 122, B Kilminster 122, B Millan Mejias 122, P Otiougova 122, P Robmann 122, H Snoek 122, S Taroni 122, S Tupputi 122, M Verzetti 122, M Cardaci 123, K H Chen 123, C Ferro 123, C M Kuo 123, S W Li 123, W Lin 123, Y J Lu 123, R Volpe 123, S S Yu 123, P Bartalini 124, P Chang 124, Y H Chang 124, Y W Chang 124, Y Chao 124, K F Chen 124, C Dietz 124, U Grundler 124, W-S Hou 124, Y Hsiung 124, K Y Kao 124, Y J Lei 124, R-S Lu 124, D Majumder 124, E Petrakou 124, X Shi 124, J G Shiu 124, Y M Tzeng 124, M Wang 124, B Asavapibhop 125, N Suwonjandee 125, A Adiguzel 126, M N Bakirci 126, S Cerci 126, C Dozen 126, I Dumanoglu 126, E Eskut 126, S Girgis 126, G Gokbulut 126, E Gurpinar 126, I Hos 126, E E Kangal 126, A Kayis Topaksu 126, G Onengut 126, K Ozdemir 126, S Ozturk 126, A Polatoz 126, K Sogut 126, D Sunar Cerci 126, B Tali 126, H Topakli 126, M Vergili 126, I V Akin 127, T Aliev 127, B Bilin 127, S Bilmis 127, M Deniz 127, H Gamsizkan 127, A M Guler 127, G Karapinar 127, K Ocalan 127, A Ozpineci 127, M Serin 127, R Sever 127, U E Surat 127, M Yalvac 127, M Zeyrek 127, E Gülmez 128, B Isildak 128, M Kaya 128, O Kaya 128, S Ozkorucuklu 128, N Sonmez 128, H Bahtiyar 129, E Barlas 129, K Cankocak 129, Y O Günaydin 129, F I Vardarlı 129, M Yücel 129, L Levchuk 130, P Sorokin 130, J J Brooke 131, E Clement 131, D Cussans 131, H Flacher 131, R Frazier 131, J Goldstein 131, M Grimes 131, G P Heath 131, H F Heath 131, L Kreczko 131, S Metson 131, D M Newbold 131, K Nirunpong 131, A Poll 131, S Senkin 131, V J Smith 131, T Williams 131, L Basso 132, K W Bell 132, A Belyaev 132, C Brew 132, R M Brown 132, D J A Cockerill 132, J A Coughlan 132, K Harder 132, S Harper 132, J Jackson 132, E Olaiya 132, D Petyt 132, B C Radburn-Smith 132, C H Shepherd-Themistocleous 132, I R Tomalin 132, W J Womersley 132, R Bainbridge 133, G Ball 133, O Buchmuller 133, D Burton 133, D Colling 133, N Cripps 133, M Cutajar 133, P Dauncey 133, G Davies 133, M Della Negra 133, W Ferguson 133, J Fulcher 133, D Futyan 133, A Gilbert 133, A Guneratne Bryer 133, G Hall 133, Z Hatherell 133, J Hays 133, G Iles 133, M Jarvis 133, G Karapostoli 133, M Kenzie 133, R Lane 133, R Lucas 133, L Lyons 133, A-M Magnan 133, J Marrouche 133, B Mathias 133, R Nandi 133, J Nash 133, A Nikitenko 133, J Pela 133, M Pesaresi 133, K Petridis 133, M Pioppi 133, D M Raymond 133, S Rogerson 133, A Rose 133, C Seez 133, P Sharp 133, A Sparrow 133, A Tapper 133, M Vazquez Acosta 133, T Virdee 133, S Wakefield 133, N Wardle 133, T Whyntie 133, M Chadwick 134, J E Cole 134, P R Hobson 134, A Khan 134, P Kyberd 134, D Leggat 134, D Leslie 134, W Martin 134, I D Reid 134, P Symonds 134, L Teodorescu 134, M Turner 134, J Dittmann 135, K Hatakeyama 135, A Kasmi 135, H Liu 135, T Scarborough 135, O Charaf 136, S I Cooper 136, C Henderson 136, P Rumerio 136, A Avetisyan 137, T Bose 137, C Fantasia 137, A Heister 137, P Lawson 137, D Lazic 137, J Rohlf 137, D Sperka 137, J St John 137, L Sulak 137, J Alimena 138, S Bhattacharya 138, G Christopher 138, D Cutts 138, Z Demiragli 138, A Ferapontov 138, A Garabedian 138, U Heintz 138, G Kukartsev 138, E Laird 138, G Landsberg 138, M Luk 138, M Narain 138, M Segala 138, T Sinthuprasith 138, T Speer 138, R Breedon 139, G Breto 139, M Calderon De La Barca Sanchez 139, S Chauhan 139, M Chertok 139, J Conway 139, R Conway 139, P T Cox 139, R Erbacher 139, M Gardner 139, R Houtz 139, W Ko 139, A Kopecky 139, R Lander 139, O Mall 139, T Miceli 139, R Nelson 139, D Pellett 139, F Ricci-Tam 139, B Rutherford 139, M Searle 139, J Smith 139, M Squires 139, M Tripathi 139, R Yohay 139, V Andreev 140, D Cline 140, R Cousins 140, S Erhan 140, P Everaerts 140, C Farrell 140, M Felcini 140, J Hauser 140, M Ignatenko 140, C Jarvis 140, G Rakness 140, P Schlein 140, P Traczyk 140, V Valuev 140, M Weber 140, J Babb 141, R Clare 141, M E Dinardo 141, J Ellison 141, J W Gary 141, F Giordano 141, G Hanson 141, H Liu 141, O R Long 141, A Luthra 141, H Nguyen 141, S Paramesvaran 141, J Sturdy 141, S Sumowidagdo 141, R Wilken 141, S Wimpenny 141, W Andrews 142, J G Branson 142, G B Cerati 142, S Cittolin 142, D Evans 142, A Holzner 142, R Kelley 142, M Lebourgeois 142, J Letts 142, I Macneill 142, B Mangano 142, S Padhi 142, C Palmer 142, G Petrucciani 142, M Pieri 142, M Sani 142, V Sharma 142, S Simon 142, E Sudano 142, M Tadel 142, Y Tu 142, A Vartak 142, S Wasserbaech 142, F Würthwein 142, A Yagil 142, J Yoo 142, D Barge 143, R Bellan 143, C Campagnari 143, M D’Alfonso 143, T Danielson 143, K Flowers 143, P Geffert 143, C George 143, F Golf 143, J Incandela 143, C Justus 143, P Kalavase 143, D Kovalskyi 143, V Krutelyov 143, S Lowette 143, R Magaña Villalba 143, N Mccoll 143, V Pavlunin 143, J Ribnik 143, J Richman 143, R Rossin 143, D Stuart 143, W To 143, C West 143, A Apresyan 144, A Bornheim 144, J Bunn 144, Y Chen 144, E Di Marco 144, J Duarte 144, D Kcira 144, Y Ma 144, A Mott 144, H B Newman 144, C Rogan 144, M Spiropulu 144, V Timciuc 144, J Veverka 144, R Wilkinson 144, S Xie 144, Y Yang 144, R Y Zhu 144, V Azzolini 145, A Calamba 145, R Carroll 145, T Ferguson 145, Y Iiyama 145, D W Jang 145, Y F Liu 145, M Paulini 145, J Russ 145, H Vogel 145, I Vorobiev 145, J P Cumalat 146, B R Drell 146, W T Ford 146, A Gaz 146, E Luiggi Lopez 146, U Nauenberg 146, J G Smith 146, K Stenson 146, K A Ulmer 146, S R Wagner 146, J Alexander 147, A Chatterjee 147, N Eggert 147, L K Gibbons 147, W Hopkins 147, A Khukhunaishvili 147, B Kreis 147, N Mirman 147, G Nicolas Kaufman 147, J R Patterson 147, A Ryd 147, E Salvati 147, W Sun 147, W D Teo 147, J Thom 147, J Thompson 147, J Tucker 147, Y Weng 147, L Winstrom 147, P Wittich 147, D Winn 148, S Abdullin 149, M Albrow 149, J Anderson 149, G Apollinari 149, L A T Bauerdick 149, A Beretvas 149, J Berryhill 149, P C Bhat 149, K Burkett 149, J N Butler 149, V Chetluru 149, H W K Cheung 149, F Chlebana 149, S Cihangir 149, V D Elvira 149, I Fisk 149, J Freeman 149, Y Gao 149, E Gottschalk 149, L Gray 149, D Green 149, O Gutsche 149, R M Harris 149, J Hirschauer 149, B Hooberman 149, S Jindariani 149, M Johnson 149, U Joshi 149, B Klima 149, S Kunori 149, S Kwan 149, J Linacre 149, D Lincoln 149, R Lipton 149, J Lykken 149, K Maeshima 149, J M Marraffino 149, V I Martinez Outschoorn 149, S Maruyama 149, D Mason 149, P McBride 149, K Mishra 149, S Mrenna 149, Y Musienko 149, C Newman-Holmes 149, V O’Dell 149, O Prokofyev 149, E Sexton-Kennedy 149, S Sharma 149, W J Spalding 149, L Spiegel 149, L Taylor 149, S Tkaczyk 149, N V Tran 149, L Uplegger 149, E W Vaandering 149, R Vidal 149, J Whitmore 149, W Wu 149, F Yang 149, J C Yun 149, D Acosta 150, P Avery 150, D Bourilkov 150, M Chen 150, T Cheng 150, S Das 150, M De Gruttola 150, G P Di Giovanni 150, D Dobur 150, A Drozdetskiy 150, R D Field 150, M Fisher 150, Y Fu 150, I K Furic 150, J Hugon 150, B Kim 150, J Konigsberg 150, A Korytov 150, A Kropivnitskaya 150, T Kypreos 150, J F Low 150, K Matchev 150, P Milenovic 150, G Mitselmakher 150, L Muniz 150, R Remington 150, A Rinkevicius 150, N Skhirtladze 150, M Snowball 150, J Yelton 150, M Zakaria 150, V Gaultney 151, S Hewamanage 151, L M Lebolo 151, S Linn 151, P Markowitz 151, G Martinez 151, J L Rodriguez 151, T Adams 152, A Askew 152, J Bochenek 152, J Chen 152, B Diamond 152, S V Gleyzer 152, J Haas 152, S Hagopian 152, V Hagopian 152, K F Johnson 152, H Prosper 152, V Veeraraghavan 152, M Weinberg 152, M M Baarmand 153, B Dorney 153, M Hohlmann 153, H Kalakhety 153, F Yumiceva 153, M R Adams 154, L Apanasevich 154, V E Bazterra 154, R R Betts 154, I Bucinskaite 154, J Callner 154, R Cavanaugh 154, O Evdokimov 154, L Gauthier 154, C E Gerber 154, D J Hofman 154, S Khalatyan 154, P Kurt 154, F Lacroix 154, C O’Brien 154, C Silkworth 154, D Strom 154, P Turner 154, N Varelas 154, U Akgun 155, E A Albayrak 155, B Bilki 155, W Clarida 155, K Dilsiz 155, F Duru 155, S Griffiths 155, J-P Merlo 155, H Mermerkaya 155, A Mestvirishvili 155, A Moeller 155, J Nachtman 155, C R Newsom 155, H Ogul 155, Y Onel 155, F Ozok 155, S Sen 155, P Tan 155, E Tiras 155, J Wetzel 155, T Yetkin 155, K Yi 155, B A Barnett 156, B Blumenfeld 156, S Bolognesi 156, D Fehling 156, G Giurgiu 156, A V Gritsan 156, G Hu 156, P Maksimovic 156, M Swartz 156, A Whitbeck 156, P Baringer 157, A Bean 157, G Benelli 157, R P Kenny III 157, M Murray 157, D Noonan 157, S Sanders 157, R Stringer 157, J S Wood 157, A F Barfuss 158, I Chakaberia 158, A Ivanov 158, S Khalil 158, M Makouski 158, Y Maravin 158, S Shrestha 158, I Svintradze 158, J Gronberg 159, D Lange 159, F Rebassoo 159, D Wright 159, A Baden 160, B Calvert 160, S C Eno 160, J A Gomez 160, N J Hadley 160, R G Kellogg 160, T Kolberg 160, Y Lu 160, M Marionneau 160, A C Mignerey 160, K Pedro 160, A Peterman 160, A Skuja 160, J Temple 160, M B Tonjes 160, S C Tonwar 160, A Apyan 161, G Bauer 161, W Busza 161, E Butz 161, I A Cali 161, M Chan 161, V Dutta 161, G Gomez Ceballos 161, M Goncharov 161, Y Kim 161, M Klute 161, A Levin 161, P D Luckey 161, T Ma 161, S Nahn 161, C Paus 161, D Ralph 161, C Roland 161, G Roland 161, G S F Stephans 161, F Stöckli 161, K Sumorok 161, K Sung 161, D Velicanu 161, R Wolf 161, B Wyslouch 161, M Yang 161, Y Yilmaz 161, A S Yoon 161, M Zanetti 161, V Zhukova 161, B Dahmes 162, A De Benedetti 162, G Franzoni 162, A Gude 162, J Haupt 162, S C Kao 162, K Klapoetke 162, Y Kubota 162, J Mans 162, N Pastika 162, R Rusack 162, M Sasseville 162, A Singovsky 162, N Tambe 162, J Turkewitz 162, L M Cremaldi 163, R Kroeger 163, L Perera 163, R Rahmat 163, D A Sanders 163, D Summers 163, E Avdeeva 164, K Bloom 164, S Bose 164, D R Claes 164, A Dominguez 164, M Eads 164, R Gonzalez Suarez 164, J Keller 164, I Kravchenko 164, J Lazo-Flores 164, S Malik 164, G R Snow 164, J Dolen 165, A Godshalk 165, I Iashvili 165, S Jain 165, A Kharchilava 165, A Kumar 165, S Rappoccio 165, Z Wan 165, G Alverson 166, E Barberis 166, D Baumgartel 166, M Chasco 166, J Haley 166, D Nash 166, T Orimoto 166, D Trocino 166, D Wood 166, J Zhang 166, A Anastassov 167, K A Hahn 167, A Kubik 167, L Lusito 167, N Mucia 167, N Odell 167, B Pollack 167, A Pozdnyakov 167, M Schmitt 167, S Stoynev 167, M Velasco 167, S Won 167, D Berry 168, A Brinkerhoff 168, K M Chan 168, M Hildreth 168, C Jessop 168, D J Karmgard 168, J Kolb 168, K Lannon 168, W Luo 168, S Lynch 168, N Marinelli 168, D M Morse 168, T Pearson 168, M Planer 168, R Ruchti 168, J Slaunwhite 168, N Valls 168, M Wayne 168, M Wolf 168, L Antonelli 169, B Bylsma 169, L S Durkin 169, C Hill 169, R Hughes 169, K Kotov 169, T Y Ling 169, D Puigh 169, M Rodenburg 169, G Smith 169, C Vuosalo 169, G Williams 169, B L Winer 169, H Wolfe 169, E Berry 170, P Elmer 170, V Halyo 170, P Hebda 170, J Hegeman 170, A Hunt 170, P Jindal 170, S A Koay 170, D Lopes Pegna 170, P Lujan 170, D Marlow 170, T Medvedeva 170, M Mooney 170, J Olsen 170, P Piroué 170, X Quan 170, A Raval 170, H Saka 170, D Stickland 170, C Tully 170, J S Werner 170, S C Zenz 170, A Zuranski 170, E Brownson 171, A Lopez 171, H Mendez 171, J E Ramirez Vargas 171, E Alagoz 172, D Benedetti 172, G Bolla 172, D Bortoletto 172, M De Mattia 172, A Everett 172, Z Hu 172, M Jones 172, O Koybasi 172, M Kress 172, N Leonardo 172, V Maroussov 172, P Merkel 172, D H Miller 172, N Neumeister 172, I Shipsey 172, D Silvers 172, A Svyatkovskiy 172, M Vidal Marono 172, H D Yoo 172, J Zablocki 172, Y Zheng 172, S Guragain 173, N Parashar 173, A Adair 174, B Akgun 174, K M Ecklund 174, F J M Geurts 174, W Li 174, B P Padley 174, R Redjimi 174, J Roberts 174, J Zabel 174, B Betchart 175, A Bodek 175, R Covarelli 175, P de Barbaro 175, R Demina 175, Y Eshaq 175, T Ferbel 175, A Garcia-Bellido 175, P Goldenzweig 175, J Han 175, A Harel 175, D C Miner 175, G Petrillo 175, D Vishnevskiy 175, M Zielinski 175, A Bhatti 176, R Ciesielski 176, L Demortier 176, K Goulianos 176, G Lungu 176, S Malik 176, C Mesropian 176, S Arora 177, A Barker 177, J P Chou 177, C Contreras-Campana 177, E Contreras-Campana 177, D Duggan 177, D Ferencek 177, Y Gershtein 177, R Gray 177, E Halkiadakis 177, D Hidas 177, A Lath 177, S Panwalkar 177, M Park 177, R Patel 177, V Rekovic 177, J Robles 177, K Rose 177, S Salur 177, S Schnetzer 177, C Seitz 177, S Somalwar 177, R Stone 177, M Walker 177, G Cerizza 178, M Hollingsworth 178, S Spanier 178, Z C Yang 178, A York 178, R Eusebi 179, W Flanagan 179, J Gilmore 179, T Kamon 179, V Khotilovich 179, R Montalvo 179, I Osipenkov 179, Y Pakhotin 179, A Perloff 179, J Roe 179, A Safonov 179, T Sakuma 179, I Suarez 179, A Tatarinov 179, D Toback 179, N Akchurin 180, J Damgov 180, C Dragoiu 180, P R Dudero 180, C Jeong 180, K Kovitanggoon 180, S W Lee 180, T Libeiro 180, I Volobouev 180, E Appelt 181, A G Delannoy 181, S Greene 181, A Gurrola 181, W Johns 181, C Maguire 181, Y Mao 181, A Melo 181, M Sharma 181, P Sheldon 181, B Snook 181, S Tuo 181, J Velkovska 181, M W Arenton 182, M Balazs 182, S Boutle 182, B Cox 182, B Francis 182, J Goodell 182, R Hirosky 182, A Ledovskoy 182, C Lin 182, C Neu 182, J Wood 182, S Gollapinni 183, R Harr 183, P E Karchin 183, C Kottachchi Kankanamge Don 183, P Lamichhane 183, A Sakharov 183, M Anderson 184, D A Belknap 184, L Borrello 184, D Carlsmith 184, M Cepeda 184, S Dasu 184, E Friis 184, K S Grogg 184, M Grothe 184, R Hall-Wilton 184, M Herndon 184, A Hervé 184, P Klabbers 184, J Klukas 184, A Lanaro 184, C Lazaridis 184, R Loveless 184, A Mohapatra 184, M U Mozer 184, I Ojalvo 184, G A Pierro 184, I Ross 184, A Savin 184, W H Smith 184, J Swanson 184
PMCID: PMC4370850  PMID: 25814864

Abstract

A search for a standard-model-like Higgs boson in the H→WW and H→ZZ decay channels is reported, for Higgs boson masses in the range 145<m H<1000 GeV. The search is based upon proton–proton collision data samples corresponding to an integrated luminosity of up to 5.1 fb−1 at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s} = 7~\mbox{TeV}$\end{document} and up to 5.3 fb−1 at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s} = 8~\mbox{TeV}$\end{document}, recorded by the CMS experiment at the LHC. The combined upper limits at 95 % confidence level on products of the cross section and branching fractions exclude a standard-model-like Higgs boson in the range 145<m H<710 GeV, thus extending the mass region excluded by CMS from 127–600 GeV up to 710 GeV.

Introduction

The standard model (SM) of electroweak interactions [13] relies on the existence of the Higgs boson, H, a scalar particle associated with the field responsible for spontaneous electroweak symmetry breaking [49]. The mass of the boson, m H, is not predicted by the theory. Searches for the SM Higgs boson at LEP and the Tevatron excluded at 95 % confidence level (CL) masses lower than 114.4 GeV [10] and the mass range 162–166 GeV [11], respectively. Previous direct searches at the Large Hadron Collider (LHC) [12] were based on data from proton–proton (pp) collisions corresponding to an integrated luminosity of up to 5 fb−1, collected at a center-of-mass energy \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s}=7~\text{TeV}$\end{document}. Using the 7 TeV data set the Compact Muon Solenoid (CMS) experiment has excluded at 95 % CL masses from 127 to 600 GeV [13]. In 2012, the LHC pp center-of-mass energy was increased to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s}=8~\text{TeV}$\end{document}, and an additional integrated luminosity of more than 5 fb−1 was recorded by the end of June. Searches based on these data in the mass range 110–145 GeV led to the observation of a new boson with a mass of approximately 125 GeV [1416]. Using this data set the ATLAS experiment excluded at 95 % CL the mass ranges 111–122 and 131–559 GeV [14]. By the end of 2012 the amount of collected integrated luminosity at 8 TeV reached almost 20 fb−1. We intend to report findings from the entire data set in a future publication. However, given the heightened interest following the recent discovery of the 125 GeV boson, and the fact that the analysis of the full data taken in 2011–2012 will take time, we present here a search for the SM-like Higgs boson up to 1 TeV with the same data set that was used in Refs. [15, 16].

The observation of a Higgs boson with a mass of 125 GeV is consistent with the theoretical constraint coming from the unitarization of diboson scattering at high energies [1726]. However, there is still a possibility that the newly discovered particle has no connection to the electroweak symmetry breaking mechanism [27, 28]. In addition, several popular scenarios, such as general two-Higgs-doublet models (for a review see [29, 30]) or models in which the SM Higgs boson mixes with a heavy electroweak singlet [31], predict the existence of additional resonances at high mass, with couplings similar to the SM Higgs boson. In any such models, issues related to the width of the resonance and its interference with non-resonant WW and ZZ backgrounds must be understood. This paper reports a search for a SM-like Higgs boson at high mass, assuming the properties predicted by the SM. The H→WW and H→ZZ decay channels are used as benchmarks for cross section and production mechanism in the mass range 145<m H<1000 GeV. This approach allows for a self-consistent and coherent presentation of the results at high mass.

For a Higgs boson decaying to two W bosons, the fully leptonic (H→WW→ℓνℓν) and semileptonic (H→WW→ℓνqq) final states are considered in this analysis. For a Higgs boson decaying into two Z bosons, final states containing four leptons (H→ZZ→22′), two leptons and two jets (H→ZZ→22q), and two leptons and two neutrinos (H→ZZ→22ν), are considered, where =e or μ and ′=e, μ, or τ. The analyses use pp collision data samples recorded by the CMS detector, corresponding to integrated luminosities of up to 5.1 fb−1 at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s} = 7~\text{TeV}$\end{document} and up to 5.3 fb−1 at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s} = 8~\text{TeV}$\end{document}.

The CMS detector and simulations

A full description of the CMS apparatus is available elsewhere [32]. The CMS experiment uses a right-handed coordinate system, with the origin at the nominal interaction point, the x axis pointing to the center of the LHC ring, the y axis pointing up (perpendicular to the plane of the LHC ring), and the z axis along the counterclockwise-beam direction. The polar angle θ is measured from the positive z axis, and the azimuthal angle ϕ is measured in the xy plane. All angles in this paper are presented in radians. The pseudorapidity is defined as η=−ln[tan(θ/2)].

The central feature of the CMS apparatus is a superconducting solenoid of 6  m internal diameter, which provides a magnetic field of 3.8  T. Within the field volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass/scintillator hadron calorimeter. A quartz-fiber Cherenkov calorimeter extends the coverage to |η|<5.0. Muons are measured in gas-ionization detectors embedded in the steel flux return yoke. The first level of the CMS trigger system, composed of custom hardware processors, is designed to select the most interesting events in less than 3 μs, using information from the calorimeters and muon detectors. The high level trigger processor farm decreases the event rate from 100  kHz delivered by the first level trigger to a few hundred hertz, before data storage.

Several Monte Carlo (MC) event generators are used to simulate the signal and background event samples. The H→WW and H→ZZ signals are simulated using the next-to-leading order (NLO) package powheg [3335]. The Higgs boson signals from gluon fusion (gg→H), and vector-boson fusion (VBF, qq→qqH), are generated with powheg at NLO and a dedicated program [36] used for angular correlations. Samples of WH, ZH, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}} \mathrm{H}$\end{document} events are generated using pythia 6.424 [37].

At generator level, events are weighted according to the total cross section σ(pp→H), which contains contributions from gluon fusion computed to next-to-next-to-leading order (NNLO) and next-to-next-to-leading-log (NNLL) [3849], and from weak-boson fusion computed at NNLO [41, 5054].

The simulated WW(ZZ) invariant mass m WW (m ZZ) lineshape is corrected to match the results presented in Refs. [5557], where the complex-pole scheme for the Higgs boson propagator is used. In the gluon fusion production channel, the effects on the lineshape due to interference between Higgs boson signal and the gg→WW and gg→ZZ backgrounds are included [58, 59]. The theoretical uncertainties on the lineshape due to missing higher-order corrections in the interference between background and signal are included in the total uncertainties, in addition to uncertainties associated with electroweak corrections [56, 58]. Interference outside the Higgs boson mass peak has sizable effects on the normalization for those final states where the Higgs boson invariant mass cannot be fully reconstructed. A correction is applied, taking into account the corresponding theoretical uncertainties, in the WW→ℓνqq final state [58, 59]. In the WW→ℓνℓν and ZZ→22ν final states, the effect of interference on the normalization, as computed in [59, 60], is included with an associated uncertainty of 100 %.

The background contribution from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{q} \overline{\mathrm{q}} \to \mathrm{WW} $\end{document} production is generated using the MadGraph package [61], and the subdominant gg→WW process is generated using gg2ww [62]. The \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{q} \overline{\mathrm{q}} \to \mathrm{ZZ} $\end{document} production process is simulated at NLO with powheg, and the gg→ZZ process is simulated using gg2zz [63]. Other diboson processes (WZ, Zγ (∗), Wγ (∗)) and Z+jet are generated with pythia 6.424 and MadGraph. The \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}} $\end{document} and tW events are generated at NLO with powheg. For all samples pythia is used for parton showering, hadronization, and underlying event simulation. For leading-order (LO) generators, the default set of parton distribution functions (PDF) used to produce these samples is CTEQ6L [64], while CT10 [65] is used for NLO generators. The τ-lepton decays are simulated with tauola [66]. The detector response is simulated using a detailed description of the CMS detector, based on the Geant4 package [67], with event reconstruction performed identically to that for recorded data. The simulated samples include the effect of multiple pp interactions per bunch crossing (pileup). The pythia parameters for the underlying events and pileup interactions are set to the Z2 (Z2) tune for the 7 (8) TeV data sample as described in Ref. [68] with the pileup multiplicity distribution matching that seen in data.

Event reconstruction

A complete reconstruction of the individual particles emerging from each collision event is obtained via a particle-flow (PF) technique [69, 70]. This approach uses the information from all CMS sub-detectors to identify and reconstruct individual particles in the collision event, classifying them into mutually exclusive categories: charged hadrons, neutral hadrons, photons, electrons, and muons.

The electron reconstruction algorithm combines information from clusters of energy deposits in the ECAL with the trajectory in the inner tracker [71, 72]. Trajectories in the tracker volume are reconstructed using a dedicated model of electron energy loss, and fitted with a Gaussian sum filter. Electron identification relies on a multivariate (MVA) technique that combines observables sensitive to the amount of bremsstrahlung along the electron trajectory, the geometrical and momentum matching between the electron trajectory and the associated clusters, and shower-shape observables.

The muon reconstruction algorithm combines information from the silicon tracker and the muon spectrometer. Muons are selected from amongst the reconstructed muon-track candidates by applying requirements on the track components in the muon system and on matched energy deposits in the calorimeters [73].

The τ-leptons are identified in both the leptonic decay modes, with an electron or muon as measurable decay product, and in the hadronic mode (denoted τ h). The PF particles are used to reconstruct τ h using the “hadron-plus-strip” (HPS) algorithm [74].

Jets are reconstructed from PF candidates by using the anti-k T clustering algorithm [75, 76] with a distance parameter of 0.5. Jet energy corrections are applied to account for the non-linear response of the calorimeters, and other instrumental effects. These corrections are based on in-situ calibration using dijet and γ/Z+jet data samples [77]. The median energy density due to pileup is evaluated in each event, and the corresponding energy is subtracted from each jet [78]. Jets are required to originate at the primary vertex, which is identified as the vertex with the highest summed \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{\mathrm{T}} ^{2}$\end{document} of its associated tracks. Jets displaced from the primary vertex in the transverse direction can be tagged as b jets [79].

Charged leptons from W and Z boson decays are typically expected to be isolated from other activity in the event. The isolation of e or μ leptons is therefore ensured by applying requirements on the sum of the transverse energies of all reconstructed particles, charged or neutral, within a cone of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta R = \sqrt{(\Delta\eta)^{2} + (\Delta\phi)^{2}} < 0.4$\end{document} around the lepton direction, after subtracting the average pileup energy estimated using a “jet area” technique [80] on an event-by-event basis.

The magnitude of the transverse momentum (p T) is calculated as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{\mathrm{T}} = \sqrt{\smash[b]{p_{x}}^{2} + \smash[b]{p_{y}}^{2}}$\end{document}. The missing transverse energy vector \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\boldsymbol{E}_{\mathrm{T}}^{\text {miss}}$\end{document} is defined as the negative vector sum of the transverse momenta of all reconstructed particles in the event, with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E_{\mathrm{T}}^{\text{miss}} = |\boldsymbol{E}_{\mathrm{T}}^{\text {miss}}|$\end{document}.

At trigger level, depending on the decay channel, events are required to have a pair of electrons or muons, or an electron and a muon, one lepton with p T>17 GeV and the other with p T>8 GeV, or a single electron (muon) with p T>27 (24) GeV.

The efficiencies for trigger selection, reconstruction, identification, and isolation of e and μ are measured from recorded data, using a “tag-and-probe” [81] technique based on an inclusive sample of Z-boson candidate events. These measurements are performed in several bins of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{\mathrm{T}} ^{\ell} $\end{document} and |η |. The overall trigger efficiency for events selected for this analysis ranges from 96 % to 99 %. The efficiency of the electron identification in the ECAL barrel (endcaps) varies from around 82 % (73 %) at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{\mathrm{T}} ^{\mathrm{e}} \simeq10~\mbox {GeV}$\end{document} to 90 % (89 %) for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{\mathrm{T}} ^{\mathrm{e}} \simeq 20~\mbox{GeV}$\end{document}. It drops to about 85 % in the transition region, 1.44<|η e|<1.57, between the ECAL barrel and endcaps. Muons with p T>5 GeV are reconstructed and identified with efficiencies greater than ∼98 % in the full |η μ|<2.4 range. The efficiency of the τ h identification is around 50 % for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{\mathrm{T}} ^{\tau}> 20~\mbox{GeV}$\end{document} [74].

Data analysis

The results presented in this paper are obtained by combining Higgs boson searches exploiting different production and decay modes. A summary of these searches is given in Table 1. All final states are exclusive, with no overlap between channels. The results of the searches in the mass range m H<145 GeV are presented in Refs. [15, 16]. The presence of a signal in any one of the channels, at a certain value of the Higgs boson mass, is expected to manifest itself as an excess extending around that value for a range corresponding to the Higgs boson width convoluted with the experimental mass resolution. The Higgs boson width varies from few percents of m H at low masses through up to 50 % at m H=1 TeV. The mass resolution for each decay mode is given in Table 1. It should be noted that the presence of the boson with m H=125 GeV effectively constitutes an additional background especially in the WW→ℓνℓν channel up to approximately m H=200 GeV, because of the poor mass resolution of this analysis. To take this effect explicitly into account a simulated SM Higgs boson signal with m H=125 GeV is considered as background in this paper.

Table 1.

Summary information on the analyses included in this paper. The column “H production” indicates the production mechanism targeted by an analysis; it does not imply 100 % purity. The main contribution in the untagged and inclusive categories is always gluon fusion. The (jj)VBF refers to dijet pair consistent with the VBF topology, and (jj)W(Z) to a dijet pair with an invariant mass consistent with coming from a W (Z) dijet decay. For the WW→ℓνℓν and ZZ→22′ channels the full possible mass range starts from 110 GeV, but in this paper both analyses are restricted to the masses above 145 GeV. The ZZ→22q analysis uses only 7 TeV data. The notation “((ee,μμ),eμ)+(0 or 1 jets)” indicates that the analysis is performed in two independent lepton categories (ee,μμ) and (eμ), each category further subdivided in two subcategories with zero or one jets, thus giving a total of four independent channels

H decay mode H production Exclusive final states No. of channels m H range [GeV] m H resolution
WW→ℓνℓν 0/1-jets ((ee,μμ),eμ)+(0 or 1 jets) 4 145–600 20 %
WW→ℓνℓν VBF tag ((ee,μμ),eμ)+(jj)VBF 2 145–600 20 %
WW→ℓνqq Untagged (eν,μν)+((jj)W with 0 or 1 jets) 4 180–600 5–15 %
ZZ→22 Inclusive 4e, 4μ, 2e2μ 3 145–1000 1–2 %
(ee,μμ)+(τ h τ h,τ e τ h,τ μ τ h,τ e τ μ) 8 200–1000 10–15 %
ZZ→22q Inclusive (ee,μμ)+((jj)Z with 0, 1, 2b-tags) 6 200–600 3 %
ZZ→22ν Untagged (ee,μμ)+0, 1, 2 non-VBF jets 6 200–1000 7 %
ZZ→22ν VBF tag (ee,μμ)+(jj)VBF 2 200–1000 7 %

The results of all analyses are finally combined following the prescription developed by the ATLAS and CMS Collaborations in the context of the LHC Higgs Combination Group [82], as described in Ref. [13], taking into account the systematic uncertainties and their correlations.

H→WW→ℓνℓν

In this channel, the Higgs boson decays to two W bosons, both of which decay leptonically, resulting in a signature with two isolated, oppositely charged, high-p T leptons (electrons or muons) and large \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E_{\mathrm{T}}^{\text{miss}} $\end{document} due to the undetected neutrinos. The analysis is very similar to that reported in Refs. [15, 16], but additionally uses an improved Higgs boson mass lineshape model, and uses an MVA shape analysis [83] for data taken at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s}=8~\text{TeV}$\end{document}. Candidate events must contain two reconstructed leptons with opposite charge, with p T>20 GeV for the leading lepton, and p T>10 GeV for the second lepton. Only electrons (muons) with |η|<2.5 (2.4) are considered in this channel.

Events are classified into three mutually exclusive categories, according to the number of reconstructed jets with p T>30 GeV and |η|<4.7. The categories are characterized by different signal yields and signal-to-background ratios. In the following these are referred to as 0-jet, 1-jet, and 2-jet samples. Events with more than two jets are considered only if they are consistent with the VBF hypothesis and therefore must not have additional jets in the pseudorapidity region between the highest-p T jets. Signal candidates are further divided into same-flavor leptons (e+e, μ + μ ) and different-flavor leptons (e± μ ) categories. The bulk of the signal arises through direct W decays to electrons or muons, with the small contribution from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{W} \to\tau\nu \to\ell\mathrm{+X}$\end{document} decays implicitly included. The different-flavor lepton 0-jet and 1-jet categories are analysed with a multivariate technique, while all others make use of sequential selections.

In addition to high-p T isolated leptons and minimal jet activity, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E_{\mathrm{T}}^{\text{miss}} $\end{document} is expected to be present in signal events, but generally not in background. For this channel, a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${E}_{\text{T, projected}}^{\text{miss}} $\end{document} variable is employed. The \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E_{\text{T, projected}}^{\text {miss}} $\end{document} is defined as (i) the magnitude of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\boldsymbol{E}_{\mathrm{T}}^{\text{miss}}$\end{document} component transverse to the closest lepton, if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta\phi(\ell, \boldsymbol{E}_{\mathrm{T}}^{\text{miss}}) < \pi/2$\end{document}, or (ii) the magnitude of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\boldsymbol{E}_{\mathrm{T}}^{\text {miss}}$\end{document} otherwise. This observable more efficiently rejects Z/γ τ + τ background events in which the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\boldsymbol{E}_{\mathrm{T}}^{\text{miss}}$\end{document} is preferentially aligned with the leptons, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{Z}/ \gamma ^{*}\mathrm{\to\ell ^{+}\ell^{-}} $\end{document} events with mismeasured \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\boldsymbol{E}_{\mathrm{T}}^{\text{miss}}$\end{document}. Since the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E_{\text{T, projected}}^{\text {miss}} $\end{document} resolution is degraded as pileup increases, the minimum of two different observables is used: the first includes all particle candidates in the event, while the second uses only the charged particle candidates associated with the primary vertex. Events with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E_{\text{T, projected}}^{\text {miss}} $\end{document} above 20 GeV are selected for this analysis.

The backgrounds are suppressed using techniques described in Refs. [15, 16]. Top quark background is controlled with a top-quark-tagging technique based on soft muon and b-jet tagging [79]. A minimum dilepton transverse momentum (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{\mathrm{T}} ^{\ell\ell}$\end{document}) of 45 GeV is required, in order to reduce the W+jets background. Rejection of events with a third lepton passing the same requirements as the two selected leptons reduces both WZ and Wγ backgrounds. The background from low-mass resonances is rejected by requiring a dilepton mass m ℓℓ>12 GeV.

The Drell–Yan process produces same-flavor lepton pairs (e+e and μ + μ ) and therefore additional requirements are applied for the same-flavor final state. Firstly, the resonant component of the Drell–Yan background is rejected by requiring a dilepton mass outside a 30 GeV window centered on the Z-boson mass. The remaining off-peak contribution is further suppressed by requiring \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E_{\text{T, projected}}^{\text {miss}} >45~\mbox{GeV}$\end{document}. For events with two jets, the dominant source of misreconstructed \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E_{\mathrm{T}}^{\text{miss}}$\end{document} is the mismeasurement of the hadronic recoil, and optimal performance is obtained by requiring \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E_{\mathrm {T}}^{\text{miss}} >45~\mbox{GeV}$\end{document}. Finally, the momenta of the dilepton system and of the most energetic jet must not be back-to-back in the transverse plane. These selections reduce the Drell–Yan background by three orders of magnitude, while rejecting less than 50 % of the signal.

These requirements form the set of “preselection” criteria. The preselected sample is dominated by non-resonant WW events. Figure 1(top) shows an example of the m ℓℓ distribution for the 0-jet different-flavor-leptons category after the preselection. The data are well reproduced by the simulation. To enhance the signal-to-background ratio, loose m H-dependent requirements are applied on m ℓℓ and the transverse mass, given by:

\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ m_\mathrm{T} ^{\ell\ell, E_{\mathrm {T}}^{\text{miss}} } = \sqrt{2 p_{\mathrm {T}} ^{\ell\ell} E_{\mathrm{T}}^{\text{miss}} (1-\cos \Delta\phi_{ \ell \ell , E_{\mathrm{T}}^{\text{miss}} } )}, $$\end{document}

where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta\phi_{ \ell \ell , E_{\mathrm{T}}^{\text{miss}} } $\end{document} is the difference in azimuth between \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\boldsymbol {E}_{\mathrm{T}}^{\text{miss}}$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\boldsymbol{p}_{\mathrm{T}}^{\ell\ell} $\end{document}. After preselection, a multivariate technique is employed for the different-flavor final state in the 0-jet and 1-jet categories. In this approach, a boosted decision tree (BDT) [84] is trained for each Higgs boson mass hypothesis and jet category to discriminate signal from background.

Fig. 1.

Fig. 1

(Top) Distributions of m ℓℓ in the 0-jet different-flavor category of the WW→ℓνℓν channel for data (points with error bars), for the main backgrounds (stacked histograms), and for a SM Higgs boson signal with m H=500 GeV. The standard preselection is applied. (Bottom) BDT-classifier distributions for signal and background events for a SM Higgs boson with m H=500 GeV and for the main backgrounds in the 0-jet different-flavor category after requiring \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$80 < m_{\mathrm{T}} ^{\ell\ell , E_{\mathrm{T}}^{\text{miss}} } < 500~\mbox {GeV}$\end{document} and m ℓℓ<500 GeV

The multivariate technique employs the variables used in the preselection and additional observables including ΔR ℓℓ between the leptons and the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$m_{\mathrm{T}} ^{\ell \ell, E_{\mathrm{T}}^{\text{miss}} }$\end{document}. For the 1-jet category the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta\phi_{ \ell \ell , E_{\mathrm{T}}^{\text{miss}} } $\end{document} and azimuthal angle between the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\boldsymbol{p}_{\mathrm {T}}^{\ell\ell} $\end{document} and the jet are also used. The BDT classifier distributions for m H=500 GeV are shown in Fig. 1 (bottom) for the 0-jet different-flavor category. BDT training is performed using H→WW as signal and non-resonant WW as background. The sum of templates for the signal and background are fitted to the binned observed BDT distributions.

The 2-jet category is optimized for the VBF production mode [50, 51, 53, 85], for which the cross section is roughly ten times smaller than for the gluon fusion mode. Sequential selections are employed for this category. The main requirements for selecting the VBF-type events are on the mass of the dijet system, m jj>450 GeV, and on the angular separation of the two jets |Δη jj|>3.5. An m H-dependent requirement on the dilepton mass is imposed, as well as other selection requirements that are independent of the Higgs boson mass hypothesis.

The normalization of the background contributions relies on data whenever possible and exploits a combination of techniques [15, 16]. The \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}} $\end{document} background is estimated by extrapolation from the observed number of events with the b-tagging requirement inverted. The Drell–Yan background measurement is based on extrapolation from the observed number of e+e, μ + μ events with the Z-veto requirement inverted. The background of W+jets and QCD multi-jet events is estimated by measuring the number of events with one lepton passing a loose requirement on isolation. The probability for such loosely-isolated non-genuine leptons to pass the tight isolation criteria is measured in data using multi-jet events. The non-resonant WW contribution is estimated from simulation.

Experimental effects, theoretical predictions, and the choice of event generators are considered as sources of systematic uncertainty, and their impact on the signal efficiency is assessed. The impact on the kinematic distributions is also considered for the BDT analysis. The overall signal yield uncertainty is estimated to be about 20 %, and is dominated by the theoretical uncertainty associated with missing higher-order QCD corrections and PDF uncertainties, estimated following the PDF4LHC recommendations [8690]. The total uncertainty on the background estimation in the H→WW signal region is about 15 % and is dominated by the statistical uncertainty on the observed number of events in the background control regions.

After applying the final selections, no evidence of a SM-like Higgs boson is observed over the mass range considered in this paper. Upper limits are derived on the ratio of the product of the Higgs boson production cross section and the H→WW branching fraction, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sigma_{\mathrm{H}} \times\mathcal{B}(\mathrm{H}\to \mathrm{WW} )$\end{document}, to the SM expectation. The observed and expected upper limits at 95 % confidence level (CL) with all categories combined are shown in Fig. 2. The contribution of the 2-jet category to the expected limits is approximately 10 %.

Fig. 2.

Fig. 2

Observed (solid line) and expected (dashed line) 95 % CL upper limit on the ratio of the product of production cross section and branching ratio to the SM expectation for the Higgs boson obtained using the asymptotic CLS technique [91, 92] in the WW→ℓνℓν channel. The 68 % (1σ) and 95 % (2σ) CL ranges of expectation for the background-only model are also shown with green and yellow bands, respectively. The horizontal solid line at unity indicates the SM expectation (Color figure online)

H→WW→ℓνqq

The WW semileptonic channel has the largest branching fraction of all the channels presented in this paper. Its advantage over the fully leptonic final state is that it has a reconstructable Higgs boson mass peak [93]. This comes at the price of a large W+jets background. The level to which this background can be controlled largely determines the sensitivity of the analysis. This is the first time CMS is presenting a measurement in this decay channel.

The reconstructed electrons (muons) are required to have p T>35 (25) GeV, and are restricted to |η|<2.5 (2.1). The jets are required to have p T>30 GeV and |η|<2.4, and not to overlap with the leptons, with the overlap determined by a cone around the lepton axis of radius ΔR=0.3. Events with electrons and muons, and with exactly two or three jets are analysed separately, giving four categories in total. The two highest-p T jets are assumed to arise from the hadronic decay of the W candidate. According to simulation, in the case of 2 (3) jet events, the correct jet-combination rate varies from 68 (26) % for m H=200 GeV to 88 (84) % for m H=600 GeV. For low m H values jets produced in initial or final state radiation are often more energetic than jets from W decay, therefore in 3 jet events the correct jet-combination rate decreases quickly with decreasing m H. Events with an incorrect dijet combination result in a broad non-peaking background in the m WW spectrum.

The leptonic W candidate is reconstructed from the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\ell, E_{\mathrm{T}}^{\text{miss}} )$\end{document} system. Events are required to have \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E_{\mathrm {T}}^{\text{miss}} > 30~(25)~\mbox{GeV}$\end{document} for the electron (muon) categories. To reduce the background from processes that do not contain W→ℓν decays, requirements of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$m_{\mathrm{T}}^{\ell, E_{\mathrm{T}}^{\text {miss}} }>30~\mbox{GeV}$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lvert\Delta\phi_{\textrm{leading jet,$E_{\mathrm{T}}^{\text{miss}}$}} \rvert > 0.8~(0.4)$\end{document} are imposed for electrons (muons). The \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$m_{\mathrm{T}}^{\ell , E_{\mathrm{T}}^{\text{miss}} }$\end{document} is defined as

\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ m_\mathrm{T} ^{\ell, E_{\mathrm {T}}^{\text{miss}} } = \sqrt{2 p_{\mathrm {T}} ^{\ell} E_{\mathrm{T}}^{\text{miss}} (1-\cos \Delta\phi_{ \ell , E_{\mathrm {T}}^{\text{miss}} } )}, $$\end{document}

where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta\phi_{ \ell , E_{\mathrm{T}}^{\text{miss}} } $\end{document} is the difference in azimuth between \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\boldsymbol {E}_{\mathrm{T}}^{\text{miss}}$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\boldsymbol {p}_{\mathrm{T}}^{\ell} $\end{document}. These criteria reduce the QCD multijet background, for which in many cases the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E_{\mathrm{T}}^{\text{miss}} $\end{document} is generated by a mismeasurement of a jet energy.

To improve the m WW resolution, both W candidates are constrained in a kinematic fit to the W-boson mass to within its known width. For the W→qq candidate the fit uses the four-momenta of the two highest-p T jets. For the W→ℓν candidate the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E_{\mathrm{T}}^{\text{miss}} $\end{document} defines the transverse energy of the neutrino and the longitudinal component of the neutrino momentum, p z, is unknown. The ambiguity is resolved by taking the solution that yields the smaller |p z| value for the neutrino. According to simulation over 85 % of signal events receive a correct |p z| value, thus improving the mass resolution, especially at low m H.

To exploit the differences in kinematics between signal and background events, a likelihood discriminant is constructed that incorporates a set of variables that best distinguishes the Higgs boson signal from the W+jets background. These variables comprise five angles between the Higgs boson decay products, that describe the Higgs boson production kinematics [36]; the p T and rapidity of the WW system; and the lepton charge. The likelihood discriminant is optimized with dedicated simulation samples for several discrete Higgs boson mass hypotheses, for each lepton flavor (e, μ) and for each jet multiplicity (2-jet, 3-jet) independently. Four different optimizations are therefore obtained per mass hypothesis. For each of them, events are retained if they survive a simple selection on the likelihood discriminant, chosen in order to optimize the expected limit for the Higgs boson production cross section.

To simultaneously extract the relative normalizations of all background components in the signal region, an unbinned maximum likelihood fit is performed on the invariant mass distribution of the dijet system, m jj. The fit is performed independently for each Higgs boson mass hypothesis. The signal region corresponding to the W mass window, 65<m jj<95 GeV, is excluded from the fit. The mass window corresponds to approximately twice the dijet mass resolution. The shape of the m jj distribution for the W+jets background is determined by simulation. The overall normalization of the W+jets component is allowed to vary in the fit. The shapes for other backgrounds (electroweak diboson, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline {\mathrm{t}}$\end{document}, single top quark, and Drell–Yan plus jets) are based on simulation, and their normalizations are constrained to theoretical predictions, within the corresponding uncertainties. The multijet background normalization is estimated from data by relaxing lepton isolation and identification requirements. Its contribution to the total number of events is evaluated from a separate two-component likelihood fit to the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$m_{\mathrm{T}}^{\ell, E_{\mathrm{T}}^{\text{miss}} }$\end{document} distribution, and constrained in the m jj fit according to this fraction within uncertainties. For electrons, the multijet fraction accounts for several percent of the event sample, depending on the number of jets in the event, while for muons it is negligible.

Limits are established based on the measured invariant mass of the WW system, m ℓνjj. The m ℓνjj shape for the major background, W+jets, is extracted from data as a linear combination of the shapes measured in two signal-free sideband regions of m jj (55<m jj<65 GeV, 95<m jj<115 GeV). The relative fraction of the two sidebands is determined through simulation, separately for each Higgs boson mass hypothesis, by minimizing the χ 2 between the interpolated m ℓνjj shape in the signal region and the expected one. The m ℓνjj shape for multijet background events is obtained from data with the procedure described above. All other background categories use the m ℓνjj shape from simulation. The m jj and m ℓνjj distributions with final background estimates are shown in Fig. 3, with selections optimized for a 500 GeV Higgs boson mass hypothesis, for the (μ, 2 jets) category. The final background m ℓνjj distribution is obtained by summing up all the individual contributions and smoothing it with an exponential function. The shapes of the m ℓνjj distribution for total background, signal and data for each mass hypothesis and event category are binned, with bin size approximately equal to the mass resolution, and fed as input to the limit-setting procedure.

Fig. 3.

Fig. 3

Invariant mass distributions for the m H=500 GeV mass hypothesis, (μ, 2 jets) category in the H→WW→ℓνqq channel. (Top) The dijet invariant mass distribution with the major background contributions. The vertical lines correspond to the signal region of this analysis 65<m jj<95 GeV. (Bottom) The WW invariant mass distribution with the major background contributions in the signal region

The largest source of systematic uncertainty on the background is due to the uncertainty in the shape of the m ℓνjj distribution of the total background. The shape uncertainty is derived by varying the parameters of the exponential fit function up and down by one standard deviation. The only other uncertainty assigned to background is the normalization uncertainty from the m jj fit. Both of these uncertainties are estimated from data. The dominant systematic uncertainties on the signal include theoretical uncertainties for the cross section (14–19 % for gluon fusion) [41] and on jet energy scale (4–28 %), as well as the efficiency of the likelihood selection (10 %). The latter effect is computed by taking the relative difference in efficiency between data and simulation using a control sample of top-quark pair events in data. These events are good proxies for the signal, since in both cases the primary production mechanism is gluon fusion, and the semi-leptonic final states contain decays of two W bosons.

The upper limits on the ratio of the production cross section for the Higgs boson compared to the SM expectation are presented in Fig. 4.

Fig. 4.

Fig. 4

Observed (solid line) and expected (dashed line) 95 % CL upper limit on the ratio of the product of production cross section and branching fraction to the SM expectation for the Higgs boson in the WW semileptonic channel

H→ZZ→22

This analysis seeks to identify Higgs boson decays to a pair of Z bosons, with both decaying to a pair of leptons. This channel has extremely low background, and the presence of four leptons in the final state allows reconstruction and isolation requirements to be loose. Due to very good mass resolution and high efficiency of the selection requirements, this channel is one of the major discovery channels at both low and high Higgs boson masses. A detailed description of this analysis may be found in [15, 16, 94, 95].

Events included in the analysis contain Z candidates formed from a pair of leptons of the same flavor and opposite charge. Electrons (muons, τ h) are required to be isolated, to originate from the primary vertex, and to have p T>7 (5,20) GeV and |η|<2.5 (2.1,2.3). The event selection procedure results in mutually exclusive sets of Z candidates in the H→22 and H→22τ channels, with the former identified first.

For the 22 final state, the lepton pair with invariant mass closest to the nominal Z boson mass, denoted Z1, is identified and retained if it satisfies \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$40 < m_{\mathrm{Z}_{1}} < 120~\mbox{GeV}$\end{document}. The second Z candidate is then constructed from the remaining leptons in the event, and is required to satisfy \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$12 < m_{\mathrm {Z}_{2}} < 120~\mbox{GeV}$\end{document}. If more than one Z2 candidate remains, the ambiguity is resolved by choosing the leptons of highest p T. Amongst the four candidate decay leptons, it is required that at least one should have p T>20 GeV, and that another should have p T>10 GeV. This requirement ensures that selected events correspond to the high-efficiency plateau of the trigger.

For the 22τ final state, events are required to have one Z1 + candidate, with one lepton having p T>20 GeV and the other p T>10 GeV, and a Z2τ + τ , with τ decaying to μ,e or hadrons. The leptons from τ leptonic decays are required to have p T>10 GeV. The invariant mass of the reconstructed Z1 is required to satisfy 60<m ℓℓ<120 GeV, and that of the Z2 to satisfy m ττ<90 GeV, where m ττ is the invariant mass of the visible τ-decay products.

Simulation is used to evaluate the expected non-resonant ZZ background as a function of m 22. The cross section for ZZ production at NLO is calculated with mcfm [9698]. The theoretical uncertainty on the cross-section is evaluated as a function of m 22, by varying the QCD renormalization and factorization scales and the PDF set, following the PDF4LHC recommendations. The uncertainties associated with the QCD and PDF scales for each final state are on average 8 %. The number of predicted ZZ→22′ events and their associated uncertainties, after the signal selection, are given in Table 2.

Table 2.

Observed and expected background and signal yields for each final state in the H→ZZ→22′ channel. For the Z+X background, the estimations are based on data. The uncertainties represent the statistical and systematic uncertainties combined in quadrature

Channel 4e 4μ 2e2μ 22τ
ZZ background 28.6±3.3 44.6±4.6 70.8±7.5 12.1±1.5
Z+X \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2.3 ^{ + 2.1 }_{ - 1.5 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1.1 ^{ + 0.8 }_{ - 0.7 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$3.6 ^{ + 2.9 }_{ - 2.2 }$\end{document} 8.9±2.5
All backgrounds \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$30.9 ^{ + 3.9 }_{ - 3.6 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$45.7 ^{ + 4.7 }_{ - 4.7 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$74.4 ^{ + 8.0 }_{ - 7.8 }$\end{document} 21.0±2.9
Observed 26 42 88 20
m H=350 GeV 5.4±1.4 7.6±1.6 13.2±3.0 3.1±0.8
m H=500 GeV 1.9±0.9 2.7±1.2 4.6±2.1 1.4±0.7

To allow estimation of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm {t}} $\end{document}, Z+jets, and WZ+jets reducible backgrounds a Z1+ ng control region is defined, with at least one loosely defined non-genuine lepton candidate, ng, in addition to a Z candidate. To avoid possible contamination from WZ events, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E_{\mathrm {T}}^{\text{miss}} < 25~\mbox{GeV}$\end{document} is required. This control region is used to determine the misidentification probability for ng to pass the final lepton selections as a function of p T and η. To estimate the number of expected background events in the signal region, Z1+ ± , this misidentification probability is applied to two control regions, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{Z}_{1}+\ell^{\pm}\ell_{\text{ng}}^{\mp}$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{Z}_{1}+\ell_{\mathrm{ng}}^{\pm}\ell_{\mathrm{ng}}^{\mp}$\end{document}. The contamination from WZ events containing a genuine additional lepton is suppressed by requiring the imbalance of the measured energy deposition in the transverse plane to be below 25 GeV. The estimated reducible background yield in the signal region is denoted as Z+X in Table 2. The systematic uncertainties associated with the reducible background estimate vary from 30 % to 70 %, and are presented in the table combined in quadrature with the statistical uncertainties.

The reconstructed invariant mass distributions for 22′ are shown in Fig. 5 for the combination of the 4e, 4μ, and 2e2μ final states in the top plot and for the combination of the 22τ states in the bottom one. The data are compared with the expectation from SM background processes. The observed mass distributions are consistent with the SM background expectation.

Fig. 5.

Fig. 5

Distribution of the four-lepton reconstructed mass for (top) the sum of the 4e, 4μ, and 2e2μ channels, and for (bottom) the sum over all 22τ channels. Points represent the data, shaded histograms represent the background, and unshaded histogram the signal expectations. The reconstructed masses in 22τ states are shifted downwards with respect to the true masses by about 30 % due to the undetected neutrinos in τ decays

The kinematics of the H→ZZ→22 process, for a given invariant mass of the four-lepton system, are fully described at LO by five angles and the invariant masses of the two lepton pairs [36, 99, 100]. A kinematic discriminant (KD), based on these seven variables, is constructed based on the probability ratio of the signal and background hypotheses [101]. The distribution of KD versus m 22 is shown in Fig. 6 (top) for the selected event sample, and is consistent with the SM background expectation. The two-dimensional KD-m 22 distribution is used to set upper limits on the cross-section in the 22 channel. For the 22τ final state, limits are set using the m 22τ distribution. The combined upper limits from all channels are shown in Fig. 6 (bottom).

Fig. 6.

Fig. 6

(Top) The distribution of events selected in the 22 subchannels for the kinematic discriminant, KD, versus m 22. Events in the three final states are marked by filled symbols (defined in the legend). The colored contours (with the measure on the color scale of the right axis) represent the expected relative density of background events. (Bottom) Observed (solid line) and expected (dashed line) 95 % CL upper limits on the ratio of the product of the production cross section and branching fraction to the SM expectation in the H→ZZ→22′ channel. The 68 % (1σ) and 95 % (2σ) ranges of expectation for the background-only model are also shown with green and yellow bands, respectively (Color figure online)

H→ZZ→22q

This channel has the largest branching fraction of all H→ZZ channels considered in this paper, but also a large background contribution from Z+jets production. The hadronically-decaying Z bosons produce quark jets, with a large fraction of heavy quarks compared to the background that is dominated by gluon and light quark jets. This feature allows the use of a heavy-flavor tagging algorithm to enhance the signal with respect to background. The analysis presented here updates the previously published result [101] by the use of the most recent theoretical predictions for the Higgs boson mass lineshape and the correction of a problem in the background description. The measurement in this channel uses the same \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s}=7~\text{TeV}$\end{document} data set as the published paper [101] and uses the same selection requirements.

Reconstructed electrons and muons are required to have p T>40 (20) GeV for the highest-p T (second-highest-p T) lepton. Electrons (muons) are required to have |η|<2.5(2.4), with the transition region between ECAL barrel and endcap, 1.44<|η|<1.57, excluded for electrons. Jets are required to have p T>30 GeV and |η|<2.4. Each pair of oppositely-charged leptons of the same flavor, and each pair of jets, are considered as Z candidates. Background contributions are reduced by requiring 75<m jj<105 GeV and 70<m ℓℓ<110 GeV.

In order to exploit the different jet composition of signal and background, events are classified into three mutually exclusive categories, according to the number of selected b-tagged jets: 0b-tag, 1b-tag and 2b-tag. An angular likelihood discriminant is used to separate signal-like from background-like events in each category [36]. A “quark-gluon” likelihood discriminant (qgLD), intended to distinguish gluon jets from light-quark jets, is employed for the 0b-tag category, which is expected to be dominated by Z+jets background. A requirement on the qgLD value reduces backgrounds by approximately 40 % without any loss in the signal efficiency. In order to suppress the substantial \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}} $\end{document} background in the 2b-tag category, a discriminant λ is used. This variable is defined as the ratio of the likelihoods of a hypothesis with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E_{\mathrm{T}}^{\text {miss}} $\end{document} equal to the value measured with the PF algorithm, and the null hypothesis \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E_{\mathrm {T}}^{\text{miss}} =0~\mbox{GeV}$\end{document} [102]. This discriminant provides a measure of whether the event contains genuine missing transverse energy. Events in the 2b-tag category are required to have 2lnλ<10. When an event contains multiple Z candidates passing the selection requirements, only the ones with jets in the highest b-tag category are retained for analysis. If multiple candidates are still present, the ones with m jj and m ℓℓ values closest to the Z mass are retained.

The statistical analysis is based on the invariant mass of the Higgs boson candidate, m ZZ, applying the constraint that the dijet invariant mass is consistent with that of the Z boson. Data containing a Higgs boson signal are expected to show a resonance peak over a continuum background distribution.

The background distributions are estimated from the m jj sidebands, defined as 60<m jj<75 GeV and 105<m jj<130 GeV. In simulation, the composition and distribution of the dominant backgrounds in the sidebands are observed to be similar to those in the signal region. The distributions derived from data sidebands are measured for each of the three b-tag categories and used to estimate the normalization of the background and its dependence on m ZZ. The results of the sideband interpolation procedure are in good agreement with the observed distributions in data. In all cases, the dominant backgrounds include Z+jets with either light- or heavy-flavor jets and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}}$\end{document} background, both of which populate the m jj signal region and the m jj sidebands. The diboson background amounts to less than 5 % of the total in the 0b and 1b-tag categories, and about 10 % in the 2b-tag category. No significant difference is observed between results from data and the background expectation.

The distribution of m ZZ for the background is parametrized by an empirical function constructed of a Crystal Ball distribution [103105] multiplied by a Fermi function, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f( m_{\mathrm{ZZ}} ) = 1/[1+\mathrm {e}^{-( m_{\mathrm{ZZ}} -a)/b}]$\end{document}, fitted to the shape and with normalization determined from the sidebands. The dominant normalization uncertainty in the background estimation is due to statistical uncertainty of the number of events in the sidebands. The reconstructed signal distribution has two components. The Double Crystal Ball function [103105] is used to describe the events with well reconstructed Higgs boson decay products. The m ZZ spectrum for misreconstructed events is described with a triangle function with linear rising and falling edges, convoluted with Crystal Ball function for better description of the peak and tail regions. The signal reconstruction efficiency and the m ZZ distribution are parametrized as a function of m H. The main uncertainties in the signal m ZZ parametrization are due to experimental resolution, which is predominantly due to the uncertainty on the jet energy scale [77]. Uncertainties in b-tagging efficiency are evaluated with a sample of jet events enriched in heavy flavors by requiring a muon to be spatially close to a jet. The uncertainty associated with the qgLD selection efficiency is evaluated using the γ+jet sample in data, which predominantly contains light quark jets.

The upper limits at 95 % CL on the ratio of the production cross section for the Higgs boson to the SM expectation, obtained from the combination of all categories, are presented in Fig. 7. This exclusion limit supersedes the previously published one [101].

Fig. 7.

Fig. 7

Observed (solid line) and expected (dashed line) 95 % CL upper limit on the ratio of the product of the production cross section and branching fraction, to the SM expectation for the Higgs boson in the H→ZZ→22q channel

H→ZZ→22ν

This analysis identifies Higgs boson decays to a pair of Z bosons, with one of Z bosons decaying leptonically and the other to neutrinos. A detailed description of the analysis can be found in [106]. The analysis strategy is based on a set of m H-dependent selection requirements applied on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E_{\mathrm{T}}^{\text{miss}}$\end{document} and m T, where

graphic file with name 10052_2013_2469_Equc_HTML.gif

Events are required to have a pair of well identified, isolated leptons of same flavor (e+e or μ + μ ), each with p T>20 GeV, with an invariant mass within a 30 GeV window centered on the Z mass. The p T of the dilepton system is required to be greater than 55 GeV. Jets are considered only if they have p T>30 GeV and |η|<5. The presence of large missing transverse energy in the event is also an essential feature of the signal.

To suppress Z+jets background, events are excluded from the analysis if the angle in the azimuthal plane between the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\boldsymbol {E}_{\mathrm{T}}^{\text{miss}}$\end{document} and the closest jet is smaller than 0.5 radians. In order to remove events where the lepton is mismeasured, events are rejected if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E_{\mathrm{T}}^{\text{miss}} > 60~\mbox{GeV}$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta\phi(\ell,\boldsymbol{E}_{\mathrm{T}}^{\text {miss}}) < 0.2$\end{document}. The top-quark background is suppressed by applying a veto on events having a b-tagged jet with p T>30 GeV and |η|<2.4. To further suppress the top-quark background, a veto is applied on events containing a “soft muon”, with p T>3 GeV, which is typically produced in the leptonic decay of a bottom quark. To reduce the WZ background, in which both bosons decay leptonically, any event with a third lepton (e or μ) with p T>10 GeV, and passing the identification and isolation requirements, is rejected.

The search is carried out in two mutually exclusive categories. The VBF category contains events with at least two jets with |Δη jj|>4 and m jj>500 GeV. Both leptons forming the Z candidate are required to lie in this Δη jj region, and there should be no other jets in it. The gluon fusion category includes all events failing the VBF selection, and is subdivided into subsamples according to the presence or absence of reconstructed jets. The event categories are chosen in order to optimize the expected cross section limit. In the case of the VBF category, a constant \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E_{\mathrm{T}}^{\text{miss}} >70~\mbox{GeV}$\end{document} and no m T requirement are used, as no gain in sensitivity is obtained with a m H-dependent selection.

The background composition is expected to vary with the hypothesised value of m H. At low m H, Z+jets and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}} $\end{document} are the largest contributions, whilst at higher m H (above 400 GeV), the irreducible ZZ and WZ backgrounds dominate. The ZZ and WZ backgrounds are taken from simulation [37, 61] and are normalized to their respective NLO cross sections. The Z+jets background is modeled from a control sample of γ+jets events. This procedure yields an accurate model of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E_{\mathrm {T}}^{\text{miss}}$\end{document}distribution in Z+jets events, shown in Fig. 8.

Fig. 8.

Fig. 8

The \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E_{\mathrm{T}}^{\text{miss}}$\end{document} distribution in data compared to the estimated background in the (top) gluon fusion and (bottom) VBF categories of the H→ZZ→22ν channel. The dielectron and dimuon channels are combined. Contributions from ZZ, WZ, non-resonant background and Z+jets background are stacked on top of each other. The \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E_{\mathrm{T}}^{\text {miss}}$\end{document}distribution in signal events for m H=600 GeVis also shown. The last bin in each plot contain the overflow entries

The uncertainty associated with the Z+jets background estimate is affected by any residual contamination in the γ+jets control sample from processes involving a photon and genuine \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E_{\mathrm{T}}^{\text{miss}} $\end{document}. This contamination could be as large as 50 % of the total Z+jets background. It is not subtracted, but assigned a 100 % uncertainty.

Background processes that do not involve a Z resonance (non-resonant background) are estimated with a control sample of events with dileptons of different flavor (e± μ ) that pass the full analysis selection. This method cannot distinguish between the non-resonant background and a possible contribution from H→WW→22ν events, which are treated as part of the non-resonant background estimate. This treatment considers only the H→ZZ channel as signal and is combined with the H→WW channel for the limit calculation. The interference between ZZ and WW channels is also taken into account [106]. The non-resonant background in the e+e and μ + μ final states is estimated by applying a scale factor to the selected e± μ events, estimated from the sidebands of the Z peak events (40<m ℓℓ<70 GeV and 110<m ℓℓ<200 GeV). The uncertainty associated with the estimate of the non-resonant background is evaluated to be 25 %. No significant excess of events is observed over the SM background expectation. The observed and expected upper limits as a function of m H are shown in Fig. 9.

Fig. 9.

Fig. 9

Observed (solid line) and expected (dashed line) 95 % CL upper limit on the ratio of the product of the production cross section and branching fraction to the SM expectation for the Higgs boson in the H→ZZ→22ν channel

Combined results

The expected and observed upper limits on the ratio of the production cross section for the Higgs boson to the SM expectation, for each of the individual channels presented in this paper, are shown in Fig. 10. This figure also shows a combined limit, calculated using the methods outlined in Refs. [13, 82]. The combination procedure assumes the relative branching fractions to be those predicted by the SM, and takes into account the statistical and experimental systematic uncertainties as well as theoretical uncertainties. In the mass region 145<m H<200 GeV the branching fraction of the most sensitive channel, H→ZZ, is decreasing and has a typical dependence on m H, which is reflected in both the expected and observed limits. In this mass region the result of the combination is determined by the WW→ℓνℓν channel. At masses above 200 GeV the ZZ→22′ channel becomes dominant, since low background contributions in this channel allow to keep high efficiency of the selection requirements. Starting at approximately 400 GeV the ZZ→22ν starts to contribute significantly. The branching fraction of ZZ→22ν is higher than ZZ→22′, and the major background contributions decrease with m H increase, thus allowing for selection requirements to be more and more effective in the 22ν channel. The combined observed and expected limits agree well within uncertainties as shown in Fig. 11.

Fig. 10.

Fig. 10

(Top) Expected and (bottom) observed 95 % CL limits for all individual channels and their combination. The horizontal dashed line at unity indicates the SM expectation

Fig. 11.

Fig. 11

Observed (solid line) and expected (dashed line) 95 % CL upper limit on the ratio of the production cross section to the SM expectation for the Higgs boson with all WW and ZZ channels combined

The previously expected exclusion range at 95 % CL, 118–543 GeV, is extended up to 700 GeV. Previously published results exclude at 95 % CL the SM-like Higgs boson in the range 127<m H<600 GeV [13]. The results of this analysis extend the upper exclusion limit to m H=710 GeV.

Summary

Results are presented from searches for a standard-model-like Higgs boson in H→WW and H→ZZ decay channels, for Higgs boson mass hypotheses in the range 145<m H<1000 GeV. The analysis uses proton-proton collision data recorded by the CMS detector at the LHC, corresponding to integrated luminosities of up to 5.1 fb−1 at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s} = 7~\text{TeV}$\end{document} and up to 5.3 fb−1 at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s} = 8~\text{TeV}$\end{document}. The final states analysed include two leptons and two neutrinos, H→WW→ℓνℓν and H→ZZ→22ν, a lepton, a neutrino, and two jets, H→WW→ℓνqq, two leptons and two jets, H→ZZ→22q, and four leptons, H→ZZ→22′, where =e or μ and ′=e or μ, or τ. The results are consistent with standard model background expectations. The combined upper limits at 95 % confidence level on products of the cross section and branching fractions exclude a standard-model-like Higgs boson in the range 145<m H<710 GeV, thus extending the mass region excluded by CMS from 127–600 GeV up to 710 GeV.

Acknowledgements

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MEYS (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS and RFBR (Russia); MSTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEPCenter, IPST and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of Czech Republic; the Council of Science and Industrial Research, India; the Compagnia di San Paolo (Torino); and the HOMING PLUS programme of Foundation for Polish Science, cofinanced from European Union, Regional Development Fund.

Open Access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

  • 1.Glashow S.L. Partial-symmetries of weak interactions. Nucl. Phys. 1961;22:579. doi: 10.1016/0029-5582(61)90469-2. [DOI] [Google Scholar]
  • 2.Weinberg S. A model of leptons. Phys. Rev. Lett. 1967;19:1264. doi: 10.1103/PhysRevLett.19.1264. [DOI] [Google Scholar]
  • 3.Salam A. Weak and electromagnetic interactions. In: Svartholm N., editor. Elementary Particle Physics: Relativistic Groups and Analyticity. 1968. p. 367. [Google Scholar]
  • 4.Englert F., Brout R. Broken symmetry and the mass of gauge vector mesons. Phys. Rev. Lett. 1964;13:321. doi: 10.1103/PhysRevLett.13.321. [DOI] [Google Scholar]
  • 5.Higgs P.W. Broken symmetries, massless particles and gauge fields. Phys. Lett. 1964;12:132. [Google Scholar]
  • 6.Higgs P.W. Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 1964;13:508. doi: 10.1103/PhysRevLett.13.508. [DOI] [Google Scholar]
  • 7.Guralnik G.S., Hagen C.R., Kibble T.W.B. Global conservation laws and massless particles. Phys. Rev. Lett. 1964;13:585. doi: 10.1103/PhysRevLett.13.585. [DOI] [Google Scholar]
  • 8.Higgs P.W. Spontaneous symmetry breakdown without massless bosons. Phys. Rev. 1966;145:1156. doi: 10.1103/PhysRev.145.1156. [DOI] [Google Scholar]
  • 9.Kibble T.W.B. Symmetry breaking in non-Abelian gauge theories. Phys. Rev. 1967;155:1554. doi: 10.1103/PhysRev.155.1554. [DOI] [Google Scholar]
  • 10.ALEPH Collaboration. DELPHI Collaboration. L3 Collaboration. OPAL Collaboration. the LEP Working Group for Higgs boson searches Search for the standard model Higgs boson at LEP. Phys. Lett. B. 2003;565:61. doi: 10.1016/S0370-2693(03)00614-2. [DOI] [Google Scholar]
  • 11.CDF Collaboration. D0 Collaborations Combination of Tevatron searches for the standard model Higgs boson in the WW decay mode. Phys. Rev. Lett. 2010;104:061802. doi: 10.1103/PhysRevLett.104.061802. [DOI] [PubMed] [Google Scholar]
  • 12.Evans L., Bryant P. LHC machine. J. Instrum. 2008;3:S08001. doi: 10.1088/1748-0221/3/08/S08001. [DOI] [Google Scholar]
  • 13.CMS Collaboration Combined results of searches for the standard model Higgs boson in pp collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s} = 7~\mbox{TeV}$\end{document} Phys. Lett. B. 2012;710:26. doi: 10.1016/j.physletb.2012.02.064. [DOI] [Google Scholar]
  • 14.ATLAS Collaboration Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B. 2012;716:1. doi: 10.1016/j.physletb.2012.08.020. [DOI] [Google Scholar]
  • 15.CMS Collaboration Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B. 2012;716:30. doi: 10.1126/science.1230816. [DOI] [PubMed] [Google Scholar]
  • 16. CMS Collaboration, Observation of a new boson with mass near 125 GeV in pp collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s} = 7\mbox{ and }8~\mbox{TeV}$\end{document} (2013). Submitted to J. High Energy Phys. arXiv:1303.4571
  • 17.Dicus D.A., Mathur V.S. Upper bounds on the values of masses in unified gauge theories. Phys. Rev. D. 1973;7:3111. doi: 10.1103/PhysRevD.7.3111. [DOI] [Google Scholar]
  • 18.Veltman M.J.G. Second threshold in weak interactions. Acta Phys. Pol. B. 1977;8:475. [Google Scholar]
  • 19.Lee B.W., Quigg C., Thacker H.B. Weak interactions at very high-energies: the role of the Higgs boson mass. Phys. Rev. D. 1977;16:1519. doi: 10.1103/PhysRevD.16.1519. [DOI] [Google Scholar]
  • 20.Lee B.W., Quigg C., Thacker H.B. The strength of weak interactions at very high-energies and the Higgs boson mass. Phys. Rev. Lett. 1977;38:883. doi: 10.1103/PhysRevLett.38.883. [DOI] [Google Scholar]
  • 21.Passarino G. WW scattering and perturbative unitarity. Nucl. Phys. B. 1990;343:31. doi: 10.1016/0550-3213(90)90593-3. [DOI] [Google Scholar]
  • 22.Chanowitz M.S., Gaillard M.K. The TeV physics of strongly interacting W’s and Z’s. Nucl. Phys. B. 1985;261:379. doi: 10.1016/0550-3213(85)90580-2. [DOI] [Google Scholar]
  • 23.Duncan M.J., Kane G.L., Repko W.W. WW physics at future colliders. Nucl. Phys. B. 1986;272:517. doi: 10.1016/0550-3213(86)90234-8. [DOI] [Google Scholar]
  • 24.Dicus D.A., Vega R. WW production from pp collisions. Phys. Rev. Lett. 1986;57:1110. doi: 10.1103/PhysRevLett.57.1110. [DOI] [PubMed] [Google Scholar]
  • 25.Bagger J., et al. CERN LHC analysis of the strongly interacting WW system: gold-plated modes. Phys. Rev. D. 1995;52:3878. doi: 10.1103/PhysRevD.52.3878. [DOI] [PubMed] [Google Scholar]
  • 26.Ballestrero A., et al. How well can the LHC distinguish between the SM light Higgs scenario, a composite Higgs and the Higgsless case using VV scattering channels? J. High Energy Phys. 2009;11:126. doi: 10.1088/1126-6708/2009/11/126. [DOI] [Google Scholar]
  • 27.Low I., Lykken J., Shaughnessy G. Singlet scalars as Higgs imposters at the Large Hadron Collider. Phys. Rev. D. 2011;84:035027. doi: 10.1103/PhysRevD.84.035027. [DOI] [Google Scholar]
  • 28.Low I., Lykken J., Shaughnessy G. Have we observed the Higgs (Imposter)? Phys. Rev. D. 2012;86:093012. doi: 10.1103/PhysRevD.86.093012. [DOI] [Google Scholar]
  • 29.Branco G.C., et al. Theory and phenomenology of two-Higgs-doublet models. Phys. Rep. 2012;516:1. doi: 10.1016/j.physrep.2012.02.002. [DOI] [Google Scholar]
  • 30.Craig N., Scott T. Exclusive signals of an extended Higgs sector. J. High Energy Phys. 2012;11:083. doi: 10.1007/JHEP11(2012)083. [DOI] [Google Scholar]
  • 31. B. Patt, F. Wilczek, Higgs-field portal into hidden sectors (2006). arXiv:hep-ph/0605188
  • 32.CMS Collaboration The CMS experiment at the CERN LHC. J. Instrum. 2008;3:S08004. doi: 10.1088/1748-0221/3/08/S08004. [DOI] [Google Scholar]
  • 33.Alioli S., et al. NLO vector-boson production matched with shower in POWHEG. J. High Energy Phys. 2008;07:060. doi: 10.1088/1126-6708/2008/07/060. [DOI] [Google Scholar]
  • 34.Nason P. A new method for combining NLO QCD with shower Monte Carlo algorithms. J. High Energy Phys. 2004;11:040. doi: 10.1088/1126-6708/2004/11/040. [DOI] [Google Scholar]
  • 35.Frixione S., Nason P., Oleari C. Matching NLO QCD computations with parton shower simulations: the POWHEG method. J. High Energy Phys. 2007;11:070. doi: 10.1088/1126-6708/2007/11/070. [DOI] [Google Scholar]
  • 36.Gao Y., et al. Spin determination of single-produced resonances at hadron colliders. Phys. Rev. D. 2010;81:075022. doi: 10.1103/PhysRevD.81.075022. [DOI] [Google Scholar]
  • 37.Sjöstrand T., Mrenna S., Skands P.Z. PYTHIA 6.4 physics and manual. J. High Energy Phys. 2006;05:026. doi: 10.1088/1126-6708/2006/05/026. [DOI] [Google Scholar]
  • 38.Anastasiou C., Boughezal R., Petriello F. Mixed QCD-electroweak corrections to Higgs boson production in gluon fusion. J. High Energy Phys. 2009;04:003. doi: 10.1088/1126-6708/2009/04/003. [DOI] [Google Scholar]
  • 39.de Florian D., Grazzini M. Higgs production through gluon fusion: updated cross sections at the Tevatron and the LHC. Phys. Lett. B. 2009;674:291. doi: 10.1016/j.physletb.2009.03.033. [DOI] [Google Scholar]
  • 40.Baglio J., Djouadi A. Higgs production at the LHC. J. High Energy Phys. 2011;03:055. doi: 10.1007/JHEP03(2011)055. [DOI] [Google Scholar]
  • 41.LHC Higgs cross section working group, Handbook of LHC Higgs cross sections: 1. Inclusive observables. CERN report CERN-2011-002 (2011)
  • 42.Djouadi A., Spira M., Zerwas P.M. Production of Higgs bosons in proton colliders: QCD corrections. Phys. Lett. B. 1991;264:440. doi: 10.1103/PhysRevLett.70.1372. [DOI] [PubMed] [Google Scholar]
  • 43.Dawson S. Radiative corrections to Higgs boson production. Nucl. Phys. B. 1991;359:283. doi: 10.1016/0550-3213(91)90061-2. [DOI] [Google Scholar]
  • 44.Spira M., et al. Higgs boson production at the LHC. Nucl. Phys. B. 1995;453:17. doi: 10.1016/0550-3213(95)00379-7. [DOI] [Google Scholar]
  • 45.Harlander R.V., Kilgore W.B. Next-to-next-to-leading order Higgs production at hadron colliders. Phys. Rev. Lett. 2002;88:201801. doi: 10.1103/PhysRevLett.88.201801. [DOI] [PubMed] [Google Scholar]
  • 46.Anastasiou C., Melnikov K. Higgs boson production at hadron colliders in NNLO QCD. Nucl. Phys. B. 2002;646:220. doi: 10.1016/S0550-3213(02)00837-4. [DOI] [PubMed] [Google Scholar]
  • 47.Ravindran V., Smith J., van Neerven W.L. NNLO corrections to the total cross section for Higgs boson production in hadron-hadron collisions. Nucl. Phys. B. 2003;665:325. doi: 10.1016/S0550-3213(03)00457-7. [DOI] [Google Scholar]
  • 48.Catani S., et al. Soft-gluon resummation for Higgs boson production at hadron colliders. J. High Energy Phys. 2003;07:028. doi: 10.1088/1126-6708/2003/07/028. [DOI] [Google Scholar]
  • 49.Actis S., et al. NLO electroweak corrections to Higgs boson production at hadron colliders. Phys. Lett. B. 2008;670:12. doi: 10.1016/j.physletb.2008.10.018. [DOI] [Google Scholar]
  • 50.Ciccolini M., Denner A., Dittmaier S. Strong and electroweak corrections to the production of Higgs + 2-jets via weak interactions at the LHC. Phys. Rev. Lett. 2007;99:161803. doi: 10.1103/PhysRevLett.99.161803. [DOI] [PubMed] [Google Scholar]
  • 51.Ciccolini M., Denner A., Dittmaier S. Electroweak and QCD corrections to Higgs production via vector-boson fusion at the LHC. Phys. Rev. D. 2008;77:013002. doi: 10.1103/PhysRevD.77.013002. [DOI] [Google Scholar]
  • 52.Figy T., Oleari C., Zeppenfeld D. Next-to-leading order jet distributions for Higgs boson production via weak-boson fusion. Phys. Rev. D. 2003;68:073005. doi: 10.1103/PhysRevD.68.073005. [DOI] [Google Scholar]
  • 53.Arnold K., et al. VBFNLO: a parton level Monte Carlo for processes with electroweak bosons. Comput. Phys. Commun. 2009;180:1661. doi: 10.1016/j.cpc.2009.03.006. [DOI] [Google Scholar]
  • 54.Bolzoni P., et al. Higgs production via vector-boson fusion at NNLO in QCD. Phys. Rev. Lett. 2010;105:011801. doi: 10.1103/PhysRevLett.105.011801. [DOI] [PubMed] [Google Scholar]
  • 55.Passarino G., Sturm C., Uccirati S. Higgs pseudo-observables, second Riemann sheet and all that. Nucl. Phys. B. 2010;834:77. doi: 10.1016/j.nuclphysb.2010.03.013. [DOI] [Google Scholar]
  • 56.Goria S., Passarino G., Rosco D. The Higgs boson lineshape. Nucl. Phys. B. 2012;864:530. doi: 10.1016/j.nuclphysb.2012.07.006. [DOI] [Google Scholar]
  • 57.Kauer N., Passarino G. Inadequacy of zero-width approximation for a light Higgs boson signal. J. High Energy Phys. 2012;08:116. doi: 10.1007/JHEP08(2012)116. [DOI] [Google Scholar]
  • 58.Passarino G. Higgs interference effects in gg→ZZ and their uncertainty. J. High Energy Phys. 2012;08:146. doi: 10.1007/JHEP08(2012)146. [DOI] [Google Scholar]
  • 59.Campbell J.M., Ellis R., Williams C. Gluon-gluon contributions to WW production and Higgs interference effects. J. High Energy Phys. 2011;10:0055. [Google Scholar]
  • 60. N. Kauer, Signal-background interference in gg→H→VV (2012). arXiv:1201.1667
  • 61.Alwall J., et al. MadGraph/MadEvent v4: the new web generation. J. High Energy Phys. 2007;09:028. doi: 10.1088/1126-6708/2007/09/028. [DOI] [Google Scholar]
  • 62.Binoth T., et al. Gluon-induced W-boson pair production at the LHC. J. High Energy Phys. 2006;12:046. doi: 10.1088/1126-6708/2006/12/046. [DOI] [Google Scholar]
  • 63.Binoth T., Kauer N., Mertsch P. Proceedings of the XVI Int. Workshop on Deep-Inelastic Scattering and Related Topics (DIS’07) 2008. Gluon-induced QCD corrections to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{pp} \to\mathrm{ZZ} \to\ell\bar{\ell}\ell'\bar{\ell'}$\end{document} [Google Scholar]
  • 64.Lai H.-L., et al. Uncertainty induced by QCD coupling in the CTEQ global analysis of parton distributions. Phys. Rev. D. 2010;82:054021. doi: 10.1103/PhysRevD.82.054021. [DOI] [Google Scholar]
  • 65.Lai H.-L., et al. New parton distributions for collider physics. Phys. Rev. D. 2010;82:074024. doi: 10.1103/PhysRevD.82.074024. [DOI] [Google Scholar]
  • 66.Jadach S., et al. The tau decay library TAUOLA, version 2.4. Comput. Phys. Commun. 1993;76:361. doi: 10.1016/0010-4655(93)90061-G. [DOI] [Google Scholar]
  • 67.Allison J., et al. Geant4 developments and applications. IEEE Trans. Nucl. Sci. 2006;53:270. doi: 10.1109/TNS.2006.869826. [DOI] [Google Scholar]
  • 68.CMS Collaboration Measurement of the underlying event activity at the LHC with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s}= 7~\mbox{TeV}$\end{document} and comparison with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s} = 0.9~\mbox{TeV}$\end{document} J. High Energy Phys. 2011;09:109. [Google Scholar]
  • 69. CMS Collaboration, Particle-flow event reconstruction in CMS and performance for jets, taus, and MET. CMS Physics Analysis Summary CMS-PAS-PFT-09-001 (2009)
  • 70. CMS Collaboration, Commissioning of the particle–flow reconstruction in minimum–bias and jet events from pp collisions at 7 TeV. CMS Physics Analysis Summary CMS-PAS-PFT-10-002 (2010)
  • 71.Baffioni S., et al. Electron reconstruction in CMS. Eur. Phys. J. C. 2007;49:1099. doi: 10.1140/epjc/s10052-006-0175-5. [DOI] [Google Scholar]
  • 72. CMS Collaboration, Electron reconstruction and identification at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s} = 7~\mbox{TeV}$\end{document}. CMS Physics Analysis Summary CMS-PAS-EGM-10-004 (2010)
  • 73. CMS Collaboration, Commissioning of the particle-flow event reconstruction with leptons from J/ψ and W decays at 7 TeV. CMS Physics Analysis Summary CMS-PAS-PFT-10-003 (2010)
  • 74.CMS Collaboration Performance of τ-lepton reconstruction and identification in CMS. J. Instrum. 2012;7:P01001. doi: 10.1088/1748-0221/7/01/P01001. [DOI] [Google Scholar]
  • 75.Cacciari M., Salam G.P., Soyez G. The anti-kt jet clustering algorithm. J. High Energy Phys. 2008;04:063. doi: 10.1088/1126-6708/2008/04/063. [DOI] [Google Scholar]
  • 76.Cacciari M., Salam G.P., Soyez G. FastJet user manual. Eur. Phys. J. C. 2012;72:1896. doi: 10.1140/epjc/s10052-012-1896-2. [DOI] [Google Scholar]
  • 77.CMS Collaboration Determination of jet energy calibration and transverse momentum resolution in CMS. J. Instrum. 2011;6:P11002. doi: 10.1088/1748-0221/6/11/P11002. [DOI] [Google Scholar]
  • 78.Cacciari M., Salam G.P., Soyez G. The catchment area of jets. J. High Energy Phys. 2008;04:005. doi: 10.1088/1126-6708/2008/04/005. [DOI] [Google Scholar]
  • 79.CMS Collaboration Identification of b-quark jets with the CMS experiment. J. Instrum. 2013;8:P04013. doi: 10.1088/1748-0221/8/04/P04013. [DOI] [Google Scholar]
  • 80.Cacciari M., Salam G.P. Pileup subtraction using jet areas. Phys. Lett. B. 2008;659:119. doi: 10.1016/j.physletb.2007.09.077. [DOI] [PubMed] [Google Scholar]
  • 81.CMS Collaboration Measurement of the inclusive W and Z production cross sections in pp collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s}=7$\end{document} TeV. J. High Energy Phys. 2011;10:132. [Google Scholar]
  • 82. ATLAS Collaboration, CMS Collaboration, LHC Higgs Combination Group, Combination Group, Procedure for the LHC Higgs boson search combination in Summer 2011. Technical report ATL-PHYS-PUB 2011-11, CMS NOTE 2011/005 (2011)
  • 83.CMS Collaboration Search for the standard model Higgs boson decaying to a W pair in the fully leptonic final state in pp collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s} = 7~\mbox{TeV}$\end{document} Phys. Lett. B. 2012;710:91. doi: 10.1016/j.physletb.2012.02.076. [DOI] [Google Scholar]
  • 84. A. Hoecker et al., TMVA—toolkit for multivariate data analysis with ROOT (2007). arXiv:physics/0703039
  • 85.Cahn R., et al. Transverse-momentum signatures for heavy Higgs bosons. Phys. Rev. D. 1987;35:1626. doi: 10.1103/PhysRevD.35.1626. [DOI] [PubMed] [Google Scholar]
  • 86. S. Alekhin et al., The PDF4LHC Working Group Interim Report (2011). arXiv:1101.0536
  • 87. M. Botje et al., The PDF4LHC Working Group Interim Recommendations, (2011). arXiv:1101.0538
  • 88.Lai H.-L., et al. New parton distributions for collider physics. Phys. Rev. D. 2010;82:074024. doi: 10.1103/PhysRevD.82.074024. [DOI] [Google Scholar]
  • 89.Martin A.D., et al. Parton distributions for the LHC. Eur. Phys. J. C. 2009;63:189. doi: 10.1140/epjc/s10052-009-1072-5. [DOI] [Google Scholar]
  • 90.Ball R.D., et al. Impact of heavy quark masses on parton distributions and LHC phenomenology. Nucl. Phys. B. 2011;849:296. doi: 10.1016/j.nuclphysb.2011.03.021. [DOI] [Google Scholar]
  • 91.Junk T. Confidence level computation for combining searches with small statistics. Nucl. Instrum. Methods A. 1999;434:435. doi: 10.1016/S0168-9002(99)00498-2. [DOI] [Google Scholar]
  • 92.Read A.L. Presentation of search results: the CLs technique. J. Phys. G, Nucl. Part. Phys. 2002;28:2693. doi: 10.1088/0954-3899/28/10/313. [DOI] [Google Scholar]
  • 93.Dobrescu B.A., Lykken J.D. Semileptonic decays of the standard Higgs boson. J. High Energy Phys. 2010;04:083. doi: 10.1007/JHEP04(2010)083. [DOI] [Google Scholar]
  • 94.CMS Collaboration Search for the standard model Higgs boson in the decay channel H→ZZ→4ℓ in pp collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s} = 7~\mbox{TeV}$\end{document} Phys. Rev. Lett. 2012;108:111804. doi: 10.1103/PhysRevLett.108.111804. [DOI] [PubMed] [Google Scholar]
  • 95.CMS Collaboration Search for the standard model Higgs boson in the H→ZZ→ℓℓττ decay channel in pp collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s}=7~\mbox{TeV}$\end{document} J. High Energy Phys. 2012;03:081. [Google Scholar]
  • 96.Campbell J.M., Ellis R.K. MCFM for the Tevatron and the LHC. Nucl. Phys. B, Proc. Suppl. 2010;205:10. doi: 10.1016/j.nuclphysbps.2010.08.011. [DOI] [Google Scholar]
  • 97.Campbell J.M., Ellis R.K. An update on vector boson pair production at hadron colliders. Phys. Rev. D. 1999;60:113006. [Google Scholar]
  • 98.Campbell J.M., Ellis R.K., Williams C. Vector boson pair production at the LHC. J. High Energy Phys. 2011;07:018. doi: 10.1007/JHEP07(2011)018. [DOI] [Google Scholar]
  • 99.Cabibbo N., Maksymowicz A. Angular correlations in Ke4 decays and determination of low-energy π–π phase shifts. Phys. Rev. B. 1965;137:438. doi: 10.1103/PhysRev.137.B438. [DOI] [Google Scholar]
  • 100.De Rujula A., et al. Higgs look-alikes at the LHC. Phys. Rev. D. 2010;82:013003. doi: 10.1103/PhysRevD.82.013003. [DOI] [Google Scholar]
  • 101.CMS Collaboration Search for a Higgs boson in the decay channel \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{H} \to\mathrm{ZZ}^{*} \to\mathrm{q}\bar{\mathrm{q}} \ell^{+}\ell^{-}$\end{document} in pp collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s} = 7~\mbox{TeV}$\end{document} J. High Energy Phys. 2012;04:036. [Google Scholar]
  • 102.CMS Collaboration Missing transverse energy performance of the CMS detector. J. Instrum. 2011;6:P09001. doi: 10.1088/1748-0221/6/09/P09001. [DOI] [Google Scholar]
  • 103. M. Oreglia, A study of the reactions ψ′→γγψ. PhD thesis, Stanford University (1980). SLAC-0236
  • 104. J.E. Gaiser, Charmonium spectroscopy from radiative decays of the J/ψ and ψ′. PhD thesis, Stanford University (1982). SLAC-R-225
  • 105. T. Skwarnicki, A study of the radiative cascade transitions between the ϒ and ϒ′ resonanses. PhD thesis, DESY (1986). DESY F31-86-02
  • 106.CMS Collaboration Search for the standard model Higgs boson in the H→ZZ→2ℓ2ν channel in pp collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s} = 7~\mbox{TeV}$\end{document} J. High Energy Phys. 2012;03:040. [Google Scholar]

Articles from The European Physical Journal. C, Particles and Fields are provided here courtesy of Springer

RESOURCES