Skip to main content
Springer logoLink to Springer
. 2013 Dec 11;73(12):2676. doi: 10.1140/epjc/s10052-013-2676-3

Measurement of jet shapes in top-quark pair events at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s} = 7 \ \mbox{TeV}$\end{document} using the ATLAS detector

The ATLAS Collaboration1, G Aad 69, T Abajyan 29, B Abbott 140, J Abdallah 16, S Abdel Khalek 144, A A Abdelalim 70, O Abdinov 15, R Aben 134, B Abi 141, M Abolins 115, O S AbouZeid 201, H Abramowicz 196, H Abreu 175, Y Abulaiti 188,189, B S Acharya 208,209, L Adamczyk 58, D L Adams 36, T N Addy 79, J Adelman 222, S Adomeit 126, T Adye 161, S Aefsky 31, T Agatonovic-Jovin 18, J A Aguilar-Saavedra 156, M Agustoni 22, S P Ahlen 30, F Ahles 69, A Ahmad 191, M Ahsan 62, G Aielli 166,167, T P A Åkesson 106, G Akimoto 198, A V Akimov 122, M A Alam 102, J Albert 215, S Albrand 78, M J Alconada Verzini 95, M Aleksa 44, I N Aleksandrov 89, F Alessandria 116, C Alexa 37, G Alexander 196, G Alexandre 70, T Alexopoulos 14, M Alhroob 208,210, M Aliev 21, G Alimonti 116, J Alison 45, B M M Allbrooke 23, L J Allison 96, P P Allport 99, S E Allwood-Spiers 76, J Almond 109, A Aloisio 130,131, R Alon 218, A Alonso 55, F Alonso 95, A Altheimer 54, B Alvarez Gonzalez 115, M G Alviggi 130,131, K Amako 90, Y Amaral Coutinho 32, C Amelung 31, V V Ammosov 160, S P Amor Dos Santos 155, A Amorim 155, S Amoroso 69, N Amram 196, C Anastopoulos 44, L S Ancu 22, N Andari 44, T Andeen 54, C F Anders 82, G Anders 81, K J Anderson 45, A Andreazza 116,117, V Andrei 81, X S Anduaga 95, S Angelidakis 13, P Anger 65, A Angerami 54, F Anghinolfi 44, A V Anisenkov 136, N Anjos 155, A Annovi 68, A Antonaki 13, M Antonelli 68, A Antonov 124, J Antos 184, F Anulli 164, M Aoki 129, L Aperio Bella 23, R Apolle 147, G Arabidze 115, I Aracena 182, Y Arai 90, A T H Arce 66, S Arfaoui 191, J-F Arguin 121, S Argyropoulos 63, E Arik 24, M Arik 24, A J Armbruster 114, O Arnaez 108, V Arnal 107, A Artamonov 123, G Artoni 164,165, D Arutinov 29, S Asai 198, N Asbah 121, S Ask 42, B Åsman 188,189, L Asquith 10, K Assamagan 36, R Astalos 183, A Astbury 215, M Atkinson 211, B Auerbach 10, E Auge 144, K Augsten 158, M Aurousseau 186, G Avolio 44, D Axen 214, G Azuelos 121, Y Azuma 198, M A Baak 44, G Baccaglioni 116, C Bacci 168,169, A M Bach 20, H Bachacou 175, K Bachas 197, M Backes 70, M Backhaus 29, J Backus Mayes 182, E Badescu 37, P Bagiacchi 164,165, P Bagnaia 164,165, Y Bai 48, D C Bailey 201, T Bain 54, J T Baines 161, O K Baker 222, S Baker 103, P Balek 159, F Balli 175, E Banas 60, P Banerjee 121, Sw Banerjee 219, D Banfi 44, A Bangert 193, V Bansal 215, H S Bansil 23, L Barak 218, S P Baranov 122, T Barber 69, E L Barberio 113, D Barberis 71,72, M Barbero 110, D Y Bardin 89, T Barillari 127, M Barisonzi 221, T Barklow 182, N Barlow 42, B M Barnett 161, R M Barnett 20, A Baroncelli 168, G Barone 70, A J Barr 147, F Barreiro 107, J Barreiro Guimarães da Costa 80, R Bartoldus 182, A E Barton 96, V Bartsch 192, A Basye 211, R L Bates 76, L Batkova 183, J R Batley 42, A Battaglia 22, M Battistin 44, F Bauer 175, H S Bawa 182, S Beale 126, T Beau 105, P H Beauchemin 205, R Beccherle 71, P Bechtle 29, H P Beck 22, K Becker 221, S Becker 126, M Beckingham 177, K H Becks 221, A J Beddall 26, A Beddall 26, S Bedikian 222, V A Bednyakov 89, C P Bee 110, L J Beemster 134, T A Beermann 221, M Begel 36, C Belanger-Champagne 112, P J Bell 70, W H Bell 70, G Bella 196, L Bellagamba 27, A Bellerive 43, M Bellomo 44, A Belloni 80, O L Beloborodova 136, K Belotskiy 124, O Beltramello 44, O Benary 196, D Benchekroun 170, K Bendtz 188,189, N Benekos 211, Y Benhammou 196, E Benhar Noccioli 70, J A Benitez Garcia 203, D P Benjamin 66, J R Bensinger 31, K Benslama 162, S Bentvelsen 134, D Berge 44, E Bergeaas Kuutmann 21, N Berger 9, F Berghaus 215, E Berglund 134, J Beringer 20, P Bernat 103, R Bernhard 69, C Bernius 104, F U Bernlochner 215, T Berry 102, C Bertella 110, F Bertolucci 152,153, M I Besana 116,117, G J Besjes 133, N Besson 175, S Bethke 127, W Bhimji 67, R M Bianchi 154, L Bianchini 31, M Bianco 97,98, O Biebel 126, S P Bieniek 103, K Bierwagen 77, J Biesiada 20, M Biglietti 168, H Bilokon 68, M Bindi 27,28, S Binet 144, A Bingul 26, C Bini 164,165, B Bittner 127, C W Black 193, J E Black 182, K M Black 30, D Blackburn 177, R E Blair 10, J-B Blanchard 175, T Blazek 183, I Bloch 63, C Blocker 31, J Blocki 60, W Blum 108, U Blumenschein 77, G J Bobbink 134, V S Bobrovnikov 136, S S Bocchetta 106, A Bocci 66, C R Boddy 147, M Boehler 69, J Boek 221, T T Boek 221, N Boelaert 55, J A Bogaerts 44, A G Bogdanchikov 136, A Bogouch 118, C Bohm 188, J Bohm 157, V Boisvert 102, T Bold 58, V Boldea 37, N M Bolnet 175, M Bomben 105, M Bona 101, M Boonekamp 175, S Bordoni 105, C Borer 22, A Borisov 160, G Borissov 96, M Borri 109, S Borroni 63, J Bortfeldt 126, V Bortolotto 168,169, K Bos 134, D Boscherini 27, M Bosman 16, H Boterenbrood 134, J Bouchami 121, J Boudreau 154, E V Bouhova-Thacker 96, D Boumediene 53, C Bourdarios 144, N Bousson 110, S Boutouil 173, A Boveia 45, J Boyd 44, I R Boyko 89, I Bozovic-Jelisavcic 18, J Bracinik 23, P Branchini 168, A Brandt 12, G Brandt 20, O Brandt 77, U Bratzler 199, B Brau 111, J E Brau 143, H M Braun 221, S F Brazzale 208,210, B Brelier 201, J Bremer 44, K Brendlinger 150, R Brenner 212, S Bressler 218, T M Bristow 67, D Britton 76, F M Brochu 42, I Brock 29, R Brock 115, F Broggi 116, C Bromberg 115, J Bronner 127, G Brooijmans 54, T Brooks 102, W K Brooks 47, G Brown 109, P A Bruckman de Renstrom 60, D Bruncko 184, R Bruneliere 69, S Brunet 85, A Bruni 27, G Bruni 27, M Bruschi 27, L Bryngemark 106, T Buanes 19, Q Buat 78, F Bucci 70, J Buchanan 147, P Buchholz 180, R M Buckingham 147, A G Buckley 67, S I Buda 37, I A Budagov 89, B Budick 137, L Bugge 146, O Bulekov 124, A C Bundock 99, M Bunse 64, T Buran 146, H Burckhart 44, S Burdin 99, T Burgess 19, S Burke 161, E Busato 53, V Büscher 108, P Bussey 76, C P Buszello 212, B Butler 80, J M Butler 30, C M Buttar 76, J M Butterworth 103, W Buttinger 42, M Byszewski 14, S Cabrera Urbán 213, D Caforio 27,28, O Cakir 5, P Calafiura 20, G Calderini 105, P Calfayan 126, R Calkins 135, L P Caloba 32, R Caloi 164,165, D Calvet 53, S Calvet 53, R Camacho Toro 70, P Camarri 166,167, D Cameron 146, L M Caminada 20, R Caminal Armadans 16, S Campana 44, M Campanelli 103, V Canale 130,131, F Canelli 45, A Canepa 202, J Cantero 107, R Cantrill 102, T Cao 61, M D M Capeans Garrido 44, I Caprini 37, M Caprini 37, D Capriotti 127, M Capua 56,57, R Caputo 108, R Cardarelli 166, T Carli 44, G Carlino 130, L Carminati 116,117, S Caron 133, E Carquin 47, G D Carrillo-Montoya 187, A A Carter 101, J R Carter 42, J Carvalho 155, D Casadei 137, M P Casado 16, M Cascella 152,153, C Caso 71,72, E Castaneda-Miranda 219, A Castelli 134, V Castillo Gimenez 213, N F Castro 155, G Cataldi 97, P Catastini 80, A Catinaccio 44, J R Catmore 44, A Cattai 44, G Cattani 166,167, S Caughron 115, V Cavaliere 211, D Cavalli 116, M Cavalli-Sforza 16, V Cavasinni 152,153, F Ceradini 168,169, B Cerio 66, A S Cerqueira 33, A Cerri 20, L Cerrito 101, F Cerutti 20, A Cervelli 22, S A Cetin 25, A Chafaq 170, D Chakraborty 135, I Chalupkova 159, K Chan 4, P Chang 211, B Chapleau 112, J D Chapman 42, J W Chapman 114, D G Charlton 23, V Chavda 109, C A Chavez Barajas 44, S Cheatham 112, S Chekanov 10, S V Chekulaev 202, G A Chelkov 89, M A Chelstowska 133, C Chen 88, H Chen 36, S Chen 50, X Chen 219, Y Chen 54, Y Cheng 45, A Cheplakov 89, R Cherkaoui El Moursli 174, V Chernyatin 36, E Cheu 11, S L Cheung 201, L Chevalier 175, V Chiarella 68, G Chiefari 130,131, J T Childers 44, A Chilingarov 96, G Chiodini 97, A S Chisholm 23, R T Chislett 103, A Chitan 37, M V Chizhov 89, G Choudalakis 45, S Chouridou 13, B K B Chow 126, I A Christidi 103, A Christov 69, D Chromek-Burckhart 44, M L Chu 194, J Chudoba 157, G Ciapetti 164,165, A K Ciftci 5, R Ciftci 5, D Cinca 87, V Cindro 100, A Ciocio 20, M Cirilli 114, P Cirkovic 18, Z H Citron 218, M Citterio 116, M Ciubancan 37, A Clark 70, P J Clark 67, R N Clarke 20, J C Clemens 110, B Clement 78, C Clement 188,189, Y Coadou 110, M Cobal 208,210, A Coccaro 177, J Cochran 88, S Coelli 116, L Coffey 31, J G Cogan 182, J Coggeshall 211, J Colas 9, S Cole 135, A P Colijn 134, N J Collins 23, C Collins-Tooth 76, J Collot 78, T Colombo 148,149, G Colon 111, G Compostella 127, P Conde Muiño 155, E Coniavitis 212, M C Conidi 16, S M Consonni 116,117, V Consorti 69, S Constantinescu 37, C Conta 148,149, G Conti 80, F Conventi 130, M Cooke 20, B D Cooper 103, A M Cooper-Sarkar 147, N J Cooper-Smith 102, K Copic 20, T Cornelissen 221, M Corradi 27, F Corriveau 112, A Corso-Radu 207, A Cortes-Gonzalez 211, G Cortiana 127, G Costa 116, M J Costa 213, D Costanzo 178, D Côté 44, G Cottin 46, L Courneyea 215, G Cowan 102, B E Cox 109, K Cranmer 137, S Crépé-Renaudin 78, F Crescioli 105, M Cristinziani 29, G Crosetti 56,57, C-M Cuciuc 37, C Cuenca Almenar 222, T Cuhadar Donszelmann 178, J Cummings 222, M Curatolo 68, C J Curtis 23, C Cuthbert 193, H Czirr 180, P Czodrowski 65, Z Czyczula 222, S D’Auria 76, M D’Onofrio 99, A D’Orazio 164,165, M J Da Cunha Sargedas De Sousa 155, C Da Via 109, W Dabrowski 58, A Dafinca 147, T Dai 114, F Dallaire 121, C Dallapiccola 111, M Dam 55, D S Damiani 176, A C Daniells 23, H O Danielsson 44, V Dao 133, G Darbo 71, G L Darlea 39, S Darmora 12, J A Dassoulas 63, W Davey 29, T Davidek 159, N Davidson 113, E Davies 147, M Davies 121, O Davignon 105, A R Davison 103, Y Davygora 81, E Dawe 181, I Dawson 178, R K Daya-Ishmukhametova 31, K De 12, R de Asmundis 130, S De Castro 27,28, S De Cecco 105, J de Graat 126, N De Groot 133, P de Jong 134, C De La Taille 144, H De la Torre 107, F De Lorenzi 88, L De Nooij 134, D De Pedis 164, A De Salvo 164, U De Sanctis 208,210, A De Santo 192, J B De Vivie De Regie 144, G De Zorzi 164,165, W J Dearnaley 96, R Debbe 36, C Debenedetti 67, B Dechenaux 78, D V Dedovich 89, J Degenhardt 150, J Del Peso 107, T Del Prete 152,153, T Delemontex 78, M Deliyergiyev 100, A Dell’Acqua 44, L Dell’Asta 30, M Della Pietra 130, D della Volpe 130,131, M Delmastro 9, P A Delsart 78, C Deluca 134, S Demers 222, M Demichev 89, A Demilly 105, B Demirkoz 16, S P Denisov 160, D Derendarz 60, J E Derkaoui 173, F Derue 105, P Dervan 99, K Desch 29, P O Deviveiros 134, A Dewhurst 161, B DeWilde 191, S Dhaliwal 134, R Dhullipudi 104, A Di Ciaccio 166,167, L Di Ciaccio 9, C Di Donato 130,131, A Di Girolamo 44, B Di Girolamo 44, S Di Luise 168,169, A Di Mattia 195, B Di Micco 168,169, R Di Nardo 68, A Di Simone 166,167, R Di Sipio 27,28, M A Diaz 46, E B Diehl 114, J Dietrich 63, T A Dietzsch 81, S Diglio 113, K Dindar Yagci 61, J Dingfelder 29, F Dinut 37, C Dionisi 164,165, P Dita 37, S Dita 37, F Dittus 44, F Djama 110, T Djobava 74, M A B do Vale 34, A Do Valle Wemans 155, T K O Doan 9, D Dobos 44, E Dobson 103, J Dodd 54, C Doglioni 70, T Doherty 76, T Dohmae 198, Y Doi 90, J Dolejsi 159, Z Dolezal 159, B A Dolgoshein 124, M Donadelli 35, J Donini 53, J Dopke 44, A Doria 130, A Dos Anjos 219, A Dotti 152,153, M T Dova 95, A T Doyle 76, M Dris 14, J Dubbert 114, S Dube 20, E Dubreuil 53, E Duchovni 218, G Duckeck 126, D Duda 221, A Dudarev 44, F Dudziak 88, L Duflot 144, M-A Dufour 112, L Duguid 102, M Dührssen 44, M Dunford 81, H Duran Yildiz 5, M Düren 75, M Dwuznik 58, J Ebke 126, S Eckweiler 108, W Edson 3, C A Edwards 102, N C Edwards 76, W Ehrenfeld 29, T Eifert 182, G Eigen 19, K Einsweiler 20, E Eisenhandler 101, T Ekelof 212, M El Kacimi 172, M Ellert 212, S Elles 9, F Ellinghaus 108, K Ellis 101, N Ellis 44, J Elmsheuser 126, M Elsing 44, D Emeliyanov 161, Y Enari 198, O C Endner 108, R Engelmann 191, A Engl 126, J Erdmann 222, A Ereditato 22, D Eriksson 188, J Ernst 3, M Ernst 36, J Ernwein 175, D Errede 211, S Errede 211, E Ertel 108, M Escalier 144, H Esch 64, C Escobar 154, X Espinal Curull 16, B Esposito 68, F Etienne 110, A I Etienvre 175, E Etzion 196, D Evangelakou 77, H Evans 85, L Fabbri 27,28, C Fabre 44, G Facini 44, R M Fakhrutdinov 160, S Falciano 164, Y Fang 48, M Fanti 116,117, A Farbin 12, A Farilla 168, T Farooque 201, S Farrell 207, S M Farrington 216, P Farthouat 44, F Fassi 213, P Fassnacht 44, D Fassouliotis 13, B Fatholahzadeh 201, A Favareto 116,117, L Fayard 144, P Federic 183, O L Fedin 151, W Fedorko 214, M Fehling-Kaschek 69, L Feligioni 110, C Feng 51, E J Feng 10, H Feng 114, A B Fenyuk 160, J Ferencei 184, W Fernando 10, S Ferrag 76, J Ferrando 76, V Ferrara 63, A Ferrari 212, P Ferrari 134, R Ferrari 148, D E Ferreira de Lima 76, A Ferrer 213, D Ferrere 70, C Ferretti 114, A Ferretto Parodi 71,72, M Fiascaris 45, F Fiedler 108, A Filipčič 100, F Filthaut 133, M Fincke-Keeler 215, K D Finelli 66, M C N Fiolhais 155, L Fiorini 213, A Firan 61, J Fischer 221, M J Fisher 138, E A Fitzgerald 31, M Flechl 69, I Fleck 180, P Fleischmann 220, S Fleischmann 221, G T Fletcher 178, G Fletcher 101, T Flick 221, A Floderus 106, L R Flores Castillo 219, A C Florez Bustos 203, M J Flowerdew 127, T Fonseca Martin 22, A Formica 175, A Forti 109, D Fortin 202, D Fournier 144, H Fox 96, P Francavilla 16, M Franchini 27,28, S Franchino 44, D Francis 44, M Franklin 80, S Franz 44, M Fraternali 148,149, S Fratina 150, S T French 42, C Friedrich 63, F Friedrich 65, D Froidevaux 44, J A Frost 42, C Fukunaga 199, E Fullana Torregrosa 159, B G Fulsom 182, J Fuster 213, C Gabaldon 44, O Gabizon 218, A Gabrielli 27,28, A Gabrielli 164,165, S Gadatsch 134, T Gadfort 36, S Gadomski 70, G Gagliardi 71,72, P Gagnon 85, C Galea 126, B Galhardo 155, E J Gallas 147, V Gallo 22, B J Gallop 161, P Gallus 158, K K Gan 138, R P Gandrajula 87, Y S Gao 182, A Gaponenko 20, F M Garay Walls 67, F Garberson 222, C García 213, J E García Navarro 213, M Garcia-Sciveres 20, R W Gardner 45, N Garelli 182, V Garonne 44, C Gatti 68, G Gaudio 148, B Gaur 180, L Gauthier 121, P Gauzzi 164,165, I L Gavrilenko 122, C Gay 214, G Gaycken 29, E N Gazis 14, P Ge 51, Z Gecse 214, C N P Gee 161, D A A Geerts 134, Ch Geich-Gimbel 29, K Gellerstedt 188,189, C Gemme 71, A Gemmell 76, M H Genest 78, S Gentile 164,165, M George 77, S George 102, D Gerbaudo 207, A Gershon 196, H Ghazlane 171, N Ghodbane 53, B Giacobbe 27, S Giagu 164,165, V Giangiobbe 16, P Giannetti 152,153, F Gianotti 44, B Gibbard 36, A Gibson 201, S M Gibson 102, M Gilchriese 20, T P S Gillam 42, D Gillberg 44, A R Gillman 161, D M Gingrich 4, N Giokaris 13, M P Giordani 208,210, R Giordano 130,131, F M Giorgi 21, P Giovannini 127, P F Giraud 175, D Giugni 116, C Giuliani 69, M Giunta 121, B K Gjelsten 146, I Gkialas 197, L K Gladilin 125, C Glasman 107, J Glatzer 29, A Glazov 63, G L Glonti 89, M Goblirsch-Kolb 127, J R Goddard 101, J Godfrey 181, J Godlewski 44, M Goebel 63, C Goeringer 108, S Goldfarb 114, T Golling 222, D Golubkov 160, A Gomes 155, L S Gomez Fajardo 63, R Gonçalo 102, J Goncalves Pinto Firmino Da Costa 63, L Gonella 29, S González de la Hoz 213, G Gonzalez Parra 16, M L Gonzalez Silva 41, S Gonzalez-Sevilla 70, J J Goodson 191, L Goossens 44, P A Gorbounov 123, H A Gordon 36, I Gorelov 132, G Gorfine 221, B Gorini 44, E Gorini 97,98, A Gorišek 100, E Gornicki 60, A T Goshaw 10, C Gössling 64, M I Gostkin 89, I Gough Eschrich 207, M Gouighri 170, D Goujdami 172, M P Goulette 70, A G Goussiou 177, C Goy 9, S Gozpinar 31, L Graber 77, I Grabowska-Bold 58, P Grafström 27,28, K-J Grahn 63, E Gramstad 146, F Grancagnolo 97, S Grancagnolo 21, V Grassi 191, V Gratchev 151, H M Gray 44, J A Gray 191, E Graziani 168, O G Grebenyuk 151, T Greenshaw 99, Z D Greenwood 104, K Gregersen 55, I M Gregor 63, P Grenier 182, J Griffiths 12, N Grigalashvili 89, A A Grillo 176, K Grimm 96, S Grinstein 16, Ph Gris 53, Y V Grishkevich 125, J-F Grivaz 144, J P Grohs 65, A Grohsjean 63, E Gross 218, J Grosse-Knetter 77, J Groth-Jensen 218, K Grybel 180, F Guescini 70, D Guest 222, O Gueta 196, C Guicheney 53, E Guido 71,72, T Guillemin 144, S Guindon 3, U Gul 76, J Gunther 158, J Guo 54, P Gutierrez 140, N Guttman 196, O Gutzwiller 219, C Guyot 175, C Gwenlan 147, C B Gwilliam 99, A Haas 137, S Haas 44, C Haber 20, H K Hadavand 12, P Haefner 29, Z Hajduk 60, H Hakobyan 223, D Hall 147, G Halladjian 87, K Hamacher 221, P Hamal 142, K Hamano 113, M Hamer 77, A Hamilton 185, S Hamilton 205, L Han 49, K Hanagaki 145, K Hanawa 204, M Hance 20, C Handel 108, P Hanke 81, J R Hansen 55, J B Hansen 55, J D Hansen 55, P H Hansen 55, P Hansson 182, K Hara 204, A S Hard 219, T Harenberg 221, S Harkusha 118, D Harper 114, R D Harrington 67, O M Harris 177, J Hartert 69, F Hartjes 134, T Haruyama 90, A Harvey 79, S Hasegawa 129, Y Hasegawa 179, S Hassani 175, S Haug 22, M Hauschild 44, R Hauser 115, M Havranek 29, C M Hawkes 23, R J Hawkings 44, A D Hawkins 106, T Hayakawa 91, T Hayashi 204, D Hayden 102, C P Hays 147, H S Hayward 99, S J Haywood 161, S J Head 23, T Heck 108, V Hedberg 106, L Heelan 12, S Heim 150, B Heinemann 20, S Heisterkamp 55, J Hejbal 157, L Helary 30, C Heller 126, M Heller 44, S Hellman 188,189, D Hellmich 29, C Helsens 44, J Henderson 147, R C W Henderson 96, M Henke 81, A Henrichs 222, A M Henriques Correia 44, S Henrot-Versille 144, C Hensel 77, G H Herbert 21, C M Hernandez 12, Y Hernández Jiménez 213, R Herrberg-Schubert 21, G Herten 69, R Hertenberger 126, L Hervas 44, G G Hesketh 103, N P Hessey 134, R Hickling 101, E Higón-Rodriguez 213, J C Hill 42, K H Hiller 63, S Hillert 29, S J Hillier 23, I Hinchliffe 20, E Hines 150, M Hirose 145, D Hirschbuehl 221, J Hobbs 191, N Hod 134, M C Hodgkinson 178, P Hodgson 178, A Hoecker 44, M R Hoeferkamp 132, J Hoffman 61, D Hoffmann 110, J I Hofmann 81, M Hohlfeld 108, S O Holmgren 188, J L Holzbauer 115, T M Hong 150, L Hooft van Huysduynen 137, J-Y Hostachy 78, S Hou 194, A Hoummada 170, J Howard 147, J Howarth 109, M Hrabovsky 142, I Hristova 21, J Hrivnac 144, T Hryn’ova 9, P J Hsu 108, S-C Hsu 177, D Hu 54, X Hu 36, Z Hubacek 44, F Hubaut 110, F Huegging 29, A Huettmann 63, T B Huffman 147, E W Hughes 54, G Hughes 96, M Huhtinen 44, T A Hülsing 108, M Hurwitz 20, N Huseynov 89, J Huston 115, J Huth 80, G Iacobucci 70, G Iakovidis 14, I Ibragimov 180, L Iconomidou-Fayard 144, J Idarraga 144, P Iengo 130, O Igonkina 134, Y Ikegami 90, K Ikematsu 180, M Ikeno 90, D Iliadis 197, N Ilic 201, T Ince 127, P Ioannou 13, M Iodice 168, K Iordanidou 13, V Ippolito 164,165, A Irles Quiles 213, C Isaksson 212, M Ishino 92, M Ishitsuka 200, R Ishmukhametov 138, C Issever 147, S Istin 24, A V Ivashin 160, W Iwanski 60, H Iwasaki 90, J M Izen 62, V Izzo 130, B Jackson 150, J N Jackson 99, P Jackson 2, M R Jaekel 44, V Jain 3, K Jakobs 69, S Jakobsen 55, T Jakoubek 157, J Jakubek 158, D O Jamin 194, D K Jana 140, E Jansen 103, H Jansen 44, J Janssen 29, A Jantsch 127, M Janus 69, R C Jared 219, G Jarlskog 106, L Jeanty 80, G-Y Jeng 193, I Jen-La Plante 45, D Jennens 113, P Jenni 44, J Jentzsch 64, C Jeske 216, P Jež 55, S Jézéquel 9, M K Jha 27, H Ji 219, W Ji 108, J Jia 191, Y Jiang 49, M Jimenez Belenguer 63, S Jin 48, O Jinnouchi 200, M D Joergensen 55, D Joffe 61, M Johansen 188,189, K E Johansson 188, P Johansson 178, S Johnert 63, K A Johns 11, K Jon-And 188,189, G Jones 216, R W L Jones 96, T J Jones 99, P M Jorge 155, K D Joshi 109, J Jovicevic 190, X Ju 219, C A Jung 64, R M Jungst 44, P Jussel 86, A Juste Rozas 16, S Kabana 22, M Kaci 213, A Kaczmarska 60, P Kadlecik 55, M Kado 144, H Kagan 138, M Kagan 182, E Kajomovitz 195, S Kalinin 221, S Kama 61, N Kanaya 198, M Kaneda 44, S Kaneti 42, T Kanno 200, V A Kantserov 124, J Kanzaki 90, B Kaplan 137, A Kapliy 45, D Kar 76, K Karakostas 14, M Karnevskiy 108, V Kartvelishvili 96, A N Karyukhin 160, L Kashif 219, G Kasieczka 82, R D Kass 138, A Kastanas 19, Y Kataoka 198, J Katzy 63, V Kaushik 11, K Kawagoe 94, T Kawamoto 198, G Kawamura 77, S Kazama 198, V F Kazanin 136, M Y Kazarinov 89, R Keeler 215, P T Keener 150, R Kehoe 61, M Keil 77, J S Keller 177, H Keoshkerian 9, O Kepka 157, B P Kerševan 100, S Kersten 221, K Kessoku 198, J Keung 201, F Khalil-zada 15, H Khandanyan 188,189, A Khanov 141, D Kharchenko 89, A Khodinov 124, A Khomich 81, T J Khoo 42, G Khoriauli 29, A Khoroshilov 221, V Khovanskiy 123, E Khramov 89, J Khubua 74, H Kim 188,189, S H Kim 204, N Kimura 217, O Kind 21, B T King 99, M King 91, R S B King 147, S B King 214, J Kirk 161, A E Kiryunin 127, T Kishimoto 91, D Kisielewska 58, T Kitamura 91, T Kittelmann 154, K Kiuchi 204, E Kladiva 184, M Klein 99, U Klein 99, K Kleinknecht 108, M Klemetti 112, A Klier 218, P Klimek 188,189, A Klimentov 36, R Klingenberg 64, J A Klinger 109, E B Klinkby 55, T Klioutchnikova 44, P F Klok 133, E-E Kluge 81, P Kluit 134, S Kluth 127, E Kneringer 86, E B F G Knoops 110, A Knue 77, B R Ko 66, T Kobayashi 198, M Kobel 65, M Kocian 182, P Kodys 159, S Koenig 108, F Koetsveld 133, P Koevesarki 29, T Koffas 43, E Koffeman 134, L A Kogan 147, S Kohlmann 221, F Kohn 77, Z Kohout 158, T Kohriki 90, T Koi 182, H Kolanoski 21, I Koletsou 116, J Koll 115, A A Komar 122, Y Komori 198, T Kondo 90, K Köneke 44, A C König 133, T Kono 63, A I Kononov 69, R Konoplich 137, N Konstantinidis 103, R Kopeliansky 195, S Koperny 58, L Köpke 108, A K Kopp 69, K Korcyl 60, K Kordas 197, A Korn 67, A A Korol 136, I Korolkov 16, E V Korolkova 178, V A Korotkov 160, O Kortner 127, S Kortner 127, V V Kostyukhin 29, S Kotov 127, V M Kotov 89, A Kotwal 66, C Kourkoumelis 13, V Kouskoura 197, A Koutsman 202, R Kowalewski 215, T Z Kowalski 58, W Kozanecki 175, A S Kozhin 160, V Kral 158, V A Kramarenko 125, G Kramberger 100, M W Krasny 105, A Krasznahorkay 137, J K Kraus 29, A Kravchenko 36, S Kreiss 137, J Kretzschmar 99, K Kreutzfeldt 75, N Krieger 77, P Krieger 201, K Kroeninger 77, H Kroha 127, J Kroll 150, J Kroseberg 29, J Krstic 17, U Kruchonak 89, H Krüger 29, T Kruker 22, N Krumnack 88, Z V Krumshteyn 89, A Kruse 219, M K Kruse 66, T Kubota 113, S Kuday 5, S Kuehn 69, A Kugel 83, T Kuhl 63, V Kukhtin 89, Y Kulchitsky 118, S Kuleshov 47, M Kuna 105, J Kunkle 150, A Kupco 157, H Kurashige 91, M Kurata 204, Y A Kurochkin 118, V Kus 157, E S Kuwertz 190, M Kuze 200, J Kvita 181, R Kwee 21, A La Rosa 70, L La Rotonda 56,57, L Labarga 107, S Lablak 170, C Lacasta 213, F Lacava 164,165, J Lacey 43, H Lacker 21, D Lacour 105, V R Lacuesta 213, E Ladygin 89, R Lafaye 9, B Laforge 105, T Lagouri 222, S Lai 69, H Laier 81, E Laisne 78, L Lambourne 103, C L Lampen 11, W Lampl 11, E Lançon 175, U Landgraf 69, M P J Landon 101, V S Lang 81, C Lange 63, A J Lankford 207, F Lanni 36, K Lantzsch 44, A Lanza 148, S Laplace 105, C Lapoire 29, J F Laporte 175, T Lari 116, A Larner 147, M Lassnig 44, P Laurelli 68, V Lavorini 56,57, W Lavrijsen 20, P Laycock 99, O Le Dortz 105, E Le Guirriec 110, E Le Menedeu 16, T LeCompte 10, F Ledroit-Guillon 78, H Lee 134, J S H Lee 145, S C Lee 194, L Lee 222, G Lefebvre 105, M Lefebvre 215, M Legendre 175, F Legger 126, C Leggett 20, M Lehmacher 29, G Lehmann Miotto 44, A G Leister 222, M A L Leite 35, R Leitner 159, D Lellouch 218, B Lemmer 77, V Lendermann 81, K J C Leney 187, T Lenz 134, G Lenzen 221, B Lenzi 44, K Leonhardt 65, S Leontsinis 14, F Lepold 81, C Leroy 121, J-R Lessard 215, C G Lester 42, C M Lester 150, J Levêque 9, D Levin 114, L J Levinson 218, A Lewis 147, G H Lewis 137, A M Leyko 29, M Leyton 21, B Li 49, B Li 110, H Li 191, H L Li 45, S Li 66, X Li 114, Z Liang 147, H Liao 53, B Liberti 166, P Lichard 44, K Lie 211, J Liebal 29, W Liebig 19, C Limbach 29, A Limosani 113, M Limper 87, S C Lin 194, F Linde 134, B E Lindquist 191, J T Linnemann 115, E Lipeles 150, A Lipniacka 19, M Lisovyi 63, T M Liss 211, D Lissauer 36, A Lister 214, A M Litke 176, D Liu 194, J B Liu 49, K Liu 49, L Liu 114, M Liu 66, M Liu 49, Y Liu 49, M Livan 148,149, S S A Livermore 147, A Lleres 78, J Llorente Merino 107, S L Lloyd 101, F Lo Sterzo 164,165, E Lobodzinska 63, P Loch 11, W S Lockman 176, T Loddenkoetter 29, F K Loebinger 109, A E Loevschall-Jensen 55, A Loginov 222, C W Loh 214, T Lohse 21, K Lohwasser 69, M Lokajicek 157, V P Lombardo 9, R E Long 96, L Lopes 155, D Lopez Mateos 80, J Lorenz 126, N Lorenzo Martinez 144, M Losada 206, P Loscutoff 20, M J Losty 202, X Lou 62, A Lounis 144, K F Loureiro 206, J Love 10, P A Love 96, A J Lowe 182, F Lu 48, H J Lubatti 177, C Luci 164,165, A Lucotte 78, D Ludwig 63, I Ludwig 69, J Ludwig 69, F Luehring 85, W Lukas 86, L Luminari 164, E Lund 146, J Lundberg 188,189, O Lundberg 188,189, B Lund-Jensen 190, J Lundquist 55, M Lungwitz 108, D Lynn 36, R Lysak 157, E Lytken 106, H Ma 36, L L Ma 219, G Maccarrone 68, A Macchiolo 127, B Maček 100, J Machado Miguens 155, D Macina 44, R Mackeprang 55, R Madar 69, R J Madaras 20, H J Maddocks 96, W F Mader 65, A Madsen 212, M Maeno 9, T Maeno 36, L Magnoni 207, E Magradze 77, K Mahboubi 69, J Mahlstedt 134, S Mahmoud 99, G Mahout 23, C Maiani 175, C Maidantchik 32, A Maio 155, S Majewski 143, Y Makida 90, N Makovec 144, P Mal 175, B Malaescu 105, Pa Malecki 60, P Malecki 60, V P Maleev 151, F Malek 78, U Mallik 87, D Malon 10, C Malone 182, S Maltezos 14, V M Malyshev 136, S Malyukov 44, J Mamuzic 18, L Mandelli 116, I Mandić 100, R Mandrysch 87, J Maneira 155, A Manfredini 127, L Manhaes de Andrade Filho 33, J A Manjarres Ramos 175, A Mann 126, P M Manning 176, A Manousakis-Katsikakis 13, B Mansoulie 175, R Mantifel 112, L Mapelli 44, L March 213, J F Marchand 43, F Marchese 166,167, G Marchiori 105, M Marcisovsky 157, C P Marino 215, C N Marques 155, F Marroquim 32, Z Marshall 150, L F Marti 22, S Marti-Garcia 213, B Martin 44, B Martin 115, J P Martin 121, T A Martin 216, V J Martin 67, B Martin dit Latour 70, H Martinez 175, M Martinez 16, S Martin-Haugh 192, A C Martyniuk 215, M Marx 109, F Marzano 164, A Marzin 140, L Masetti 108, T Mashimo 198, R Mashinistov 122, J Masik 109, A L Maslennikov 136, I Massa 27,28, N Massol 9, P Mastrandrea 191, A Mastroberardino 56,57, T Masubuchi 198, H Matsunaga 198, T Matsushita 91, P Mättig 221, S Mättig 63, C Mattravers 147, J Maurer 110, S J Maxfield 99, D A Maximov 136, R Mazini 194, M Mazur 29, L Mazzaferro 166,167, M Mazzanti 116, S P Mc Kee 114, A McCarn 211, R L McCarthy 191, T G McCarthy 43, N A McCubbin 161, K W McFarlane 79, J A Mcfayden 178, G Mchedlidze 74, T Mclaughlan 23, S J McMahon 161, R A McPherson 215, A Meade 111, J Mechnich 134, M Mechtel 221, M Medinnis 63, S Meehan 45, R Meera-Lebbai 140, T Meguro 145, S Mehlhase 55, A Mehta 99, K Meier 81, C Meineck 126, B Meirose 106, C Melachrinos 45, B R Mellado Garcia 187, F Meloni 116,117, L Mendoza Navas 206, A Mengarelli 27,28, S Menke 127, E Meoni 205, K M Mercurio 80, N Meric 175, P Mermod 70, L Merola 130,131, C Meroni 116, F S Merritt 45, H Merritt 138, A Messina 44, J Metcalfe 36, A S Mete 207, C Meyer 108, C Meyer 45, J-P Meyer 175, J Meyer 44, J Meyer 77, S Michal 44, R P Middleton 161, S Migas 99, L Mijović 175, G Mikenberg 218, M Mikestikova 157, M Mikuž 100, D W Miller 45, W J Mills 214, C Mills 80, A Milov 218, D A Milstead 188,189, D Milstein 218, A A Minaenko 160, M Miñano Moya 213, I A Minashvili 89, A I Mincer 137, B Mindur 58, M Mineev 89, Y Ming 219, L M Mir 16, G Mirabelli 164, J Mitrevski 176, V A Mitsou 213, S Mitsui 90, P S Miyagawa 178, J U Mjörnmark 106, T Moa 188,189, V Moeller 42, S Mohapatra 191, W Mohr 69, R Moles-Valls 213, A Molfetas 44, K Mönig 63, C Monini 78, J Monk 55, E Monnier 110, J Montejo Berlingen 16, F Monticelli 95, S Monzani 27,28, R W Moore 4, C Mora Herrera 70, A Moraes 76, N Morange 87, J Morel 77, D Moreno 108, M Moreno Llácer 213, P Morettini 71, M Morgenstern 65, M Morii 80, S Moritz 108, A K Morley 44, G Mornacchi 44, J D Morris 101, L Morvaj 129, N Möser 29, H G Moser 127, M Mosidze 74, J Moss 138, R Mount 182, E Mountricha 14, S V Mouraviev 122, E J W Moyse 111, R D Mudd 23, F Mueller 81, J Mueller 154, K Mueller 29, T Mueller 42, T Mueller 108, D Muenstermann 44, Y Munwes 196, J A Murillo Quijada 23, W J Murray 161, I Mussche 134, E Musto 195, A G Myagkov 160, M Myska 157, O Nackenhorst 77, J Nadal 16, K Nagai 204, R Nagai 200, Y Nagai 110, K Nagano 90, A Nagarkar 138, Y Nagasaka 84, M Nagel 127, A M Nairz 44, Y Nakahama 44, K Nakamura 90, T Nakamura 198, I Nakano 139, H Namasivayam 62, G Nanava 29, A Napier 205, R Narayan 82, M Nash 103, T Nattermann 29, T Naumann 63, G Navarro 206, H A Neal 114, P Yu Nechaeva 122, T J Neep 109, A Negri 148,149, G Negri 44, M Negrini 27, S Nektarijevic 70, A Nelson 207, T K Nelson 182, S Nemecek 157, P Nemethy 137, A A Nepomuceno 32, M Nessi 44, M S Neubauer 211, M Neumann 221, A Neusiedl 108, R M Neves 137, P Nevski 36, F M Newcomer 150, P R Newman 23, D H Nguyen 10, V Nguyen Thi Hong 175, R B Nickerson 147, R Nicolaidou 175, B Nicquevert 44, F Niedercorn 144, J Nielsen 176, N Nikiforou 54, A Nikiforov 21, V Nikolaenko 160, I Nikolic-Audit 105, K Nikolics 70, K Nikolopoulos 23, P Nilsson 12, Y Ninomiya 198, A Nisati 164, R Nisius 127, T Nobe 200, L Nodulman 10, M Nomachi 145, I Nomidis 197, S Norberg 140, M Nordberg 44, J Novakova 159, M Nozaki 90, L Nozka 142, A-E Nuncio-Quiroz 29, G Nunes Hanninger 113, T Nunnemann 126, E Nurse 103, B J O’Brien 67, D C O’Neil 181, V O’Shea 76, L B Oakes 126, F G Oakham 43, H Oberlack 127, J Ocariz 105, A Ochi 91, M I Ochoa 103, S Oda 94, S Odaka 90, J Odier 110, H Ogren 85, A Oh 109, S H Oh 66, C C Ohm 44, T Ohshima 129, W Okamura 145, H Okawa 36, Y Okumura 45, T Okuyama 198, A Olariu 37, A G Olchevski 89, S A Olivares Pino 67, M Oliveira 155, D Oliveira Damazio 36, E Oliver Garcia 213, D Olivito 150, A Olszewski 60, J Olszowska 60, A Onofre 155, P U E Onyisi 45, C J Oram 202, M J Oreglia 45, Y Oren 196, D Orestano 168,169, N Orlando 97,98, C Oropeza Barrera 76, R S Orr 201, B Osculati 71,72, R Ospanov 150, G Otero y Garzon 41, J P Ottersbach 134, M Ouchrif 173, E A Ouellette 215, F Ould-Saada 146, A Ouraou 175, Q Ouyang 48, A Ovcharova 20, M Owen 109, S Owen 178, V E Ozcan 24, N Ozturk 12, A Pacheco Pages 16, C Padilla Aranda 16, S Pagan Griso 20, E Paganis 178, C Pahl 127, F Paige 36, P Pais 111, K Pajchel 146, G Palacino 203, C P Paleari 11, S Palestini 44, D Pallin 53, A Palma 155, J D Palmer 23, Y B Pan 219, E Panagiotopoulou 14, J G Panduro Vazquez 102, P Pani 134, N Panikashvili 114, S Panitkin 36, D Pantea 37, A Papadelis 188, Th D Papadopoulou 14, K Papageorgiou 197, A Paramonov 10, D Paredes Hernandez 53, W Park 36, M A Parker 42, F Parodi 71,72, J A Parsons 54, U Parzefall 69, S Pashapour 77, E Pasqualucci 164, S Passaggio 71, A Passeri 168, F Pastore 168,169, Fr Pastore 102, G Pásztor 70, S Pataraia 221, N D Patel 193, J R Pater 109, S Patricelli 130,131, T Pauly 44, J Pearce 215, M Pedersen 146, S Pedraza Lopez 213, M I Pedraza Morales 219, S V Peleganchuk 136, D Pelikan 212, H Peng 49, B Penning 45, A Penson 54, J Penwell 85, T Perez Cavalcanti 63, E Perez Codina 202, M T Pérez García-Estañ 213, V Perez Reale 54, L Perini 116,117, H Pernegger 44, R Perrino 97, P Perrodo 9, V D Peshekhonov 89, K Peters 44, R F Y Peters 77, B A Petersen 44, J Petersen 44, T C Petersen 55, E Petit 9, A Petridis 188,189, C Petridou 197, E Petrolo 164, F Petrucci 168,169, D Petschull 63, M Petteni 181, R Pezoa 47, A Phan 113, P W Phillips 161, G Piacquadio 182, E Pianori 216, A Picazio 70, E Piccaro 101, M Piccinini 27,28, S M Piec 63, R Piegaia 41, D T Pignotti 138, J E Pilcher 45, A D Pilkington 103, J Pina 155, M Pinamonti 208,210, A Pinder 147, J L Pinfold 4, A Pingel 55, B Pinto 155, C Pizio 116,117, M-A Pleier 36, V Pleskot 159, E Plotnikova 89, P Plucinski 188,189, S Poddar 81, F Podlyski 53, R Poettgen 108, L Poggioli 144, D Pohl 29, M Pohl 70, G Polesello 148, A Policicchio 56,57, R Polifka 201, A Polini 27, V Polychronakos 36, D Pomeroy 31, K Pommès 44, L Pontecorvo 164, B G Pope 115, G A Popeneciu 38, D S Popovic 17, A Poppleton 44, X Portell Bueso 16, G E Pospelov 127, S Pospisil 158, I N Potrap 89, C J Potter 192, C T Potter 143, G Poulard 44, J Poveda 85, V Pozdnyakov 89, R Prabhu 103, P Pralavorio 110, A Pranko 20, S Prasad 44, R Pravahan 36, S Prell 88, K Pretzl 22, D Price 85, J Price 99, L E Price 10, D Prieur 154, M Primavera 97, M Proissl 67, K Prokofiev 137, F Prokoshin 47, E Protopapadaki 175, S Protopopescu 36, J Proudfoot 10, X Prudent 65, M Przybycien 58, H Przysiezniak 9, S Psoroulas 29, E Ptacek 143, E Pueschel 111, D Puldon 191, M Purohit 36, P Puzo 144, Y Pylypchenko 87, J Qian 114, A Quadt 77, D R Quarrie 20, W B Quayle 219, D Quilty 76, M Raas 133, V Radeka 36, V Radescu 63, P Radloff 143, F Ragusa 116,117, G Rahal 224, S Rajagopalan 36, M Rammensee 69, M Rammes 180, A S Randle-Conde 61, K Randrianarivony 43, C Rangel-Smith 105, K Rao 207, F Rauscher 126, T C Rave 69, T Ravenscroft 76, M Raymond 44, A L Read 146, D M Rebuzzi 148,149, A Redelbach 220, G Redlinger 36, R Reece 150, K Reeves 62, A Reinsch 143, I Reisinger 64, M Relich 207, C Rembser 44, Z L Ren 194, A Renaud 144, M Rescigno 164, S Resconi 116, B Resende 175, P Reznicek 126, R Rezvani 121, R Richter 127, E Richter-Was 59, M Ridel 105, P Rieck 21, M Rijssenbeek 191, A Rimoldi 148,149, L Rinaldi 27, R R Rios 61, E Ritsch 86, I Riu 16, G Rivoltella 116,117, F Rizatdinova 141, E Rizvi 101, S H Robertson 112, A Robichaud-Veronneau 147, D Robinson 42, J E M Robinson 109, A Robson 76, J G Rocha de Lima 135, C Roda 152,153, D Roda Dos Santos 44, A Roe 77, S Roe 44, O Røhne 146, S Rolli 205, A Romaniouk 124, M Romano 27,28, G Romeo 41, E Romero Adam 213, N Rompotis 177, L Roos 105, E Ros 213, S Rosati 164, K Rosbach 70, A Rose 192, M Rose 102, G A Rosenbaum 201, P L Rosendahl 19, O Rosenthal 180, V Rossetti 16, E Rossi 164,165, L P Rossi 71, M Rotaru 37, I Roth 218, J Rothberg 177, D Rousseau 144, C R Royon 175, A Rozanov 110, Y Rozen 195, X Ruan 48, F Rubbo 16, I Rubinskiy 63, N Ruckstuhl 134, V I Rud 125, C Rudolph 65, M S Rudolph 201, F Rühr 11, A Ruiz-Martinez 88, L Rumyantsev 89, Z Rurikova 69, N A Rusakovich 89, A Ruschke 126, J P Rutherfoord 11, N Ruthmann 69, P Ruzicka 157, Y F Ryabov 151, M Rybar 159, G Rybkin 144, N C Ryder 147, A F Saavedra 193, A Saddique 4, I Sadeh 196, H F-W Sadrozinski 176, R Sadykov 89, F Safai Tehrani 164, H Sakamoto 198, G Salamanna 101, A Salamon 166, M Saleem 140, D Salek 44, D Salihagic 127, A Salnikov 182, J Salt 213, B M Salvachua Ferrando 10, D Salvatore 56,57, F Salvatore 192, A Salvucci 133, A Salzburger 44, D Sampsonidis 197, A Sanchez 130,131, J Sánchez 213, V Sanchez Martinez 213, H Sandaker 19, H G Sander 108, M P Sanders 126, M Sandhoff 221, T Sandoval 42, C Sandoval 206, R Sandstroem 127, D P C Sankey 161, A Sansoni 68, C Santoni 53, R Santonico 166,167, H Santos 155, I Santoyo Castillo 192, K Sapp 154, J G Saraiva 155, T Sarangi 219, E Sarkisyan-Grinbaum 12, B Sarrazin 29, F Sarri 152,153, G Sartisohn 221, O Sasaki 90, Y Sasaki 198, N Sasao 92, I Satsounkevitch 118, G Sauvage 9, E Sauvan 9, J B Sauvan 144, P Savard 201, V Savinov 154, D O Savu 44, C Sawyer 147, L Sawyer 104, D H Saxon 76, J Saxon 150, C Sbarra 27, A Sbrizzi 4, D A Scannicchio 207, M Scarcella 193, J Schaarschmidt 144, P Schacht 127, D Schaefer 150, A Schaelicke 67, S Schaepe 29, S Schaetzel 82, U Schäfer 108, A C Schaffer 144, D Schaile 126, R D Schamberger 191, V Scharf 81, V A Schegelsky 151, D Scheirich 114, M Schernau 207, M I Scherzer 54, C Schiavi 71,72, J Schieck 126, C Schillo 69, M Schioppa 56,57, S Schlenker 44, E Schmidt 69, K Schmieden 44, C Schmitt 108, C Schmitt 126, S Schmitt 82, B Schneider 22, Y J Schnellbach 99, U Schnoor 65, L Schoeffel 175, A Schoening 82, A L S Schorlemmer 77, M Schott 108, D Schouten 202, J Schovancova 157, M Schram 112, C Schroeder 108, N Schroer 83, M J Schultens 29, H-C Schultz-Coulon 81, H Schulz 21, M Schumacher 69, B A Schumm 176, Ph Schune 175, A Schwartzman 182, Ph Schwegler 127, Ph Schwemling 175, R Schwienhorst 115, J Schwindling 175, T Schwindt 29, M Schwoerer 9, F G Sciacca 22, E Scifo 144, G Sciolla 31, W G Scott 161, F Scutti 29, J Searcy 114, G Sedov 63, E Sedykh 151, S C Seidel 132, A Seiden 176, F Seifert 65, J M Seixas 32, G Sekhniaidze 130, S J Sekula 61, K E Selbach 67, D M Seliverstov 151, G Sellers 99, M Seman 184, N Semprini-Cesari 27,28, C Serfon 44, L Serin 144, L Serkin 77, T Serre 110, R Seuster 202, H Severini 140, A Sfyrla 44, E Shabalina 77, M Shamim 143, L Y Shan 48, J T Shank 30, Q T Shao 113, M Shapiro 20, P B Shatalov 123, K Shaw 208,210, P Sherwood 103, S Shimizu 129, M Shimojima 128, T Shin 79, M Shiyakova 89, A Shmeleva 122, M J Shochet 45, D Short 147, S Shrestha 88, E Shulga 124, M A Shupe 11, P Sicho 157, A Sidoti 164, F Siegert 69, Dj Sijacki 17, O Silbert 218, J Silva 155, Y Silver 196, D Silverstein 182, S B Silverstein 188, V Simak 158, O Simard 9, Lj Simic 17, S Simion 144, E Simioni 108, B Simmons 103, R Simoniello 116,117, M Simonyan 55, P Sinervo 201, N B Sinev 143, V Sipica 180, G Siragusa 220, A Sircar 104, A N Sisakyan 89, S Yu Sivoklokov 125, J Sjölin 188,189, T B Sjursen 19, L A Skinnari 20, H P Skottowe 80, K Yu Skovpen 136, P Skubic 140, M Slater 23, T Slavicek 158, K Sliwa 205, V Smakhtin 218, B H Smart 67, L Smestad 146, S Yu Smirnov 124, Y Smirnov 124, L N Smirnova 125, O Smirnova 106, K M Smith 76, M Smizanska 96, K Smolek 158, A A Snesarev 122, G Snidero 101, J Snow 140, S Snyder 36, R Sobie 215, J Sodomka 158, A Soffer 196, D A Soh 194, C A Solans 44, M Solar 158, J Solc 158, E Yu Soldatov 124, U Soldevila 213, E Solfaroli Camillocci 164,165, A A Solodkov 160, O V Solovyanov 160, V Solovyev 151, N Soni 2, A Sood 20, V Sopko 158, B Sopko 158, M Sosebee 12, R Soualah 208,210, P Soueid 121, A M Soukharev 136, D South 63, S Spagnolo 97,98, F Spanò 102, R Spighi 27, G Spigo 44, R Spiwoks 44, M Spousta 159, T Spreitzer 201, B Spurlock 12, R D St Denis 76, J Stahlman 150, R Stamen 81, E Stanecka 60, R W Stanek 10, C Stanescu 168, M Stanescu-Bellu 63, M M Stanitzki 63, S Stapnes 146, E A Starchenko 160, J Stark 78, P Staroba 157, P Starovoitov 63, R Staszewski 60, A Staude 126, P Stavina 183, G Steele 76, P Steinbach 65, P Steinberg 36, I Stekl 158, B Stelzer 181, H J Stelzer 115, O Stelzer-Chilton 202, H Stenzel 75, S Stern 127, G A Stewart 44, J A Stillings 29, M C Stockton 112, M Stoebe 112, K Stoerig 69, G Stoicea 37, S Stonjek 127, A R Stradling 12, A Straessner 65, J Strandberg 190, S Strandberg 188,189, A Strandlie 146, M Strang 138, E Strauss 182, M Strauss 140, P Strizenec 184, R Ströhmer 220, D M Strom 143, J A Strong 102, R Stroynowski 61, B Stugu 19, I Stumer 36, J Stupak 191, P Sturm 221, N A Styles 63, D Su 182, HS Subramania 4, R Subramaniam 104, A Succurro 16, Y Sugaya 145, C Suhr 135, M Suk 158, V V Sulin 122, S Sultansoy 7, T Sumida 92, X Sun 78, J E Sundermann 69, K Suruliz 178, G Susinno 56,57, M R Sutton 192, Y Suzuki 90, Y Suzuki 91, M Svatos 157, S Swedish 214, M Swiatlowski 182, I Sykora 183, T Sykora 159, D Ta 134, K Tackmann 63, A Taffard 207, R Tafirout 202, N Taiblum 196, Y Takahashi 129, H Takai 36, R Takashima 93, H Takeda 91, T Takeshita 179, Y Takubo 90, M Talby 110, A A Talyshev 136, J Y C Tam 220, M C Tamsett 104, K G Tan 113, J Tanaka 198, R Tanaka 144, S Tanaka 163, S Tanaka 90, A J Tanasijczuk 181, K Tani 91, N Tannoury 110, S Tapprogge 108, S Tarem 195, F Tarrade 43, G F Tartarelli 116, P Tas 159, M Tasevsky 157, T Tashiro 92, E Tassi 56,57, Y Tayalati 173, C Taylor 103, F E Taylor 120, G N Taylor 113, W Taylor 203, M Teinturier 144, F A Teischinger 44, M Teixeira Dias Castanheira 101, P Teixeira-Dias 102, K K Temming 69, H Ten Kate 44, P K Teng 194, S Terada 90, K Terashi 198, J Terron 107, M Testa 68, R J Teuscher 201, J Therhaag 29, T Theveneaux-Pelzer 53, S Thoma 69, J P Thomas 23, E N Thompson 54, P D Thompson 23, P D Thompson 201, A S Thompson 76, L A Thomsen 55, E Thomson 150, M Thomson 42, W M Thong 113, R P Thun 114, F Tian 54, M J Tibbetts 20, T Tic 157, V O Tikhomirov 122, Yu A Tikhonov 136, S Timoshenko 124, E Tiouchichine 110, P Tipton 222, S Tisserant 110, T Todorov 9, S Todorova-Nova 205, B Toggerson 207, J Tojo 94, S Tokár 183, K Tokushuku 90, K Tollefson 115, L Tomlinson 109, M Tomoto 129, L Tompkins 45, K Toms 132, A Tonoyan 19, C Topfel 22, N D Topilin 89, E Torrence 143, H Torres 105, E Torró Pastor 213, J Toth 110, F Touchard 110, D R Tovey 178, H L Tran 144, T Trefzger 220, L Tremblet 44, A Tricoli 44, I M Trigger 202, S Trincaz-Duvoid 105, M F Tripiana 95, N Triplett 36, W Trischuk 201, B Trocmé 78, C Troncon 116, M Trottier-McDonald 181, M Trovatelli 168,169, P True 115, M Trzebinski 60, A Trzupek 60, C Tsarouchas 44, J C-L Tseng 147, M Tsiakiris 134, P V Tsiareshka 118, D Tsionou 175, G Tsipolitis 14, S Tsiskaridze 16, V Tsiskaridze 69, E G Tskhadadze 73, I I Tsukerman 123, V Tsulaia 20, J-W Tsung 29, S Tsuno 90, D Tsybychev 191, A Tua 178, A Tudorache 37, V Tudorache 37, J M Tuggle 45, A N Tuna 150, M Turala 60, D Turecek 158, I Turk Cakir 8, R Turra 116,117, P M Tuts 54, A Tykhonov 100, M Tylmad 188,189, M Tyndel 161, K Uchida 29, I Ueda 198, R Ueno 43, M Ughetto 110, M Ugland 19, M Uhlenbrock 29, F Ukegawa 204, G Unal 44, A Undrus 36, G Unel 207, F C Ungaro 69, Y Unno 90, D Urbaniec 54, P Urquijo 29, G Usai 12, L Vacavant 110, V Vacek 158, B Vachon 112, S Vahsen 20, N Valencic 134, S Valentinetti 27,28, A Valero 213, L Valery 53, S Valkar 159, E Valladolid Gallego 213, S Vallecorsa 195, J A Valls Ferrer 213, R Van Berg 150, P C Van Der Deijl 134, R van der Geer 134, H van der Graaf 134, R Van Der Leeuw 134, D van der Ster 44, N van Eldik 44, P van Gemmeren 10, J Van Nieuwkoop 181, I van Vulpen 134, M Vanadia 127, W Vandelli 44, A Vaniachine 10, P Vankov 63, F Vannucci 105, R Vari 164, E W Varnes 11, T Varol 111, D Varouchas 20, A Vartapetian 12, K E Varvell 193, V I Vassilakopoulos 79, F Vazeille 53, T Vazquez Schroeder 77, F Veloso 155, S Veneziano 164, A Ventura 97,98, D Ventura 111, M Venturi 69, N Venturi 201, V Vercesi 148, M Verducci 177, W Verkerke 134, J C Vermeulen 134, A Vest 65, M C Vetterli 181, I Vichou 211, T Vickey 187, O E Vickey Boeriu 187, G H A Viehhauser 147, S Viel 214, M Villa 27,28, M Villaplana Perez 213, E Vilucchi 68, M G Vincter 43, V B Vinogradov 89, J Virzi 20, O Vitells 218, M Viti 63, I Vivarelli 69, F Vives Vaque 4, S Vlachos 14, D Vladoiu 126, M Vlasak 158, A Vogel 29, P Vokac 158, G Volpi 68, M Volpi 113, G Volpini 116, H von der Schmitt 127, H von Radziewski 69, E von Toerne 29, V Vorobel 159, M Vos 213, R Voss 44, J H Vossebeld 99, N Vranjes 175, M Vranjes Milosavljevic 134, V Vrba 157, M Vreeswijk 134, T Vu Anh 69, R Vuillermet 44, I Vukotic 45, Z Vykydal 158, W Wagner 221, P Wagner 29, S Wahrmund 65, J Wakabayashi 129, S Walch 114, J Walder 96, R Walker 126, W Walkowiak 180, R Wall 222, P Waller 99, B Walsh 222, C Wang 66, H Wang 219, H Wang 61, J Wang 194, J Wang 48, K Wang 112, R Wang 132, S M Wang 194, T Wang 29, X Wang 222, A Warburton 112, C P Ward 42, D R Wardrope 103, M Warsinsky 69, A Washbrook 67, C Wasicki 63, I Watanabe 91, P M Watkins 23, A T Watson 23, I J Watson 193, M F Watson 23, G Watts 177, S Watts 109, A T Waugh 193, B M Waugh 103, M S Weber 22, J S Webster 45, A R Weidberg 147, P Weigell 127, J Weingarten 77, C Weiser 69, P S Wells 44, T Wenaus 36, D Wendland 21, Z Weng 194, T Wengler 44, S Wenig 44, N Wermes 29, M Werner 69, P Werner 44, M Werth 207, M Wessels 81, J Wetter 205, K Whalen 43, A White 12, M J White 113, R White 47, S White 152,153, S R Whitehead 147, D Whiteson 207, D Whittington 85, D Wicke 221, F J Wickens 161, W Wiedenmann 219, M Wielers 106, P Wienemann 29, C Wiglesworth 55, L A M Wiik-Fuchs 29, P A Wijeratne 103, A Wildauer 127, M A Wildt 63, I Wilhelm 159, H G Wilkens 44, J Z Will 126, E Williams 54, H H Williams 150, S Williams 42, W Willis 54, S Willocq 111, J A Wilson 23, A Wilson 114, I Wingerter-Seez 9, S Winkelmann 69, F Winklmeier 44, M Wittgen 182, T Wittig 64, J Wittkowski 126, S J Wollstadt 108, M W Wolter 60, H Wolters 155, W C Wong 62, G Wooden 114, B K Wosiek 60, J Wotschack 44, M J Woudstra 109, K W Wozniak 60, K Wraight 76, M Wright 76, B Wrona 99, S L Wu 219, X Wu 70, Y Wu 114, E Wulf 54, B M Wynne 67, S Xella 55, M Xiao 175, S Xie 69, C Xu 49, D Xu 48, L Xu 49, B Yabsley 193, S Yacoob 186, M Yamada 90, H Yamaguchi 198, Y Yamaguchi 198, A Yamamoto 90, K Yamamoto 88, S Yamamoto 198, T Yamamura 198, T Yamanaka 198, K Yamauchi 129, T Yamazaki 198, Y Yamazaki 91, Z Yan 30, H Yang 52, H Yang 219, U K Yang 109, Y Yang 138, Z Yang 188,189, S Yanush 119, L Yao 48, Y Yasu 90, E Yatsenko 63, K H Yau Wong 29, J Ye 61, S Ye 36, A L Yen 80, E Yildirim 63, M Yilmaz 6, R Yoosoofmiya 154, K Yorita 217, R Yoshida 10, K Yoshihara 198, C Young 182, C J S Young 147, S Youssef 30, D Yu 36, D R Yu 20, J Yu 12, J Yu 141, L Yuan 91, A Yurkewicz 135, B Zabinski 60, R Zaidan 87, A M Zaitsev 160, S Zambito 31, L Zanello 164,165, D Zanzi 127, A Zaytsev 36, C Zeitnitz 221, M Zeman 158, A Zemla 60, O Zenin 160, T Ženiš 183, D Zerwas 144, G Zevi della Porta 80, D Zhang 114, H Zhang 115, J Zhang 10, L Zhang 194, X Zhang 51, Z Zhang 144, Z Zhao 49, A Zhemchugov 89, J Zhong 147, B Zhou 114, N Zhou 207, Y Zhou 194, C G Zhu 51, H Zhu 63, J Zhu 114, Y Zhu 49, X Zhuang 48, A Zibell 126, D Zieminska 85, N I Zimin 89, C Zimmermann 108, R Zimmermann 29, S Zimmermann 29, S Zimmermann 69, Z Zinonos 152,153, M Ziolkowski 180, R Zitoun 9, L Živković 54, V V Zmouchko 160, G Zobernig 219, A Zoccoli 27,28, M zur Nedden 21, V Zutshi 135, L Zwalinski 44
PMCID: PMC4370876  PMID: 25814852

Abstract

A measurement of jet shapes in top-quark pair events using 1.8 fb−1 of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s} = 7 \ \mbox{TeV}$\end{document} pp collision data recorded by the ATLAS detector at the LHC is presented. Samples of top-quark pair events are selected in both the single-lepton and dilepton final states. The differential and integrated shapes of the jets initiated by bottom-quarks from the top-quark decays are compared with those of the jets originated by light-quarks from the hadronic W-boson decays \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$W\rightarrow q\bar{q}'$\end{document} in the single-lepton channel. The light-quark jets are found to have a narrower distribution of the momentum flow inside the jet area than b-quark jets.

Introduction

Hadronic jets are observed in large momentum-transfer interactions. They are theoretically interpreted to arise when partons—quarks (q) and gluons (g)—are emitted in collision events of subatomic particles. Partons then evolve into hadronic jets in a two-step process. The first can be described by perturbation theory and gives rise to a parton shower, the second is non-perturbative and is responsible for the hadronisation. The internal structure of a jet is expected to depend primarily on the type of parton it originated from, with some residual dependence on the quark production and fragmentation process. For instance, due to the different colour factors in ggg and qqg vertices, gluons lead to more parton radiation and therefore gluon-initiated jets are expected to be broader than quark-initiated jets.

For jets defined using cone or k t algorithms [1, 2], jet shapes, i.e. the normalised transverse momentum flow as a function of the distance to the jet axis [3], have been traditionally used as a means of understanding the evolution of partons into hadrons in e + e , ep and hadron colliders [411]. It is experimentally observed that jets in e + e and ep are narrower than those observed in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p\bar{p}$\end{document} and pp collisions and this is interpreted as a result of the different admixtures of quark and gluon jets present in these different types of interactions [12]. Furthermore, at high momentum transfer, where fragmentation effects are less relevant, jet shapes have been found to be in qualitative agreement with next-to-leading-order (NLO) QCD predictions and in quantitative agreement with those including leading logarithm corrections [13]. Jet shapes have also been proposed as a tool for studies of substructure or in searches for new phenomena in final states with highly boosted particles [1417].

Due to the mass of the b-quark, jets originating from a b-quark (hereafter called b-jets) are expected to be broader than light-quark jets, including charm jets, hereafter called light jets. This expectation is supported by observations by the CDF collaboration in Ref. [18], where a comparison is presented between jet shapes in a b-jet enriched sample with a purity of roughly 25 % and an inclusive sample where no distinction is made between the flavours.

This paper presents the first measurement of b-jet shapes in top pair events. The \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\bar{t}$\end{document} final states are a source of b-jets, as the top quark decays almost exclusively via tWb. While the dilepton channel, where both W bosons decay to leptons, is a very pure source of b-jets, the single-lepton channel contains b-jets and light jets, the latter originating from the dominant \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$W^{+} \rightarrow u\bar{d}, c\bar{s}$\end{document} decays and their charge conjugates. A comparison of the light- and b-jet shapes measured in the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\bar {t}$\end{document} decays improves the CDF measurement discussed above, as the jet purity achieved using \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\bar{t}$\end{document} events is much higher. In addition, these measurements could be used to improve the modelling of jets in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\bar{t}$\end{document} production Monte Carlo (MC) models in a new kinematic regime.

This paper is organised as follows. In Sect. 2 the ATLAS detector is described, while Sect. 3 is dedicated to the MC samples used in the analysis. In Sects. 4 and 5, the physics object and event selection for both the dilepton and single-lepton \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\bar{t}$\end{document} samples is presented. Section 6 is devoted to the description of both the b-jet and light-jet samples obtained in the single-lepton final state. The differential and the integrated shape distributions of these jets are derived in Sect. 7. In Sect. 8 the results on the average values of the jet shape variables at the detector level are presented, including those for the b-jets in the dilepton channel. Results corrected for detector effects are presented in Sect. 9. In Sect. 10 the systematic uncertainties are discussed, and Sect. 11 contains a discussion of the results. Finally, Sect. 12 includes the summary and conclusions.

The ATLAS detector

The ATLAS detector [19] is a multi-purpose particle physics detector with a forward-backward symmetric cylindrical geometry1 and a solid angle coverage of almost 4π.

The inner tracking system covers the pseudorapidity range |η|<2.5, and consists of a silicon pixel detector, a silicon microstrip detector, and, for |η|<2.0, a transition radiation tracker. The inner detector (ID) is surrounded by a thin superconducting solenoid providing a 2 T magnetic field along the beam direction. A high-granularity liquid-argon sampling electromagnetic calorimeter covers the region |η|<3.2. An iron/scintillator tile hadronic calorimeter provides coverage in the range |η|<1.7. The endcap and forward regions, spanning 1.5<|η|<4.9, are instrumented with liquid-argon calorimeters for electromagnetic and hadronic measurements. The muon spectrometer surrounds the calorimeters. It consists of three large air-core superconducting toroid systems and separate trigger and high-precision tracking chambers providing accurate muon tracking for |η|<2.7.

The trigger system [20] has three consecutive levels: level 1 (L1), level 2 (L2) and the event filter (EF). The L1 triggers are hardware-based and use coarse detector information to identify regions of interest, whereas the L2 triggers are based on fast software-based online data reconstruction algorithms. Finally, the EF triggers use offline data reconstruction algorithms. For this analysis, the relevant triggers select events with at least one electron or muon.

Monte Carlo samples

Monte Carlo generators are used in which \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\bar{t}$\end{document} production is implemented with matrix elements calculated up to NLO accuracy. The generated events are then passed through a detailed Geant4 simulation [21, 22] of the ATLAS detector. The baseline MC samples used here are produced with the MC@NLO [23] or Powheg [24] generators for the matrix element calculation; the parton shower and hadronisation processes are implemented with Herwig [25] using the cluster hadronisation model [26] and CTEQ6.6 [27] parton distribution functions (PDFs). Multi-parton interactions are simulated using Jimmy [28] with the AUET1 tune [29]. This MC generator package has been used for the description of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\bar{t}$\end{document} final states for ATLAS measurements of the cross section [30, 31] and studies of the kinematics [32].

Additional MC samples are used to check the hadronisation model dependence of the jet shapes. They are based on Powheg+Pythia [24, 33], with the MRST2007LO* PDFs [34]. The AcerMC generator [35] interfaced to Pythia with the Perugia 2010 tune [36] for parton showering and hadronisation is also used for comparison. Here the parton showers are ordered by transverse momentum and the hadronisation proceeds through the Lund string fragmentation scheme [37]. The underlying event and other soft effects are simulated by Pythia with the AMBT1 tune [38]. Comparisons of different event generators show that jet shapes in top-quark decays show little sensitivity to initial-state radiation effects, different PDF choices or underlying-event effects. They are more sensitive to details of the parton shower and the fragmentation scheme.

Samples of events including W and Z bosons produced in association with light- and heavy-flavour jets are generated using the Alpgen [39] generator with the CTEQ6L PDFs [40], and interfaced with Herwig and Jimmy. The same generator is used for the diboson backgrounds, WW, WZ and ZZ, while MC@NLO is used for the simulation of the single-top backgrounds, including the t- and s-channels as well as the Wt-channel.

The MC-simulated samples are normalised to the corresponding cross sections. The \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\bar{t}$\end{document} signal is normalised to the cross section calculated at approximate next-to-next-to-leading order (NNLO) using the Hathor package [41], while for the single-top production cross section, the calculations in Refs. [4244] are used. The W+jets and Z+jets cross sections are taken from Alpgen [39] with additional NNLO K-factors as given in Ref. [45].

The simulated events are weighted such that the distribution of the number of interactions per bunch crossing in the simulated samples matches that of the data. Finally, additional correction factors are applied to take into account the different object efficiencies in data and simulation. The scale factors used for these corrections typically differ from unity by 1 % for electrons and muons, and by a few percent for b-tagging.

Physics object selection

Electron candidates are reconstructed from energy deposits in the calorimeter that are associated with tracks reconstructed in the ID. The candidates must pass a tight selection [46], which uses calorimeter and tracking variables as well as transition radiation for |η|<2.0, and are required to have transverse momentum p T>25 GeV and |η|<2.47. Electrons in the transition region between the barrel and endcap calorimeters, 1.37<|η|<1.52, are not considered.

Muon candidates are reconstructed by searching for track segments in different layers of the muon spectrometer. These segments are combined and matched with tracks found in the ID. The candidates are refitted using the complete track information from both detector systems and are required to have a good fit and to satisfy p T>20 GeV and |η|<2.5.

Electron and muon candidates are required to be isolated to reduce backgrounds arising from jets and to suppress the selection of leptons from heavy-flavour semileptonic decays. For electron candidates, the transverse energy deposited in the calorimeter and which is not associated with the electron itself (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E^{\mathrm{iso}}_{\mathrm{T}}$\end{document}) is summed in a cone in ηϕ space of radius2 ΔR=0.2 around the electron. The \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E^{\mathrm{iso}}_{\mathrm{T}}$\end{document} value is required to be less than 3.5 GeV. For muon candidates, both the corresponding calorimeter isolation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E^{\mathrm{iso}}_{\mathrm{T}}$\end{document} and the analogous track isolation transverse momentum (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p^{\mathrm{iso}}_{\mathrm{T}}$\end{document}) must be less than 4 GeV in a cone of ΔR=0.3. The track isolation is calculated from the scalar sum of the transverse momenta of tracks with p T>1 GeV, excluding the muon.

Muon candidates arising from cosmic rays are rejected by removing candidate pairs that are back-to-back in the transverse plane and that have transverse impact parameter relative to the beam axis |d 0|>0.5 mm.

Jets are reconstructed with the anti-k t algorithm [47, 48] with radius parameter R=0.4. This choice for the radius has been used in measurements of the top-quark mass [49] and also in multi-jet cross-section measurements [50]. The inputs to the jet algorithm are topological clusters of calorimeter cells. These clusters are seeded by calorimeter cells with energy |E cell|>4σ, where σ is the cell-by-cell RMS of the noise (electronics plus pileup). Neighbouring cells are added if |E cell|>2σ and clusters are formed through an iterative procedure [51]. In a final step, all remaining neighbouring cells are added to the cluster.

The baseline calibration for these clusters calculates their energy using the electromagnetic energy scale [54]. This is established using test-beam measurements for electrons and muons in the electromagnetic and hadronic calorimeters [5153]. Effects due to the differing response to electromagnetic and hadronic showers, energy losses in the dead material, shower leakage, as well as inefficiencies in energy clustering and jet reconstruction are also taken into account. This is done by matching calorimeter jets with MC particle jets in bins of η and E, and supplemented by in situ calibration methods such as jet momentum imbalance in Z/γ +1 jet events. This is called the Jet Energy Scale (JES) calibration, thoroughly discussed in Ref. [54]. The JES uncertainty contains an extra term for b-quark jets, as the jet response is different for b-jets and light jets because they have different particle composition. References [50] and [55] contain more details on the JES and a discussion of its uncertainties.

Jets that overlap with a selected electron are removed if they are closer than ΔR=0.2, while if a jet is closer than ΔR=0.4 to a muon, the muon is removed.

The primary vertex is defined as the pp interaction vertex with the largest \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sum_{i} p_{\mathrm{T}i}^{2}$\end{document}, where the sum runs over the tracks with p T>150 MeV associated with the vertex.

Jets are identified as candidates for having originated from a b-quark (b-tagged) by an algorithm based on a neural-network approach, as discussed in Sect. 6.

The reconstruction of the direction and magnitude (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E_{\mathrm {T}}^{\mathrm{miss}}$\end{document}) of the missing transverse momentum is described in Ref. [56] and begins with the vector sum of the transverse momenta of all jets with p T>20 GeV and |η|<4.5. The transverse momenta of electron candidates are added. The contributions from all muon candidates and from all calorimeter clusters not belonging to a reconstructed object are also included.

Event selection

Two samples of events are selected: a dilepton sample, where both W bosons decay to leptons (e, μ, including leptonic τ decays), and a single-lepton sample, where one W boson decays to leptons and the other to a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$q\bar{q}'$\end{document} pair, giving rise to two more jets (see Fig. 1). The selection criteria follow those in Ref. [30] for the single-lepton sample and Ref. [31] for the dilepton sample. Events are triggered by inclusive high-p T electron or muon EF triggers. The trigger thresholds are 18 GeV for muons and 20 GeV for electrons. The dataset used for the analysis corresponds to the first half of the data collected in 2011, with a centre-of-mass energy \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s} = 7 \ \mbox{TeV}$\end{document} and an integrated luminosity of 1.8 fb−1. This data-taking period is characterised by an instantaneous luminosity smaller than 1.5×1033 cm−2 s−1, for which the mean number of interactions per bunch crossing is less than six. To reject the non-collision background, the primary vertex is required to have at least four tracks, each with p T>150 MeV, associated with it. Pile-up effects are therefore small and have been taken into account as a systematic uncertainty.

Fig. 1.

Fig. 1

Example LO Feynman diagrams for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$gg\rightarrow t\bar{t}$\end{document} in the dilepton (left) and single-lepton (right) decay modes

Dilepton sample

In the dilepton sample, events are required to have two charged leptons and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E_{\mathrm{T}}^{\mathrm{miss}}$\end{document} from the leptonic W-boson decays to a neutrino and an electron or muon. The offline lepton selection requires two isolated leptons (e or μ) with opposite charge and with transverse momenta p T(e)>25 GeV, where p T(e)=E clustersin(θ track), E cluster being the cluster energy and θ track the track polar angle, and p T(μ)>20 GeV. At least one of the selected leptons has to match the corresponding trigger object.

Events are further filtered by requiring at least two jets with p T>25 GeV and |η|<2.5 in the event. In addition, at least one of the selected jets has to be tagged as a b-jet, as discussed in the next section. The whole event is rejected if a jet is identified as an out-of-time signal or as noise in the calorimeter.

The missing transverse momentum requirement is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E_{\mathrm {T}}^{\mathrm{miss}} > 60 \ \mbox{GeV}$\end{document} for the ee and μμ channels. For the channel, H T is required to be greater than 130 GeV, where H T is the scalar sum of the p T of all muons, electrons and jets. To reject the Drell–Yan lepton pair background in the ee and μμ channels, the lepton pair is required to have an invariant mass m ℓℓ greater than 15 GeV and to lie outside of a Z-boson mass window, rejecting all events where the two-lepton invariant mass satisfies |m ℓℓm Z|<10 GeV.

The selected sample consists of 95 % \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\bar{t}$\end{document} events, but also backgrounds from the final states W+jets and Z+jets, where the gauge bosons decay to leptons. All backgrounds, with the exception of multi-jet production, have been estimated using MC samples. The multi-jet background has been estimated using the jet–electron method [60]. This method relies on the identification of jets which, due to their high electromagnetic energy fraction, can fake electron candidates. The jet–electron method is applied with some modifications to the muon channel as well. The normalisation is estimated using a binned likelihood fit to the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E_{\mathrm{T}}^{\mathrm{miss}} $\end{document} distribution. The results are summarised in Table 1.

Table 1.

The expected composition of the dilepton sample. Fractions are relative to the total number of expected events. ‘Other EW’ corresponds to the W+jets and diboson (WW, WZ and ZZ) contributions

Process Expected events Fraction
\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\bar{t}$\end{document} 2100±110 94.9 %
Z+jets (Z + ) 14±1 0.6 %
Other EW (W, diboson) 4±2 0.2 %
Single top 95±2 4.3 %
Multi-jet \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0^{+2}_{-0}$\end{document} 0.0 %
Total Expected 2210±110
Total Observed 2067

Single-lepton sample

In this case, the event is required to have exactly one isolated lepton with p T>25 GeV for electrons and p T>20 GeV for muons. To account for the neutrino in the leptonic W decay, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E_{\mathrm {T}}^{\mathrm{miss}}$\end{document} is required to be greater than 35 GeV in the electron channel and greater than 20 GeV in the muon channel. The \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E_{\mathrm {T}}^{\mathrm{miss}}$\end{document} resolution is below 10 GeV [56]. Furthermore, the transverse mass3 (m T) is required to be greater than 25 GeV in the e-channel and to satisfy the condition \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E_{\mathrm{T}}^{\mathrm{miss}}+m_{\mathrm{T}} > 60 \ \mbox{GeV}$\end{document} in the μ-channel.

The jet selection requires at least four jets (p T>25 GeV and |η|<2.5) in the final state, and at least one of them has to be tagged as a b-jet. The fraction of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\bar{t}$\end{document} events in the sample is 77 %; the main background contributions for the single-lepton channel have been studied as in the previous case, and are summarised in Table 2. As in the dileptonic case, the multi-jet background has been estimated using the jet–electron method.

Table 2.

The expected composition of the single-lepton sample. Fractions are relative to the total number of expected events. In this case ‘Other EW’ includes Z+jets and diboson processes

Process Expected events Fraction
\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\bar{t}$\end{document} 14000±700 77.4 %
W+jets (Wℓν) 2310±280 12.8 %
Other EW (Z, diboson) 198±18 1.1 %
Single top 668±14 3.7 %
Multi-jet 900±450 5.0 %
Total Expected 18000±900
Total Observed 17019

Jet sample definition

Jets reconstructed in the single-lepton and dilepton samples are now subdivided into b-jet and light-jet samples. In order to avoid contributions from non-primary collisions, it is required that the jet vertex fraction (JVF) be greater than 0.75. After summing the scalar p T of all tracks in a jet, the JVF is defined as the fraction of the total scalar p T that belongs to tracks originating from the primary vertex. This makes the average jet multiplicity independent of the number of pp interaction vertices. This selection is not applied to jets with no associated tracks. Also, to reduce the impact of pileup on the jets, the p T threshold has been raised to 30 GeV.

Jets whose axes are closer than ΔR=0.8, which is twice the jet radius, to some other jet in the event are not considered. This is done to avoid possible overlaps between the jet cones, which would bias the shape measurement. These configurations are typical in boosted W bosons, leading to light jets which are not well separated. The resulting ΔR distributions for any pair of b-jets or light jets are approximately constant between 0.8 and π and exhibit an exponential fall-off between π and the endpoint of the distribution.

b-jet samples

To select b-jets, a neural-network algorithm, which relies on the reconstruction of secondary vertices and impact parameter information in the three spatial dimensions, is used. The reconstruction of the secondary decay vertices makes use of an iterative Kalman-filter algorithm [61] which relies on the hypothesis that the bcX decay chains lie in a straight line originally taken to be parallel to the jet axis. The working point of the algorithm is chosen to maximise the purity of the sample. It corresponds to a b-tagging efficiency of 57 % for jets originating from b-quarks in simulated \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\bar{t}$\end{document} events, and a u,d,s-quark jet rejection factor of about 400, as well as a c-jet rejection factor of about 10 [62, 63]. The resulting number of b-jets selected in the dilepton (single-lepton) sample is 2279 (16735). A second working point with a b-tagging efficiency of 70 % is also used in order to evaluate the dependence of the measured jet shapes on b-tagging.

Figure 2 shows the b-tagged jet transverse momentum distributions for the single-lepton and dilepton channels. The p T distributions for the b-jets in both the dilepton and single-lepton samples show a similar behaviour, since they come mainly from top-quark decays. This is well described by the MC expectations from the MC@NLO generator coupled to Herwig. In the dilepton sample the signal-to-background ratio is found to be greater than in the single-lepton sample, as it is quantitatively shown in Tables 1 and 2.

Fig. 2.

Fig. 2

The p T distributions for b-tagged jets in the single-lepton (top) and dilepton (bottom) samples along with the sample composition expectations

Light-quark jet sample

The hadronic decays \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$W\rightarrow q\bar{q}'$\end{document} are a clean source of light-quark jets, as gluons and b-jets are highly suppressed; the former because gluons would originate in radiative corrections of order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{O}(\alpha_{s})$\end{document}, and the latter because of the smallness of the CKM matrix elements |V ub| and |V cb|. To select the light-jet sample, the jet pair in the event which has the invariant mass closest to the W-boson mass is selected. Both jets are also required to be non-tagged by the b-tagging algorithm. The number of jets satisfying these criteria is 7158. Figure 3 shows the transverse momentum distribution of these jets together with the invariant mass of the dijet system. As expected, the p T distribution of the light jets from W-boson decays exhibits a stronger fall-off than that for the b-jets. This dependence is again well described by the MC simulations in the jet p T region used in this analysis. Agreement between the invariant mass distributions for observed and simulated events is good, in particular in the region close to the W-boson mass.

Fig. 3.

Fig. 3

The distribution of light-jet p T (top) and of the invariant mass of light-jet pairs (bottom) along with the sample composition expectations. The latter shows a peak at the W mass, whose width is determined by the dijet mass resolution

Jet purities

To estimate the actual number of b-jets and light jets in each of the samples, the MC simulation is used by analysing the information at generator level. For b-jets, a matching to a b-hadron is performed within a radius ΔR=0.3. For light jets, the jet is required not to have a b-hadron within ΔR=0.3 of the jet axis. Additionally, to distinguish light quarks and c-quarks from gluons, the MC parton with highest p T within the cone of the reconstructed jet is required to be a (u,d,c or s)-quark. The purity p is then defined as

\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{aligned} p = \sum_{k}\alpha_{k}p_{k}; \quad p_{k} = 1-\frac{N_{\mathrm {f}}^{(k)}}{N_{\mathrm{T}}^{(k)}} \end{aligned}$$ \end{document} 1

where α k is the fraction of events in the k-th MC sample (signal or background), given in Tables 1 and 2 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N_{\mathrm{f}}^{(k)}$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N_{\mathrm{T}}^{(k)}$\end{document} are the number of fakes (jets not assigned to the correct flavour, e.g. charm jets in the b-jet sample), and the total number of jets in a given sample, respectively. The purity in the multi-jet background is determined using Pythia MC samples.

In the single-lepton channel, the resulting purity of the b-jet sample is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p^{(\mathrm{s})}_{b}=(88.5 \pm5.7)~\%$\end{document}, while the purity of the light-jet sample is found to be \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p^{(\mathrm{s})}_{\mathrm{l}}= (66.2 \pm4.1)~\%$\end{document}, as shown in Table 3. The uncertainty on the purity arises from the uncertainties on the signal and background fractions in each sample. The charm content in the light-jet sample is found to be 16 %, with the remaining 50 % ascribed to u,d and s.

Table 3.

Purity estimation for b-jets and light jets in the single-lepton channel. The uncertainty on the purity arises from the uncertainties in the signal and background fractions

Process α k p k(b) p k (light)
\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\bar{t}$\end{document} 0.774 0.961 0.725
Wℓν 0.128 0.430 0.360
Multi-jet 0.050 0.887 0.485
Other EW (Z, diboson) 0.011 0.611 0.342
Single top 0.037 0.958 0.716
Weighted total (88.5±5.7) % (66.2±4.1) %

MC studies indicate that the contamination of the b-jet sample is dominated by charm-jet fakes and that the gluon contamination is about 0.7 %. For the light-jet sample, the fraction of gluon fakes amounts to 19 %, while the b-jet fakes correspond to 15 %.

In the dilepton channel, a similar calculation yields the purity of the b-jet sample to be \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p^{(\mathrm{d})}_{b} = (99.3^{+0.7}_{-6.5})~\%$\end{document} as shown in Table 4. Thus, the b-jet sample purity achieved using \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\bar{t}$\end{document} final states is much higher than that obtained in inclusive b-jet measurements at the Tevatron [18] or the LHC [55].

Table 4.

Purity estimation for b-jets in the dilepton channel. The uncertainty on the purity arises from the uncertainties in the signal and background fractions

Process α k p k(b)
\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\bar{t}$\end{document} 0.949 0.997
Z + 0.006 0.515
Other EW (W, diboson) 0.002 0.375
Single top 0.043 0.987
Multi-jet
Weighted total \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(99.3^{+0.7}_{-6.5})~\%$\end{document}

Jet shapes in the single-lepton channel

For the jet shape calculation, locally calibrated topological clusters are used [54, 57, 58]. In this procedure, effects due to calorimeter response, leakage, and losses in the dead material upstream of the calorimeter are taken into account separately for electromagnetic and hadronic clusters [59].

The differential jet shape ρ(r) in an annulus of inner radius rΔr/2 and outer radius r+Δr/2 from the axis of a given jet is defined as

\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{aligned} \rho(r) = \frac{1}{\varDelta r}\frac{p_{\mathrm{T}}(r-\varDelta r/2,r+\varDelta r/2)}{p_{\mathrm{T}}(0,R)} \end{aligned}$$ \end{document} 2

Here, Δr=0.04 is the width of the annulus; r, such that Δr/2≤rRΔr/2, is the distance to the jet axis in the η-ϕ plane, and p T(r 1,r 2) is the scalar sum of the p T of the jet constituents with radii between r 1 and r 2.

Some distributions of ρ(r) are shown in Fig. 4 for the b-jet sample selected in the single-lepton channel. There is a marked peak at zero energy deposit, which indicates that energy is concentrated around relatively few particles. As r increases, the distributions of ρ(r) are concentrated at smaller values because of the relatively low energy density at the periphery of the jets. Both effects are well reproduced by the MC generators.

Fig. 4.

Fig. 4

Distribution of R=0.4 b-jets in the single-lepton channel as a function of the differential jet shapes ρ(r) for different values of r

The analogous ρ(r) distributions for light jets are shown in Fig. 5. The gross features are similar to those previously discussed for b-jets, but for small values of r, the ρ(r) distributions for light jets are somewhat flatter than those for b-jets.

Fig. 5.

Fig. 5

Distribution of R=0.4 light jets in the single-lepton channel as a function of the differential jet shapes ρ(r) for different values of r

The integrated jet shape in a cone of radius rR around the jet axis is defined as the cumulative distribution for ρ(r), i.e.

\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{aligned} \varPsi(r) = \frac{p_{\mathrm{T}}(0,r)}{p_{\mathrm{T}}(0,R)}; \quad r \leq R \end{aligned}$$ \end{document} 3

which satisfies Ψ(r=R)=1. Figure 6 (Fig. 7) shows distributions of the integrated jet shapes for b-jets (light jets) in the single-lepton sample. These figures show the inclusive (i.e. not binned in either η or p T) ρ(r) and Ψ(r) distributions for fixed values of r. Jet shapes are only mildly dependent on pseudorapidity, while they strongly depend on the transverse momentum. This behaviour has been verified in previous analyses [511]. This is illustrated in Figs. 8 and 9, which show the energy fraction in the outer half of the cone as a function of p T and |η|. For this reason, all the data presented in the following are binned in five p T regions with p T<150 GeV, where the statistical uncertainty is small enough. In the following, only the average values of these distributions are presented:

\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{aligned} &\bigl\langle \rho(r)\bigr\rangle = \frac{1}{\varDelta r}\frac {1}{N_{\mathrm {jets}}}\sum _{\mathrm{jets}}\frac{p_{\mathrm{T}}(r-\varDelta r/2,r+\varDelta r/2)}{p_{\mathrm{T}}(0,R)} \end{aligned}$$ \end{document} 4
\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{aligned} &\bigl\langle \varPsi(r)\bigr\rangle = \frac{1}{N_{\mathrm {jets}}}\sum _{\mathrm {jets}}\frac{p_{\mathrm{T}}(0,r)}{p_{\mathrm{T}}(0,R)} \end{aligned}$$ \end{document} 5

where the sum is performed over all jets of a given sample, light jets (l) or b-jets (b) and N jets is the number of jets in the sample.

Fig. 6.

Fig. 6

Distribution of R=0.4 b-jets in the single-lepton channel as a function of the integrated jet shapes Ψ(r) for different values of r

Fig. 7.

Fig. 7

Distribution of R=0.4 light jets in the single-lepton channel as a function of the integrated jet shapes Ψ(r) for different values of r

Fig. 8.

Fig. 8

Dependence of the b-jet (top) and light-jet (bottom) shapes on the jet transverse momentum. This dependence is quantified by plotting the mean value 〈1−Ψ(r=0.2)〉 (the fraction of energy in the outer half of the jet cone) as a function of p T for jets in the single-lepton sample

Fig. 9.

Fig. 9

Dependence of the b-jet (top) and light-jet (bottom) shape on the jet pseudorapidity. This dependence is quantified by plotting the mean value 〈1−Ψ(r=0.2)〉 (the fraction of energy in the outer half of the jet cone) as a function of |η| for jets in the single-lepton sample

Results at the detector level

In the following, the detector-level results for the average values 〈ρ(r)〉 and 〈Ψ(r)〉 as a function of the jet internal radius r, are presented. A comparison has been made between b-jet shapes obtained in both the dilepton and single-lepton samples, and it is found that they are consistent with each other within the uncertainties. Thus the samples are merged. In Fig. 10, the distributions for the average values of the differential jet shapes are shown for each p T bin, along with a comparison with the expectations from the simulated samples described in Sect. 3. There is a small but clear difference between light- and b-jet differential shapes, the former lying above (below) the latter for smaller (larger) values of r. These differences are more visible at low transverse momentum. In Fig. 11, the average integrated jet shapes 〈Ψ(r)〉 are shown for both the light jets and b-jets, and compared to the MC expectations discussed earlier. Similar comments apply here: The values of 〈Ψ(r)〉 are consistently larger for light jets than for b-jets for small values of r, while they tend to merge as rR since, by definition, Ψ(R)=1.

Fig. 10.

Fig. 10

Average values of the differential jet shapes 〈ρ(r)〉 for light jets (triangles) and b-jets (squares), with Δr=0.04, as a function of r at the detector level, compared to MC@NLO+Herwig and Powheg+Pythia event generators. The uncertainties shown for data are only statistical

Fig. 11.

Fig. 11

Average values of the integrated jet shapes 〈Ψ(r)〉 for light jets (triangles) and b-jets (squares), with Δr=0.04, as a function of r at the detector level, compared to MC@NLO+Herwig and Powheg+Pythia event generators. The uncertainties shown for data are only statistical

Unfolding to particle level

In order to correct the data for acceptance and detector effects, thus enabling comparisons with different models and other experiments, an unfolding procedure is followed. The method used to correct the measurements based on topological clusters to the particle level relies on a bin-by-bin correction. Correction factors F(r) are calculated separately for differential, 〈ρ(r)〉, and integrated, 〈Ψ(r)〉, jet shapes in both the light- and b-jet samples. For differential (ρ) and integrated jet shapes (Ψ), they are defined as the ratio of the particle-level quantity to the detector-level quantity as described by the MC simulations discussed in Sect. 3, i.e.

\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{aligned} &F^{\rho}_{\mathrm{l},b}(r) = \frac{\langle\rho(r)_{\mathrm {l},b}\rangle _{\mathrm{MC,part}}}{\langle\rho(r)_{\mathrm{l},b}\rangle _{\mathrm {MC,det}}} \end{aligned}$$ \end{document} 6
\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{aligned} &F^{\varPsi}_{\mathrm{l},b}(r) = \frac{\langle\varPsi(r)_{\mathrm {l},b}\rangle _{\mathrm{MC,part}}}{\langle\varPsi(r)_{\mathrm{l},b}\rangle _{\mathrm{MC,det}}} \end{aligned}$$ \end{document} 7

While the detector-level MC includes the background sources described before, the particle-level jets are built using all particles in the signal sample with an average lifetime above 10−11 s, excluding muons and neutrinos. The results have only a small sensitivity to the inclusion or not of muons and neutrinos, as well as to the background estimation. For particle-level b-jets, a b-hadron with p T>5 GeV is required to be closer than ΔR=0.3 from the jet axis, while for light jets, a selection equivalent to that for the detector-level jets is applied, selecting the non-b-jet pair with invariant mass closest to m W. The same kinematic selection criteria are applied to these particle-level jets as for the reconstructed jets, namely p T>25 GeV, |η|<2.5 and ΔR>0.8 to avoid jet–jet overlaps.

A Bayesian iterative unfolding approach [64] is used as a cross-check. The RooUnfold software [65] is used by providing the jet-by-jet information on the jet shapes, in the p T intervals defined above. This method takes into account bin-by-bin migrations in the ρ(r) and Ψ(r) distributions for fixed values of r. The results of the bin-by-bin and the Bayesian unfolding procedures agree at the 2 % level.

As an additional check of the stability of the unfolding procedure, the directly unfolded integrated jet shapes are compared with those obtained from integrating the unfolded differential distributions. The results agree to better than 1 %. These results are reassuring since the differential and integrated jet shapes are subject to migration and resolution effects in different ways. Both quantities are also subject to bin-to-bin correlations. For the differential measurement, the correlations arise from the common normalisation. They increase with the jet transverse momentum, varying from 25 % to 50 % at their maximum, which is reached for neighbouring bins at low r. The correlations for the integrated measurement are greater and their maximum varies from 60 % to 75 % as the jet p T increases.

Systematic uncertainties

The main sources of systematic uncertainty are described below.

  • The energy of individual clusters inside the jet is varied according to studies using isolated tracks [67], parameterising the uncertainty on the calorimeter energy measurements as a function of the cluster p T. The impact on the differential jet shape increases from 2 % to 10 % as the edge of the jet cone is approached.

  • The coordinates η, ϕ of the clusters are smeared using a Gaussian distribution with an RMS width of 5 mrad accounting for small differences in the cluster position between data and Monte Carlo [66]. This smearing has an effect on the jet shape which is smaller than 2 %.

  • An uncertainty arising from the amount of passive material in the detector is derived using the algorithm described in Ref. [66] as a result of the studies carried out in Ref. [67]. Low-energy clusters (E<2.5 GeV) are removed from the reconstruction according to a probability function given by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{P}(E=0)\times\mathrm{e}^{-2E}$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{P}(E = 0)$\end{document} is the measured probability (28 %) of a charged particle track to be associated with a zero energy deposit in the calorimeter and E is the cluster energy in GeV. As a result, approximately 6 % of the total number of clusters are discarded. The impact of this cluster-removing algorithm on the measured jet shapes is smaller than 2 %.

  • As a further cross-check an unfolding of the track-based jet shapes to the particle level has also been performed. The differences from those obtained using calorimetric measurements are of a similar scale to the ones discussed for the cluster energy, angular smearing and dead material.

  • An uncertainty arising from the jet energy calibration (JES) is taken into account by varying the jet energy scale in the range 2 % to 8 % of the measured value, depending on the jet p T and η. This variation is different for light jets and b-jets since they have a different particle composition.

  • The jet energy resolution is also taken into account by smearing the jet p T using a Gaussian centred at unity and with standard deviation σ r [68]. The impact on the measured jet shapes is about 5 %.

  • The uncertainty due to the JVF requirement is estimated by comparing the jet shapes with and without this requirement. The uncertainty is smaller than 1 %.

  • An uncertainty is also assigned to take pile-up effects into account. This is done by calculating the differences between samples where the number of pp interaction vertices is smaller (larger) than five and the total sample. The impact on the differential jet shapes varies from 2 % to 10 % as r increases.

  • An additional uncertainty due to the unfolding method is determined by comparing the correction factors obtained with three different MC samples, Powheg+Pythia, Powheg+Jimmy and AcerMC [35] with the Perugia 2010 tune [36], to the nominal correction factors from the MC@NLO sample. The uncertainty is defined as the maximum deviation of these three unfolding results, and it varies from 1 % to 8 %.

Additional systematic uncertainties associated with details of the analysis such as the working point of the b-tagging algorithm and the ΔR>0.8 cut between jets, as well as those related to physics object reconstruction efficiencies and variations in the background normalisation are found to be negligible. All sources of systematic uncertainty are propagated through the unfolding procedure. The resulting systematic uncertainties on each differential or integrated shape are added in quadrature. In the case of differential jet shapes, the uncertainty varies from 1 % to 20 % in each p T bin as r increases, while the uncertainty for the integrated shapes decreases from 10 % to 0 % as one approaches the edge of the jet cone, where r=R.

Discussion of the results

The results at the particle level are presented, together with the total uncertainties arising from statistical and systematic effects. The averaged differential jet shapes 〈ρ(r)〉 are shown in the even-numbered Figs. 1220 as a function of r and in bins of p T, while numerical results are presented in the odd-numbered Tables 513. The observation made at the detector level in Sect. 8 that b-jets are broader than light jets is strengthened after unfolding because it also corrects the light-jet sample for purity effects. Similarly, the odd-numbered Figs. 1321 show the integrated shapes 〈Ψ(r)〉 as a function of r and in bins of p T for light jets and b-jets. Numerical results are presented in the even-numbered Tables 614. As before, the observation is made that b-jets have a wider energy distribution inside the jet cone than light jets, as it can be seen that 〈Ψ b〉<〈Ψ l〉 for low p T and small r.

Fig. 14.

Fig. 14

Differential jet shapes 〈ρ(r)〉 as a function of the radius r for light jets (triangles) and b-jets (squares). The data are compared to MC@NLO+Herwig and Powheg+Pythia event generators for 40 GeV<p T<50 GeV. The uncertainties shown include statistical and systematic sources, added in quadrature

Fig. 15.

Fig. 15

Integrated jet shapes 〈Ψ(r)〉 as a function of the radius r for light jets (triangles) and b-jets (squares). The data are compared to MC@NLO+Herwig and Powheg+Pythia event generators for 40 GeV<p T<50 GeV. The uncertainties shown include statistical and systematic sources, added in quadrature

Fig. 16.

Fig. 16

Differential jet shapes 〈ρ(r)〉 as a function of the radius r for light jets (triangles) and b-jets (squares). The data are compared to MC@NLO+Herwig and Powheg+Pythia event generators for 50 GeV<p T<70 GeV. The uncertainties shown include statistical and systematic sources, added in quadrature

Fig. 17.

Fig. 17

Integrated jet shapes 〈Ψ(r)〉 as a function of the radius r for light jets (triangles) and b-jets (squares). The data are compared to MC@NLO+Herwig and Powheg+Pythia event generators for 50 GeV<p T<70 GeV. The uncertainties shown include statistical and systematic sources, added in quadrature

Fig. 18.

Fig. 18

Differential jet shapes 〈ρ(r)〉 as a function of the radius r for light jets (triangles) and b-jets (squares). The data are compared to MC@NLO+Herwig and Powheg+Pythia event generators for 70 GeV<p T<100 GeV. The uncertainties shown include statistical and systematic sources, added in quadrature

Fig. 19.

Fig. 19

Integrated jet shapes 〈Ψ(r)〉 as a function of the radius r for light jets (triangles) and b-jets (squares). The data are compared to MC@NLO+Herwig and Powheg+Pythia event generators for 70 GeV<p T<100 GeV. The uncertainties shown include statistical and systematic sources, added in quadrature

Table 7.

Unfolded values for 〈ρ(r)〉, together with statistical and systematic uncertainties for 40 GeV<p T<50 GeV

r ρ b(r)〉 [b-jets] ρ l(r)〉 [light jets]
0.02 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$4.66 \pm0.15 ^{+ 0.58 }_{- 0.61 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$9.39 \pm0.34 ^{+ 1.10 }_{- 1.10 }$\end{document}
0.06 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$7.23 \pm0.14 ^{+ 0.33 }_{- 0.35 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$6.14 \pm0.17 ^{+ 0.44 }_{- 0.43 }$\end{document}
0.10 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$5.22 \pm0.11 ^{+ 0.25 }_{- 0.28 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$3.27 \pm0.10 ^{+ 0.27 }_{- 0.27 }$\end{document}
0.14 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$3.12 \pm0.07 ^{+ 0.15 }_{- 0.15 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1.85 \pm0.07 ^{+ 0.16 }_{- 0.12 }$\end{document}
0.18 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1.83 \pm0.05 ^{+ 0.15 }_{- 0.17 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1.28 \pm0.05 ^{+ 0.11 }_{- 0.11 }$\end{document}
0.22 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1.12 \pm0.03 ^{+ 0.06 }_{- 0.06 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.95 \pm0.04 ^{+ 0.10 }_{- 0.11 }$\end{document}
0.26 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.83 \pm0.02 ^{+ 0.10 }_{- 0.09 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.69 \pm0.03 ^{+ 0.08 }_{- 0.05 }$\end{document}
0.30 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.59 \pm0.02 ^{+ 0.06 }_{- 0.06 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.56 \pm0.02 ^{+ 0.05 }_{- 0.05 }$\end{document}
0.34 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.46 \pm0.01 ^{+ 0.05 }_{- 0.05 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.41 \pm0.01 ^{+ 0.04 }_{- 0.04 }$\end{document}
0.38 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.26 \pm0.01 ^{+ 0.03 }_{- 0.03 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.23 \pm0.01 ^{+ 0.03 }_{- 0.03 }$\end{document}

Table 8.

Unfolded values for 〈Ψ(r)〉, together with statistical and systematic uncertainties for 40 GeV<p T<50 GeV

r Ψ b(r)〉 [b-jets] Ψ l(r)〉 [light jets]
0.04 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.187 \pm0.006 ^{+ 0.023 }_{- 0.024 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.376 \pm0.013 ^{+ 0.044 }_{- 0.043 }$\end{document}
0.08 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.475 \pm0.007 ^{+ 0.033 }_{- 0.034 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.621 \pm0.011 ^{+ 0.032 }_{- 0.034 }$\end{document}
0.12 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.683 \pm0.005 ^{+ 0.027 }_{- 0.029 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.757 \pm0.008 ^{+ 0.025 }_{- 0.027 }$\end{document}
0.16 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.805 \pm0.004 ^{+ 0.023 }_{- 0.025 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.832 \pm0.006 ^{+ 0.021 }_{- 0.022 }$\end{document}
0.20 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.876 \pm0.003 ^{+ 0.017 }_{- 0.018 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.885 \pm0.004 ^{+ 0.017 }_{- 0.018 }$\end{document}
0.24 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.918 \pm0.002 ^{+ 0.015 }_{- 0.016 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.925 \pm0.003 ^{+ 0.012 }_{- 0.014 }$\end{document}
0.28 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.950 \pm0.002 ^{+ 0.010 }_{- 0.011 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.953 \pm0.002 ^{+ 0.010 }_{- 0.011 }$\end{document}
0.32 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.973 \pm0.001 ^{+ 0.007 }_{- 0.006 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.976 \pm0.001 ^{+ 0.006 }_{- 0.006 }$\end{document}
0.36 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.990 \pm0.001 ^{+ 0.003 }_{- 0.002 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.992 \pm0.001 ^{+ 0.003 }_{- 0.003 }$\end{document}
0.40 1.000 1.000

Table 9.

Unfolded values for 〈ρ(r)〉, together with statistical and systematic uncertainties for 50 GeV<p T<70 GeV

r ρ b(r)〉 [b-jets] ρ l(r)〉 [light jets]
0.02 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$6.19 \pm0.13 ^{+ 0.46 }_{- 0.44 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$10.82\pm0.31 ^{+0.64 }_{- 0.84 }$\end{document}
0.06 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$8.14 \pm0.11 ^{+ 0.27 }_{- 0.29 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$6.17 \pm0.14 ^{+ 0.45}_{- 0.44 }$\end{document}
0.10 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$4.62 \pm0.06 ^{+ 0.17 }_{- 0.18 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2.92 \pm0.08 ^{+ 0.14}_{- 0.15 }$\end{document}
0.14 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2.50 \pm0.04 ^{+ 0.20 }_{- 0.21 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1.56 \pm0.05 ^{+ 0.05}_{- 0.06 }$\end{document}
0.18 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1.40 \pm0.03 ^{+ 0.11 }_{- 0.10 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1.04 \pm0.04 ^{+ 0.08}_{- 0.08 }$\end{document}
0.22 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.87 \pm0.02 ^{+ 0.05 }_{- 0.04 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.75 \pm0.03 ^{+ 0.05}_{- 0.05 }$\end{document}
0.26 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.60 \pm0.01 ^{+ 0.05 }_{- 0.04 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.54 \pm0.02 ^{+ 0.07}_{- 0.06 }$\end{document}
0.30 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.45 \pm0.01 ^{+ 0.04 }_{- 0.04 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.44 \pm0.01 ^{+ 0.05}_{- 0.04 }$\end{document}
0.34 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.36 \pm0.01 ^{+ 0.04 }_{- 0.04 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.34 \pm0.01 ^{+ 0.04}_{- 0.05 }$\end{document}
0.38 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.21 \pm0.00 ^{+ 0.03 }_{- 0.03 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.23 \pm0.01 ^{+ 0.03}_{- 0.04 }$\end{document}

Table 10.

Unfolded values for 〈Ψ(r)〉, together with statistical and systematic uncertainties for 50 GeV<p T<70 GeV

r Ψ b(r)〉 [b-jets] Ψ l(r)〉 [light jets]
0.04 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.248 \pm0.005 ^{+ 0.019 }_{- 0.018 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.433 \pm0.012 ^{+ 0.026 }_{- 0.034 }$\end{document}
0.08 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.573 \pm0.005 ^{+ 0.024 }_{- 0.023 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.686 \pm0.009 ^{+ 0.020 }_{- 0.024 }$\end{document}
0.12 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.753 \pm0.004 ^{+ 0.025 }_{- 0.025 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.807 \pm0.006 ^{+ 0.017 }_{- 0.019 }$\end{document}
0.16 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.851 \pm0.003 ^{+ 0.019 }_{- 0.018 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.868 \pm0.004 ^{+ 0.017 }_{- 0.019 }$\end{document}
0.20 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.905 \pm0.002 ^{+ 0.015 }_{- 0.015 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.909 \pm0.003 ^{+ 0.014 }_{- 0.016 }$\end{document}
0.24 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.938 \pm0.001 ^{+ 0.012 }_{- 0.013 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.939 \pm0.002 ^{+ 0.012 }_{- 0.014 }$\end{document}
0.28 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.961 \pm0.001 ^{+ 0.008 }_{- 0.009 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.960 \pm0.002 ^{+ 0.008 }_{- 0.009 }$\end{document}
0.32 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.978 \pm0.001 ^{+ 0.005 }_{- 0.005 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.977 \pm0.001 ^{+ 0.006 }_{- 0.006 }$\end{document}
0.36 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.992 \pm0.000 ^{+ 0.003 }_{- 0.002 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.990 \pm0.001 ^{+ 0.003 }_{- 0.003 }$\end{document}
0.40 1.000 1.000

Table 11.

Unfolded values for 〈ρ(r)〉, together with statistical and systematic uncertainties for 70 GeV<p T<100 GeV

r ρ b(r)〉 [b-jets] ρ l(r)〉 [light jets]
0.02 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$8.98 \pm0.15 ^{+ 0.55 }_{- 0.54 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$12.37 \pm0.38 ^{+0.93}_{- 1.10 }$\end{document}
0.06 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$8.14 \pm0.10 ^{+ 0.17 }_{- 0.17 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$5.44 \pm0.16 ^{+ 0.38}_{- 0.39 }$\end{document}
0.10 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$3.80 \pm0.05 ^{+ 0.25 }_{- 0.25 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2.42 \pm0.08 ^{+ 0.18}_{- 0.21 }$\end{document}
0.14 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1.74 \pm0.03 ^{+ 0.10 }_{- 0.10 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1.52 \pm0.06 ^{+ 0.11}_{- 0.13 }$\end{document}
0.18 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1.00 \pm0.02 ^{+ 0.03 }_{- 0.03 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.89 \pm0.04 ^{+ 0.05}_{- 0.05 }$\end{document}
0.22 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.66 \pm0.01 ^{+ 0.04 }_{- 0.04 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.68 \pm0.03 ^{+ 0.05}_{- 0.04 }$\end{document}
0.26 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.47 \pm0.01 ^{+ 0.03 }_{- 0.03 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.45 \pm0.02 ^{+ 0.05}_{- 0.04 }$\end{document}
0.30 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.34 \pm0.01 ^{+ 0.03 }_{- 0.03 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.38 \pm0.02 ^{+ 0.04}_{- 0.04 }$\end{document}
0.34 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.26 \pm0.01 ^{+ 0.03 }_{- 0.03 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.28 \pm0.01 ^{+ 0.03}_{- 0.03 }$\end{document}
0.38 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.17 \pm0.00 ^{+ 0.02 }_{- 0.02 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.18 \pm0.01 ^{+ 0.03}_{- 0.03 }$\end{document}

Table 12.

Unfolded values for 〈Ψ(r)〉, together with statistical and systematic uncertainties for 70 GeV<p T<100 GeV

r Ψ b(r)〉 [b-jets] Ψ l(r)〉 [light jets]
0.04 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.359 \pm0.006 ^{+ 0.022 }_{- 0.021 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.495 \pm0.015 ^{+ 0.037 }_{- 0.042 }$\end{document}
0.08 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.678 \pm0.005 ^{+ 0.023 }_{- 0.023 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.718 \pm0.010 ^{+ 0.032 }_{- 0.037 }$\end{document}
0.12 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.827 \pm0.003 ^{+ 0.017 }_{- 0.018 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.818 \pm0.007 ^{+ 0.019 }_{- 0.021 }$\end{document}
0.16 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.891 \pm0.002 ^{+ 0.012 }_{- 0.013 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.883 \pm0.005 ^{+ 0.012 }_{- 0.014 }$\end{document}
0.20 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.928 \pm0.002 ^{+ 0.011 }_{- 0.012 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.919 \pm0.004 ^{+ 0.010 }_{- 0.011 }$\end{document}
0.24 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.954 \pm0.001 ^{+ 0.009 }_{- 0.009 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.947 \pm0.003 ^{+ 0.008 }_{- 0.009 }$\end{document}
0.28 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.972 \pm0.001 ^{+ 0.006 }_{- 0.007 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.965 \pm0.002 ^{+ 0.007 }_{- 0.008 }$\end{document}
0.32 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.984 \pm0.001 ^{+ 0.004 }_{- 0.004 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.981 \pm0.001 ^{+ 0.004 }_{- 0.005 }$\end{document}
0.36 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.993 \pm0.000 ^{+ 0.002 }_{- 0.002 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.992 \pm0.001 ^{+ 0.002 }_{- 0.002 }$\end{document}
0.40 1.000 1.000

Fig. 12.

Fig. 12

Differential jet shapes 〈ρ(r)〉 as a function of the radius r for light jets (triangles) and b-jets (squares). The data are compared to MC@NLO+Herwig and Powheg+Pythia event generators for 30 GeV<p T<40 GeV. The uncertainties shown include statistical and systematic sources, added in quadrature

Fig. 20.

Fig. 20

Differential jet shapes 〈ρ(r)〉 as a function of the radius r for light jets (triangles) and b-jets (squares). The data are compared to MC@NLO+Herwig and Powheg+Pythia event generators for 100 GeV<p T<150 GeV. The uncertainties shown include statistical and systematic sources, added in quadrature

Table 5.

Unfolded values for 〈ρ(r)〉, together with statistical and systematic uncertainties for 30 GeV<p T<40 GeV

r ρ b(r)〉 [b-jets] ρ l(r)〉 [light jets]
0.02 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$3.84 \pm0.15 ^{+ 0.29 }_{- 0.36 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$7.64 \pm0.27 ^{+ 0.93 }_{- 1.10 }$\end{document}
0.06 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$6.06 \pm0.14 ^{+ 0.31 }_{- 0.36 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$6.10 \pm0.16 ^{+ 0.48 }_{- 0.47 }$\end{document}
0.10 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$5.20 \pm0.11 ^{+ 0.24 }_{- 0.23 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$3.75 \pm0.10 ^{+ 0.32 }_{- 0.33 }$\end{document}
0.14 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$3.45 \pm0.09 ^{+ 0.12 }_{- 0.13 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2.28 \pm0.07 ^{+ 0.14 }_{- 0.16 }$\end{document}
0.18 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2.21 \pm0.06 ^{+ 0.13 }_{- 0.11 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1.50 \pm0.05 ^{+ 0.14 }_{- 0.12 }$\end{document}
0.22 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1.58 \pm0.04 ^{+ 0.10 }_{- 0.11 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1.08 \pm0.03 ^{+ 0.09 }_{- 0.10 }$\end{document}
0.26 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1.15 \pm0.03 ^{+ 0.13 }_{- 0.13 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.83 \pm0.03 ^{+ 0.11 }_{- 0.09 }$\end{document}
0.30 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.80 \pm0.02 ^{+ 0.08 }_{- 0.07 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.64 \pm0.02 ^{+ 0.07 }_{- 0.08 }$\end{document}
0.34 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.60 \pm0.01 ^{+ 0.06 }_{- 0.06 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.53 \pm0.01 ^{+ 0.07 }_{- 0.08 }$\end{document}
0.38 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.32 \pm0.01 ^{+ 0.04 }_{- 0.04 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.28 \pm0.01 ^{+ 0.04 }_{- 0.04 }$\end{document}

Table 13.

Unfolded values for 〈ρ(r)〉, together with statistical and systematic uncertainties for 100 GeV<p T<150 GeV

r ρ b(r)〉 [b-jets] ρ l(r)〉 [light jets]
0.02 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$11.48 \pm0.20 ^{+ 0.71 }_{- 0.74 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$13.89 \pm0.54 ^{+1.60}_{- 1.70 }$\end{document}
0.06 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$7.08 \pm0.11 ^{+ 0.24 }_{- 0.25 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$4.68 \pm0.20 ^{+ 0.50}_{- 0.37 }$\end{document}
0.10 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2.94 \pm0.05 ^{+ 0.23 }_{- 0.23 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2.31 \pm0.11 ^{+ 0.28}_{- 0.29 }$\end{document}
0.14 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1.37 \pm0.03 ^{+ 0.06 }_{- 0.06 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1.27 \pm0.07 ^{+ 0.09}_{- 0.10 }$\end{document}
0.18 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.85 \pm0.02 ^{+ 0.05 }_{- 0.05 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.74 \pm0.05 ^{+ 0.08}_{- 0.07 }$\end{document}
0.22 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.58 \pm0.02 ^{+ 0.04 }_{- 0.03 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.58 \pm0.05 ^{+ 0.12}_{- 0.10 }$\end{document}
0.26 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.39 \pm0.01 ^{+ 0.03 }_{- 0.02 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.39 \pm0.03 ^{+ 0.08}_{- 0.06 }$\end{document}
0.30 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.29 \pm0.01 ^{+ 0.02 }_{- 0.02 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.31 \pm0.02 ^{+ 0.04}_{- 0.03 }$\end{document}
0.34 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.21 \pm0.01 ^{+ 0.02 }_{- 0.02 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.24 \pm0.01 ^{+ 0.03}_{- 0.04 }$\end{document}
0.38 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.14 \pm0.00 ^{+ 0.02 }_{- 0.02 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.15 \pm0.01 ^{+ 0.02}_{- 0.02 }$\end{document}

Fig. 13.

Fig. 13

Integrated jet shapes 〈Ψ(r)〉 as a function of the radius r for light jets (triangles) and b-jets (squares). The data are compared to MC@NLO+Herwig and Powheg+Pythia event generators for 30 GeV<p T<40 GeV. The uncertainties shown include statistical and systematic sources, added in quadrature

Fig. 21.

Fig. 21

Integrated jet shapes 〈Ψ(r)〉 as a function of the radius r for light jets (triangles) and b-jets (squares). The data are compared to MC@NLO+Herwig and Powheg+Pythia event generators for 100 GeV<p T<150 GeV. The uncertainties shown include statistical and systematic sources, added in quadrature

Table 6.

Unfolded values for 〈Ψ(r)〉, together with statistical and systematic uncertainties for 30 GeV<p T<40 GeV

r Ψ b(r)〉 [b-jets] Ψ l(r)〉 [light jets]
0.04 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.154 \pm0.006 ^{+ 0.012 }_{- 0.014 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.306 \pm0.011 ^{+ 0.037 }_{- 0.043 }$\end{document}
0.08 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.395 \pm0.007 ^{+ 0.023 }_{- 0.028 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.550 \pm0.009 ^{+ 0.031 }_{- 0.037 }$\end{document}
0.12 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.602 \pm0.006 ^{+ 0.025 }_{- 0.026 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.706 \pm0.007 ^{+ 0.028 }_{- 0.034 }$\end{document}
0.16 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.739 \pm0.004 ^{+ 0.025 }_{- 0.025 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.802 \pm0.005 ^{+ 0.025 }_{- 0.030 }$\end{document}
0.20 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.825 \pm0.003 ^{+ 0.020 }_{- 0.023 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.863 \pm0.004 ^{+ 0.020 }_{- 0.025 }$\end{document}
0.24 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.887 \pm0.003 ^{+ 0.016 }_{- 0.017 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.907 \pm0.003 ^{+ 0.016 }_{- 0.019 }$\end{document}
0.28 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.934 \pm0.002 ^{+ 0.012 }_{- 0.012 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.942 \pm0.002 ^{+ 0.011 }_{- 0.014 }$\end{document}
0.32 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.964 \pm0.001 ^{+ 0.007 }_{- 0.007 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.967 \pm0.001 ^{+ 0.007 }_{- 0.008 }$\end{document}
0.36 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.988 \pm0.001 ^{+ 0.004 }_{- 0.002 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.989 \pm0.001 ^{+ 0.003 }_{- 0.003 }$\end{document}
0.40 1.000 1.000

Table 14.

Unfolded values for 〈Ψ(r)〉, together with statistical and systematic uncertainties for 100 GeV<p T<150 GeV

r Ψ b(r)〉 [b-jets] Ψ l(r)〉 [light jets]
0.04 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.459 \pm0.008 ^{+ 0.028 }_{- 0.030 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.556 \pm0.022 ^{+ 0.062 }_{- 0.067 }$\end{document}
0.08 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.734 \pm0.005 ^{+ 0.019 }_{- 0.020 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.743 \pm0.014 ^{+ 0.033 }_{- 0.036 }$\end{document}
0.12 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.852 \pm0.004 ^{+ 0.013 }_{- 0.012 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.843 \pm0.010 ^{+ 0.021 }_{- 0.017 }$\end{document}
0.16 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.904 \pm0.002 ^{+ 0.010 }_{- 0.010 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.898 \pm0.007 ^{+ 0.017 }_{- 0.014 }$\end{document}
0.20 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.937 \pm0.002 ^{+ 0.008 }_{- 0.008 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.928 \pm0.005 ^{+ 0.014 }_{- 0.011 }$\end{document}
0.24 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.960 \pm0.001 ^{+ 0.006 }_{- 0.006 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.954 \pm0.003 ^{+ 0.008 }_{- 0.007 }$\end{document}
0.28 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.975 \pm0.001 ^{+ 0.005 }_{- 0.005 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.970 \pm0.002 ^{+ 0.006 }_{- 0.006 }$\end{document}
0.32 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.986 \pm0.001 ^{+ 0.003 }_{- 0.003 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.983 \pm0.001 ^{+ 0.003 }_{- 0.003 }$\end{document}
0.36 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.994 \pm0.000 ^{+ 0.001 }_{- 0.001 }$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0.994 \pm0.001 ^{+ 0.001 }_{- 0.001 }$\end{document}
0.40 1.000 1.000

These observations are in agreement with the MC calculations, where top-quark pair-production cross sections are implemented using matrix elements calculated to NLO accuracy, which are then supplemented by angular- or transverse momentum-ordered parton showers. Within this context, both MC@NLO and Powheg+Pythia give a good description of the data, as illustrated in Figs. 1221.

Comparisons with other MC approaches have been made (see Fig. 22). The Perugia 2011 tune, coupled to Alpgen+Pythia, Powheg+Pythia and AcerMC+Pythia, has been compared to the data, and found to be slightly disfavoured. The AcerMC generator [35] coupled to Pythia for the parton shower and with the Perugia 2010 tune [36] gives a somewhat better description of the data, as does the Alpgen [39] generator coupled to Herwig.

Fig. 22.

Fig. 22

Comparison of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\bar{t}$\end{document} differential jet shape data for 50 GeV<p T<70 GeV with several MC event generators. As stated in the text, AcerMC [35] coupled to Pythia [33] with the A Pro and A CR Pro tunes [69, 70] give the best description of the data, while the Perugia 2011 [36] tunes are found to be slightly disfavoured. Alpgen+Jimmy [28, 39] provides an intermediate description.

AcerMC coupled to Tune A Pro [69, 70] is found to give the best description of the data within the tunes investigated. Colour reconnection effects, as implemented in Tune A CR Pro [69, 70] have a small impact on this observable, compared to the systematic uncertainties.

Since jet shapes are dependent on the method chosen to match parton showers to the matrix-element calculations and, to a lesser extent, on the fragmentation and underlying-event modelling, the measurements presented here provide valuable inputs to constrain present and future MC models of colour radiation in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\bar{t}$\end{document} final states.

MC generators predict jet shapes to depend on the hard scattering process. MC studies were carried out and it was found that inclusive b-jet shapes, obtained from the underlying hard processes \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$gg\to b\bar {b}$\end{document} and gbgb with gluon splitting \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$g\to b\bar{b}$\end{document} included in the subsequent parton shower, are wider than those obtained in the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\bar{t}$\end{document} final states. The differences are interpreted as due to the different colour flows in the two different final states i.e. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\bar{t}$\end{document} and inclusive multi-jet production. Similar differences are also found for light-jet shapes, with jets generated in inclusive multi-jet samples being wider than those from W-boson decays in top-quark pair-production.

Summary

The structure of jets in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\bar{t}$\end{document} final states has been studied in both the dilepton and single-lepton modes using the ATLAS detector at the LHC. The first sample proves to be a very clean and copious source of b-jets, as the top-quark decays predominantly via tWb. The second is also a clean source of light jets produced in the hadronic decays of one of the W bosons in the final state. The differences between the b-quark and light-quark jets obtained in this environment have been studied in terms of the differential jet shapes ρ(r) and integrated jet shapes Ψ(r). These variables exhibit a marked (mild) dependence on the jet transverse momentum (pseudorapidity).

The results show that the mean value 〈Ψ(r)〉 is smaller for b-jets than for light jets in the region where it is possible to distinguish them, i.e. for low values of the jet internal radius r. This means that b-jets are broader than light-quark jets, and therefore the cores of light jets have a larger energy density than those of b-jets. The jet shapes are well reproduced by current MC generators for both light and b-jets.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/ IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Open Access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Footnotes

1

ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r,ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as η=−lntan(θ/2).

2

The radius in the ηϕ space is defined as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varDelta R = \sqrt{(\varDelta \eta )^{2}+(\varDelta \phi)^{2}}$\end{document}.

3

The transverse mass is defined as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$m_{\mathrm{T}} = \sqrt{2p_{\mathrm {T}}^{\ell}E_{\mathrm{T}}^{\mathrm{miss}}(1-\cos \varDelta \phi_{\ell\nu})}$\end{document}, where Δϕ ℓν is the angle in the transverse plane between the selected lepton and the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E_{\mathrm{T}}^{\mathrm{miss}}$\end{document} direction.

References

  • 1.Chay J., Ellis S.D. Phys. Rev. D. 1997;55:2728–2735. doi: 10.1103/PhysRevD.55.2728. [DOI] [Google Scholar]
  • 2.Catani S., Dokshitzer Y.L., Seymour M.H., Webber B.R. Nucl. Phys. B. 1993;406:187. doi: 10.1016/0550-3213(93)90166-M. [DOI] [Google Scholar]
  • 3.Ellis S.D., Kunszt Z., Soper D. Phys. Rev. Lett. 1992;69:3615. doi: 10.1103/PhysRevLett.69.3615. [DOI] [PubMed] [Google Scholar]
  • 4.Akers R., OPAL Collaboration et al. Z. Phys. C. 1994;63:197. doi: 10.1007/BF01411011. [DOI] [Google Scholar]
  • 5.Abachi S., D0 Collaboration et al. Phys. Lett. B. 1995;357:500. doi: 10.1016/0370-2693(95)00889-S. [DOI] [Google Scholar]
  • 6.Adloff C., H1 Collaboration et al. Nucl. Phys. B. 1999;545:3. doi: 10.1016/S0550-3213(99)00118-2. [DOI] [Google Scholar]
  • 7.Breitweg J., ZEUS Collaboration et al. Eur. Phys. J. C. 1999;8:367. doi: 10.1007/s100520050471. [DOI] [Google Scholar]
  • 8.Chekanov S., ZEUS Collaboration et al. Nucl. Phys. B. 2004;700:3. [Google Scholar]
  • 9.Acosta D., CDF Collaboration et al. Phys. Rev. D. 2005;71:112002. doi: 10.1103/PhysRevD.71.112002. [DOI] [Google Scholar]
  • 10.ATLAS Collaboration Phys. Rev. D. 2011;83:052003. doi: 10.1103/PhysRevD.83.052003. [DOI] [Google Scholar]
  • 11.CMS Collaboration J. High Energy Phys. 2012;06:160. [Google Scholar]
  • 12.Ellis R.K., Stirling W.J., Webber B.R. QCD and Collider Physics. Cambridge: Cambridge University Press; 2003. [Google Scholar]
  • 13.Giele W.T., Glover E.W.N., Kosower D.A. Phys. Rev. D. 1998;57:1878. doi: 10.1103/PhysRevD.57.1878. [DOI] [Google Scholar]
  • 14.Butterworth J.M., Davison A.R., Rubin M., Salam G.P. Phys. Rev. Lett. 2008;100:242001. doi: 10.1103/PhysRevLett.100.242001. [DOI] [PubMed] [Google Scholar]
  • 15.Kaplan D., et al. Phys. Rev. Lett. 2008;101:142001. doi: 10.1103/PhysRevLett.101.142001. [DOI] [PubMed] [Google Scholar]
  • 16. G. Soyez, G.P. Salam, J. Kim, S. Dutta, M. Cacciari, CERN-PH-TH/2012-300. arXiv:1211.2811 [hep-ph]
  • 17.ATLAS Collaboration J. High Energy Phys. 2012;12:086. [Google Scholar]
  • 18.Abulencia A., CDF Collaboration et al. Phys. Rev. D. 2008;78:072005. doi: 10.1103/PhysRevD.78.012003. [DOI] [Google Scholar]
  • 19.ATLAS Collaboration J. Instrum. 2008;3:S08003. [Google Scholar]
  • 20.ATLAS Collaboration Eur. Phys. J. C. 2012;72:1849. doi: 10.1140/epjc/s10052-011-1849-1. [DOI] [Google Scholar]
  • 21.Agostinelli S., GEANT4 Collaboration et al. Nucl. Instrum. Methods Phys. Res., Sect. A. 2003;506:250–303. doi: 10.1016/S0168-9002(03)01368-8. [DOI] [Google Scholar]
  • 22.ATLAS Collaboration Eur. Phys. J. C. 2010;70:823. doi: 10.1140/epjc/s10052-010-1429-9. [DOI] [Google Scholar]
  • 23.Frixione S., et al. J. High Energy Phys. 2011;01:053. doi: 10.1007/JHEP01(2011)053. [DOI] [Google Scholar]
  • 24.Frixione S., Nason P., Oleari C. J. High Energy Phys. 2007;0711:070. doi: 10.1088/1126-6708/2007/11/070. [DOI] [Google Scholar]
  • 25.Bähr M., et al. Eur. Phys. J. C. 2008;58:639. doi: 10.1140/epjc/s10052-008-0798-9. [DOI] [Google Scholar]
  • 26.Field R.D., Wolfram S. Nucl. Phys. B. 1983;213:65. doi: 10.1016/0550-3213(83)90175-X. [DOI] [Google Scholar]
  • 27.Pumplin J., et al. J. High Energy Phys. 2002;0207:012. doi: 10.1088/1126-6708/2002/07/012. [DOI] [Google Scholar]
  • 28.Butterworth J., Forshaw J., Seymour M. Z. Phys. C. 1996;72:637. [Google Scholar]
  • 29. ATLAS Collaboration, ATL-PHYS-PUB-2010-014. http://cds.cern.ch/record/1303025
  • 30.ATLAS Collaboration Phys. Lett. B. 2012;711:244. doi: 10.1016/j.physletb.2012.03.083. [DOI] [Google Scholar]
  • 31.ATLAS Collaboration J. High Energy Phys. 2012;1205:059. [Google Scholar]
  • 32.ATLAS Collaboration Phys. Rev. Lett. 2012;108:212001. doi: 10.1103/PhysRevLett.108.212001. [DOI] [PubMed] [Google Scholar]
  • 33.Sjöstrand T., et al. Comput. Phys. Commun. 2001;135:238. doi: 10.1016/S0010-4655(00)00236-8. [DOI] [Google Scholar]
  • 34.Sherstnev A., Thorne R.S. Eur. Phys. J. C. 2008;55:553–575. doi: 10.1140/epjc/s10052-008-0610-x. [DOI] [Google Scholar]
  • 35.Kersevan B., Richter-Was E. Comput. Phys. Commun. 2003;149:142–194. doi: 10.1016/S0010-4655(02)00592-1. [DOI] [Google Scholar]
  • 36.Skands P.Z. Phys. Rev. D. 2010;82:074018. doi: 10.1103/PhysRevD.82.074018. [DOI] [Google Scholar]
  • 37.Andersson B., Gustafson G., Ingelman G., Sjöstrand T. Phys. Rep. 1983;97:31. doi: 10.1016/0370-1573(83)90080-7. [DOI] [Google Scholar]
  • 38.ATLAS Collaboration New J. Phys. 2011;13:053033. doi: 10.1088/1367-2630/13/5/053033. [DOI] [Google Scholar]
  • 39.Mangano M.L., Moretti M., Piccinini F., Pittau R., Polosa A. J. High Energy Phys. 2003;0307:001. doi: 10.1088/1126-6708/2003/07/001. [DOI] [Google Scholar]
  • 40.Pumplin J., et al. J. High Energy Phys. 2006;02:032. doi: 10.1088/1126-6708/2006/02/032. [DOI] [Google Scholar]
  • 41.Aliev M., et al. Comput. Phys. Commun. 2011;182:1034. doi: 10.1016/j.cpc.2010.12.040. [DOI] [Google Scholar]
  • 42.Kidonakis N. Phys. Rev. D. 2011;83:091503. doi: 10.1103/PhysRevD.83.091503. [DOI] [Google Scholar]
  • 43.Kidonakis N. Phys. Rev. D. 2010;81:054028. doi: 10.1103/PhysRevD.81.054028. [DOI] [Google Scholar]
  • 44.Kidonakis N. Phys. Rev. D. 2010;82:054018. doi: 10.1103/PhysRevD.82.054018. [DOI] [Google Scholar]
  • 45.Gavin R., et al. Comput. Phys. Commun. 2011;182:2388. doi: 10.1016/j.cpc.2011.06.008. [DOI] [Google Scholar]
  • 46.ATLAS Collaboration Eur. Phys. J. C. 2012;72:1909. doi: 10.1140/epjc/s10052-012-1909-1. [DOI] [Google Scholar]
  • 47.Cacciari M., Salam G.P., Soyez G. J. High Energy Phys. 2008;063:0804. [Google Scholar]
  • 48.Cacciari M., Salam G.P., Soyez G. Eur. Phys. J. C. 2012;72:1896. doi: 10.1140/epjc/s10052-012-1896-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.ATLAS Collaboration Eur. Phys. J. C. 2012;72:2046. doi: 10.1140/epjc/s10052-012-2046-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.ATLAS Collaboration Eur. Phys. J. C. 2011;71:1512. [Google Scholar]
  • 51. W. Lampl et al. ATLAS-LARG-PUB-2008-002. http://cds.cern.ch/record/1099735
  • 52. M. Aleksa et al. ATL-LARG-PUB-2006-003. http://cds.cern.ch/record/942528
  • 53.Aharrouche M., et al. Eur. Phys. J. C. 2010;70:1193. doi: 10.1140/epjc/s10052-010-1508-y. [DOI] [Google Scholar]
  • 54.ATLAS Collaboration Eur. Phys. J. C. 2013;73:2304. doi: 10.1140/epjc/s10052-013-2304-2. [DOI] [Google Scholar]
  • 55.ATLAS Collaboration Eur. Phys. J. C. 2011;71:1846. doi: 10.1140/epjc/s10052-011-1846-4. [DOI] [Google Scholar]
  • 56.ATLAS Collaboration Eur. Phys. J. C. 2012;72:1844. doi: 10.1140/epjc/s10052-011-1844-6. [DOI] [Google Scholar]
  • 57.Issever C., Borras K., Wegener D. Nucl. Instrum. Methods Phys. Res., Sect. A. 2005;545:803. doi: 10.1016/j.nima.2005.02.010. [DOI] [Google Scholar]
  • 58. ATLAS Collaboration. ATL-LARG-PUB-2009-001-2. http://cds.cern.ch/record/1112035
  • 59. ATLAS Collaboration. ATLAS-CONF-2010-053. http://cds.cern.ch/record/1281310
  • 60.ATLAS Collaboration Phys. Lett. B. 2012;717:330. doi: 10.1016/j.physletb.2012.09.031. [DOI] [Google Scholar]
  • 61.Fruehwirth R. Nucl. Instrum. Methods Phys. Res., Sect. A. 1987;262:444. doi: 10.1016/0168-9002(87)90887-4. [DOI] [Google Scholar]
  • 62. ATLAS Collaboration. ATLAS-CONF-2011-102. http://cds.cern.ch/record/1369219
  • 63. ATLAS Collaboration. ATLAS-CONF-2012-043. http://cds.cern.ch/record/1435197
  • 64.D’Agostini G. Nucl. Instrum. Methods Phys. Res., Sect. A. 1995;362:487–498. doi: 10.1016/0168-9002(95)00274-X. [DOI] [Google Scholar]
  • 65. T. Adye, arXiv:1105.1160 [physics.data-an]
  • 66.ATLAS Collaboration Phys. Rev. D. 2012;86:072006. doi: 10.1103/PhysRevD.86.072006. [DOI] [Google Scholar]
  • 67.ATLAS Collaboration Eur. Phys. J. C. 2013;73:2305. doi: 10.1140/epjc/s10052-013-2305-1. [DOI] [Google Scholar]
  • 68.ATLAS Collaboration Eur. Phys. J. C. 2013;73:2306. doi: 10.1140/epjc/s10052-013-2306-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69. M. Albrow et al. (TeV4LHC QCD Working Group), Fermilab-Conf-06-359 (2006). arXiv:hep-ph/0610012
  • 70. R.D. Field, CDF Note 6403. arXiv:hep-ph/0201192

Articles from The European Physical Journal. C, Particles and Fields are provided here courtesy of Springer

RESOURCES