Skip to main content
Springer logoLink to Springer
. 2013 Jul 16;73(7):2493. doi: 10.1140/epjc/s10052-013-2493-8

Search for physics beyond the standard model in events with τ leptons, jets, and large transverse momentum imbalance in pp collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s}=7\ \mathrm{TeV}$\end{document}

The CMS Collaboration1, S Chatrchyan 2, V Khachatryan 2, A M Sirunyan 2, A Tumasyan 2, W Adam 3, E Aguilo 3, T Bergauer 3, M Dragicevic 3, J Erö 3, C Fabjan 3, M Friedl 3, R Frühwirth 3, V M Ghete 3, J Hammer 3, N Hörmann 3, J Hrubec 3, M Jeitler 3, W Kiesenhofer 3, V Knünz 3, M Krammer 3, I Krätschmer 3, D Liko 3, I Mikulec 3, M Pernicka 3, B Rahbaran 3, C Rohringer 3, H Rohringer 3, R Schöfbeck 3, J Strauss 3, A Taurok 3, W Waltenberger 3, G Walzel 3, E Widl 3, C-E Wulz 3, V Mossolov 4, N Shumeiko 4, J Suarez Gonzalez 4, M Bansal 5, S Bansal 5, T Cornelis 5, E A De Wolf 5, X Janssen 5, S Luyckx 5, L Mucibello 5, S Ochesanu 5, B Roland 5, R Rougny 5, M Selvaggi 5, Z Staykova 5, H Van Haevermaet 5, P Van Mechelen 5, N Van Remortel 5, A Van Spilbeeck 5, F Blekman 6, S Blyweert 6, J D’Hondt 6, R Gonzalez Suarez 6, A Kalogeropoulos 6, M Maes 6, A Olbrechts 6, W Van Doninck 6, P Van Mulders 6, G P Van Onsem 6, I Villella 6, B Clerbaux 7, G De Lentdecker 7, V Dero 7, A P R Gay 7, T Hreus 7, A Léonard 7, P E Marage 7, A Mohammadi 7, T Reis 7, L Thomas 7, G Vander Marcken 7, C Vander Velde 7, P Vanlaer 7, J Wang 7, V Adler 8, K Beernaert 8, A Cimmino 8, S Costantini 8, G Garcia 8, M Grunewald 8, B Klein 8, J Lellouch 8, A Marinov 8, J Mccartin 8, A A Ocampo Rios 8, D Ryckbosch 8, N Strobbe 8, F Thyssen 8, M Tytgat 8, P Verwilligen 8, S Walsh 8, E Yazgan 8, N Zaganidis 8, S Basegmez 9, G Bruno 9, R Castello 9, L Ceard 9, C Delaere 9, T du Pree 9, D Favart 9, L Forthomme 9, A Giammanco 9, J Hollar 9, V Lemaitre 9, J Liao 9, O Militaru 9, C Nuttens 9, D Pagano 9, A Pin 9, K Piotrzkowski 9, N Schul 9, J M Vizan Garcia 9, N Beliy 10, T Caebergs 10, E Daubie 10, G H Hammad 10, G A Alves 11, M Correa Martins Junior 11, D De Jesus Damiao 11, T Martins 11, M E Pol 11, M H G Souza 11, W L Aldá Júnior 12, W Carvalho 12, A Custódio 12, E M Da Costa 12, C De Oliveira Martins 12, S Fonseca De Souza 12, D Matos Figueiredo 12, L Mundim 12, H Nogima 12, V Oguri 12, W L Prado Da Silva 12, A Santoro 12, L Soares Jorge 12, A Sznajder 12, T S Anjos 14, C A Bernardes 14, F A Dias 13, T R Fernandez Perez Tomei 13, E M Gregores 14, C Lagana 13, F Marinho 13, P G Mercadante 14, S F Novaes 13, Sandra S Padula 13, V Genchev 15, P Iaydjiev 15, S Piperov 15, M Rodozov 15, S Stoykova 15, G Sultanov 15, V Tcholakov 15, R Trayanov 15, M Vutova 15, A Dimitrov 16, R Hadjiiska 16, V Kozhuharov 16, L Litov 16, B Pavlov 16, P Petkov 16, J G Bian 17, G M Chen 17, H S Chen 17, C H Jiang 17, D Liang 17, S Liang 17, X Meng 17, J Tao 17, J Wang 17, X Wang 17, Z Wang 17, H Xiao 17, M Xu 17, J Zang 17, Z Zhang 17, C Asawatangtrakuldee 18, Y Ban 18, Y Guo 18, W Li 18, S Liu 18, Y Mao 18, S J Qian 18, H Teng 18, D Wang 18, L Zhang 18, W Zou 18, C Avila 19, J P Gomez 19, B Gomez Moreno 19, A F Osorio Oliveros 19, J C Sanabria 19, N Godinovic 20, D Lelas 20, R Plestina 20, D Polic 20, I Puljak 20, Z Antunovic 21, M Kovac 21, V Brigljevic 22, S Duric 22, K Kadija 22, J Luetic 22, S Morovic 22, A Attikis 23, M Galanti 23, G Mavromanolakis 23, J Mousa 23, C Nicolaou 23, F Ptochos 23, P A Razis 23, M Finger 24, M Finger Jr 24, Y Assran 25, S Elgammal 25, A Ellithi Kamel 25, M A Mahmoud 25, A Radi 25, M Kadastik 26, M Müntel 26, M Raidal 26, L Rebane 26, A Tiko 26, P Eerola 27, G Fedi 27, M Voutilainen 27, J Härkönen 28, A Heikkinen 28, V Karimäki 28, R Kinnunen 28, M J Kortelainen 28, T Lampén 28, K Lassila-Perini 28, S Lehti 28, T Lindén 28, P Luukka 28, T Mäenpää 28, T Peltola 28, E Tuominen 28, J Tuominiemi 28, E Tuovinen 28, D Ungaro 28, L Wendland 28, K Banzuzi 29, A Karjalainen 29, A Korpela 29, T Tuuva 29, M Besancon 30, S Choudhury 30, M Dejardin 30, D Denegri 30, B Fabbro 30, J L Faure 30, F Ferri 30, S Ganjour 30, A Givernaud 30, P Gras 30, G Hamel de Monchenault 30, P Jarry 30, E Locci 30, J Malcles 30, L Millischer 30, A Nayak 30, J Rander 30, A Rosowsky 30, I Shreyber 30, M Titov 30, S Baffioni 31, F Beaudette 31, L Benhabib 31, L Bianchini 31, M Bluj 31, C Broutin 31, P Busson 31, C Charlot 31, N Daci 31, T Dahms 31, L Dobrzynski 31, R Granier de Cassagnac 31, M Haguenauer 31, P Miné 31, C Mironov 31, I N Naranjo 31, M Nguyen 31, C Ochando 31, P Paganini 31, D Sabes 31, R Salerno 31, Y Sirois 31, C Veelken 31, A Zabi 31, J-L Agram 32, J Andrea 32, D Bloch 32, D Bodin 32, J-M Brom 32, M Cardaci 32, E C Chabert 32, C Collard 32, E Conte 32, F Drouhin 32, C Ferro 32, J-C Fontaine 32, D Gelé 32, U Goerlach 32, P Juillot 32, A-C Le Bihan 32, P Van Hove 32, F Fassi 33, D Mercier 33, S Beauceron 34, N Beaupere 34, O Bondu 34, G Boudoul 34, J Chasserat 34, R Chierici 34, D Contardo 34, P Depasse 34, H El Mamouni 34, J Fay 34, S Gascon 34, M Gouzevitch 34, B Ille 34, T Kurca 34, M Lethuillier 34, L Mirabito 34, S Perries 34, L Sgandurra 34, V Sordini 34, Y Tschudi 34, P Verdier 34, S Viret 34, Z Tsamalaidze 35, G Anagnostou 36, C Autermann 36, S Beranek 36, M Edelhoff 36, L Feld 36, N Heracleous 36, O Hindrichs 36, R Jussen 36, K Klein 36, J Merz 36, A Ostapchuk 36, A Perieanu 36, F Raupach 36, J Sammet 36, S Schael 36, D Sprenger 36, H Weber 36, B Wittmer 36, V Zhukov 36, M Ata 37, J Caudron 37, E Dietz-Laursonn 37, D Duchardt 37, M Erdmann 37, R Fischer 37, A Güth 37, T Hebbeker 37, C Heidemann 37, K Hoepfner 37, D Klingebiel 37, P Kreuzer 37, M Merschmeyer 37, A Meyer 37, M Olschewski 37, P Papacz 37, H Pieta 37, H Reithler 37, S A Schmitz 37, L Sonnenschein 37, J Steggemann 37, D Teyssier 37, M Weber 37, M Bontenackels 38, V Cherepanov 38, Y Erdogan 38, G Flügge 38, H Geenen 38, M Geisler 38, W Haj Ahmad 38, F Hoehle 38, B Kargoll 38, T Kress 38, Y Kuessel 38, J Lingemann 38, A Nowack 38, L Perchalla 38, O Pooth 38, P Sauerland 38, A Stahl 38, M Aldaya Martin 39, J Behr 39, W Behrenhoff 39, U Behrens 39, M Bergholz 39, A Bethani 39, K Borras 39, A Burgmeier 39, A Cakir 39, L Calligaris 39, A Campbell 39, E Castro 39, F Costanza 39, D Dammann 39, C Diez Pardos 39, G Eckerlin 39, D Eckstein 39, G Flucke 39, A Geiser 39, I Glushkov 39, P Gunnellini 39, S Habib 39, J Hauk 39, G Hellwig 39, H Jung 39, M Kasemann 39, P Katsas 39, C Kleinwort 39, H Kluge 39, A Knutsson 39, M Krämer 39, D Krücker 39, E Kuznetsova 39, W Lange 39, W Lohmann 39, B Lutz 39, R Mankel 39, I Marfin 39, M Marienfeld 39, I-A Melzer-Pellmann 39, A B Meyer 39, J Mnich 39, A Mussgiller 39, S Naumann-Emme 39, O Novgorodova 39, J Olzem 39, H Perrey 39, A Petrukhin 39, D Pitzl 39, A Raspereza 39, P M Ribeiro Cipriano 39, C Riedl 39, E Ron 39, M Rosin 39, J Salfeld-Nebgen 39, R Schmidt 39, T Schoerner-Sadenius 39, N Sen 39, A Spiridonov 39, M Stein 39, R Walsh 39, C Wissing 39, V Blobel 40, J Draeger 40, H Enderle 40, J Erfle 40, U Gebbert 40, M Görner 40, T Hermanns 40, R S Höing 40, K Kaschube 40, G Kaussen 40, H Kirschenmann 40, R Klanner 40, J Lange 40, B Mura 40, F Nowak 40, T Peiffer 40, N Pietsch 40, D Rathjens 40, C Sander 40, H Schettler 40, P Schleper 40, E Schlieckau 40, A Schmidt 40, M Schröder 40, T Schum 40, M Seidel 40, V Sola 40, H Stadie 40, G Steinbrück 40, J Thomsen 40, L Vanelderen 40, C Barth 41, J Berger 41, C Böser 41, T Chwalek 41, W De Boer 41, A Descroix 41, A Dierlamm 41, M Feindt 41, M Guthoff 41, C Hackstein 41, F Hartmann 41, T Hauth 41, M Heinrich 41, H Held 41, K H Hoffmann 41, S Honc 41, I Katkov 41, J R Komaragiri 41, P Lobelle Pardo 41, D Martschei 41, S Mueller 41, Th Müller 41, M Niegel 41, A Nürnberg 41, O Oberst 41, A Oehler 41, J Ott 41, G Quast 41, K Rabbertz 41, F Ratnikov 41, N Ratnikova 41, S Röcker 41, A Scheurer 41, F-P Schilling 41, G Schott 41, H J Simonis 41, F M Stober 41, D Troendle 41, R Ulrich 41, J Wagner-Kuhr 41, S Wayand 41, T Weiler 41, M Zeise 41, G Daskalakis 42, T Geralis 42, S Kesisoglou 42, A Kyriakis 42, D Loukas 42, I Manolakos 42, A Markou 42, C Markou 42, C Mavrommatis 42, E Ntomari 42, L Gouskos 43, T J Mertzimekis 43, A Panagiotou 43, N Saoulidou 43, I Evangelou 44, C Foudas 44, P Kokkas 44, N Manthos 44, I Papadopoulos 44, V Patras 44, G Bencze 45, C Hajdu 45, P Hidas 45, D Horvath 45, F Sikler 45, V Veszpremi 45, G Vesztergombi 45, N Beni 46, S Czellar 46, J Molnar 46, J Palinkas 46, Z Szillasi 46, J Karancsi 47, P Raics 47, Z L Trocsanyi 47, B Ujvari 47, S B Beri 48, V Bhatnagar 48, N Dhingra 48, R Gupta 48, M Kaur 48, M Z Mehta 48, N Nishu 48, L K Saini 48, A Sharma 48, J B Singh 48, Ashok Kumar 49, Arun Kumar 49, S Ahuja 49, A Bhardwaj 49, B C Choudhary 49, S Malhotra 49, M Naimuddin 49, K Ranjan 49, V Sharma 49, R K Shivpuri 49, S Banerjee 50, S Bhattacharya 50, S Dutta 50, B Gomber 50, Sa Jain 50, Sh Jain 50, R Khurana 50, S Sarkar 50, M Sharan 50, A Abdulsalam 51, R K Choudhury 51, D Dutta 51, S Kailas 51, V Kumar 51, P Mehta 51, A K Mohanty 51, L M Pant 51, P Shukla 51, T Aziz 52, S Ganguly 52, M Guchait 52, M Maity 52, G Majumder 52, K Mazumdar 52, G B Mohanty 52, B Parida 52, K Sudhakar 52, N Wickramage 52, S Banerjee 53, S Dugad 53, H Arfaei 54, H Bakhshiansohi 54, S M Etesami 54, A Fahim 54, M Hashemi 54, H Hesari 54, A Jafari 54, M Khakzad 54, M Mohammadi Najafabadi 54, S Paktinat Mehdiabadi 54, B Safarzadeh 54, M Zeinali 54, M Abbrescia 55,56, L Barbone 55,56, C Calabria 55,56, S S Chhibra 55,56, A Colaleo 55, D Creanza 55,57, N De Filippis 55,57, M De Palma 55,56, L Fiore 55, G Iaselli 55,57, L Lusito 55,56, G Maggi 55,57, M Maggi 55, B Marangelli 55,56, S My 55,57, S Nuzzo 55,56, N Pacifico 55,56, A Pompili 55,56, G Pugliese 55,57, G Selvaggi 55,56, L Silvestris 55, G Singh 55,56, R Venditti 55,56, G Zito 55, G Abbiendi 58, A C Benvenuti 58, D Bonacorsi 58,59, S Braibant-Giacomelli 58,59, L Brigliadori 58,59, P Capiluppi 58,59, A Castro 58,59, F R Cavallo 58, M Cuffiani 58,59, G M Dallavalle 58, F Fabbri 58, A Fanfani 58,59, D Fasanella 58,59, P Giacomelli 58, C Grandi 58, L Guiducci 58,59, S Marcellini 58, G Masetti 58, M Meneghelli 58,59, A Montanari 58, F L Navarria 58,59, F Odorici 58, A Perrotta 58, F Primavera 58,59, A M Rossi 58,59, T Rovelli 58,59, G P Siroli 58,59, R Travaglini 58,59, S Albergo 60,61, G Cappello 60,61, M Chiorboli 60,61, S Costa 60,61, R Potenza 60,61, A Tricomi 60,61, C Tuve 60,61, G Barbagli 62, V Ciulli 62,63, C Civinini 62, R D’Alessandro 62,63, E Focardi 62,63, S Frosali 62,63, E Gallo 62, S Gonzi 62,63, M Meschini 62, S Paoletti 62, G Sguazzoni 62, A Tropiano 62, L Benussi 64, S Bianco 64, S Colafranceschi 64, F Fabbri 64, D Piccolo 64, P Fabbricatore 65, R Musenich 65, S Tosi 65,66, A Benaglia 67,68, F De Guio 67,68, L Di Matteo 67,68, S Fiorendi 67,68, S Gennai 67, A Ghezzi 67,68, S Malvezzi 67, R A Manzoni 67,68, A Martelli 67,68, A Massironi 67,68, D Menasce 67, L Moroni 67, M Paganoni 67,68, D Pedrini 67, S Ragazzi 67,68, N Redaelli 67, S Sala 67, T Tabarelli de Fatis 67,68, S Buontempo 69, C A Carrillo Montoya 69, N Cavallo 69,71, A De Cosa 69,70, O Dogangun 69,70, F Fabozzi 69,71, A O M Iorio 69,70, L Lista 69, S Meola 69,72, M Merola 69, P Paolucci 69, P Azzi 73, N Bacchetta 73, D Bisello 73,74, A Branca 73,74, R Carlin 73,74, P Checchia 73, T Dorigo 73, F Gasparini 73,74, U Gasparini 73,74, A Gozzelino 73, K Kanishchev 73,75, S Lacaprara 73, I Lazzizzera 73,75, M Margoni 73,74, A T Meneguzzo 73,74, J Pazzini 73,74, N Pozzobon 73,74, P Ronchese 73,74, F Simonetto 73,74, E Torassa 73, M Tosi 73,74, S Vanini 73,74, P Zotto 73,74, A Zucchetta 73,74, G Zumerle 73,74, M Gabusi 76,77, S P Ratti 76,77, C Riccardi 76,77, P Torre 76,77, P Vitulo 76,77, M Biasini 78,79, G M Bilei 78, L Fanò 78,79, P Lariccia 78,79, A Lucaroni 78,79, G Mantovani 78,79, M Menichelli 78, A Nappi 78,79, F Romeo 78,79, A Saha 78, A Santocchia 78,79, A Spiezia 78,79, S Taroni 78,79, P Azzurri 80,82, G Bagliesi 80, J Bernardini 80, T Boccali 80, G Broccolo 80,82, R Castaldi 80, R T D’Agnolo 80,82, R Dell’Orso 80, F Fiori 80,81, L Foà 80,82, A Giassi 80, A Kraan 80, F Ligabue 80,82, T Lomtadze 80, L Martini 80, A Messineo 80,81, F Palla 80, A Rizzi 80,81, A T Serban 80, P Spagnolo 80, P Squillacioti 80, R Tenchini 80, G Tonelli 80,81, A Venturi 80, P G Verdini 80, L Barone 83,84, F Cavallari 83, D Del Re 83,84, M Diemoz 83, C Fanelli 83,84, M Grassi 83,84, E Longo 83,84, P Meridiani 83, F Micheli 83,84, S Nourbakhsh 83,84, G Organtini 83,84, R Paramatti 83, S Rahatlou 83,84, M Sigamani 83, L Soffi 83,84, N Amapane 85,86, R Arcidiacono 85,87, S Argiro 85,86, M Arneodo 85,87, C Biino 85, N Cartiglia 85, M Costa 85,86, G Dellacasa 85, N Demaria 85, C Mariotti 85, S Maselli 85, E Migliore 85,86, V Monaco 85,86, M Musich 85, M M Obertino 85,87, N Pastrone 85, M Pelliccioni 85, A Potenza 85,86, A Romero 85,86, R Sacchi 85,86, A Solano 85,86, A Staiano 85, A Vilela Pereira 85, S Belforte 88, V Candelise 88,89, M Casarsa 88, F Cossutti 88, G Della Ricca 88,89, B Gobbo 88, M Marone 88,89, D Montanino 88,89, A Penzo 88, A Schizzi 88,89, S G Heo 90, T Y Kim 90, S K Nam 90, S Chang 91, D H Kim 91, G N Kim 91, D J Kong 91, H Park 91, S R Ro 91, D C Son 91, T Son 91, J Y Kim 92, Zero J Kim 92, S Song 92, S Choi 93, D Gyun 93, B Hong 93, M Jo 93, H Kim 93, T J Kim 93, K S Lee 93, D H Moon 93, S K Park 93, M Choi 94, J H Kim 94, C Park 94, I C Park 94, S Park 94, G Ryu 94, Y Cho 95, Y Choi 95, Y K Choi 95, J Goh 95, M S Kim 95, E Kwon 95, B Lee 95, J Lee 95, S Lee 95, H Seo 95, I Yu 95, M J Bilinskas 96, I Grigelionis 96, M Janulis 96, A Juodagalvis 96, H Castilla-Valdez 97, E De La Cruz-Burelo 97, I Heredia-de La Cruz 97, R Lopez-Fernandez 97, R Magaña Villalba 97, J Martínez-Ortega 97, A Sanchez-Hernandez 97, L M Villasenor-Cendejas 97, S Carrillo Moreno 98, F Vazquez Valencia 98, H A Salazar Ibarguen 99, E Casimiro Linares 100, A Morelos Pineda 100, M A Reyes-Santos 100, D Krofcheck 101, A J Bell 102, P H Butler 102, R Doesburg 102, S Reucroft 102, H Silverwood 102, M Ahmad 103, M H Ansari 103, M I Asghar 103, H R Hoorani 103, S Khalid 103, W A Khan 103, T Khurshid 103, S Qazi 103, M A Shah 103, M Shoaib 103, H Bialkowska 104, B Boimska 104, T Frueboes 104, R Gokieli 104, M Górski 104, M Kazana 104, K Nawrocki 104, K Romanowska-Rybinska 104, M Szleper 104, G Wrochna 104, P Zalewski 104, G Brona 105, K Bunkowski 105, M Cwiok 105, W Dominik 105, K Doroba 105, A Kalinowski 105, M Konecki 105, J Krolikowski 105, N Almeida 106, P Bargassa 106, A David 106, P Faccioli 106, P G Ferreira Parracho 106, M Gallinaro 106, J Seixas 106, J Varela 106, P Vischia 106, P Bunin 107, M Gavrilenko 107, I Golutvin 107, I Gorbunov 107, V Karjavin 107, V Konoplyanikov 107, G Kozlov 107, A Lanev 107, A Malakhov 107, P Moisenz 107, V Palichik 107, V Perelygin 107, M Savina 107, S Shmatov 107, V Smirnov 107, A Volodko 107, A Zarubin 107, S Evstyukhin 108, V Golovtsov 108, Y Ivanov 108, V Kim 108, P Levchenko 108, V Murzin 108, V Oreshkin 108, I Smirnov 108, V Sulimov 108, L Uvarov 108, S Vavilov 108, A Vorobyev 108, An Vorobyev 108, Yu Andreev 109, A Dermenev 109, S Gninenko 109, N Golubev 109, M Kirsanov 109, N Krasnikov 109, V Matveev 109, A Pashenkov 109, D Tlisov 109, A Toropin 109, V Epshteyn 110, M Erofeeva 110, V Gavrilov 110, M Kossov 110, N Lychkovskaya 110, V Popov 110, G Safronov 110, S Semenov 110, V Stolin 110, E Vlasov 110, A Zhokin 110, V Andreev 111, M Azarkin 111, I Dremin 111, M Kirakosyan 111, A Leonidov 111, G Mesyats 111, S V Rusakov 111, A Vinogradov 111, A Belyaev 112, E Boos 112, V Bunichev 112, M Dubinin 112, L Dudko 112, A Ershov 112, A Gribushin 112, V Klyukhin 112, O Kodolova 112, I Lokhtin 112, A Markina 112, S Obraztsov 112, M Perfilov 112, S Petrushanko 112, A Popov 112, L Sarycheva 112, V Savrin 112, I Azhgirey 113, I Bayshev 113, S Bitioukov 113, V Grishin 113, V Kachanov 113, D Konstantinov 113, V Krychkine 113, V Petrov 113, R Ryutin 113, A Sobol 113, L Tourtchanovitch 113, S Troshin 113, N Tyurin 113, A Uzunian 113, A Volkov 113, P Adzic 114, M Djordjevic 114, M Ekmedzic 114, D Krpic 114, J Milosevic 114, M Aguilar-Benitez 115, J Alcaraz Maestre 115, P Arce 115, C Battilana 115, E Calvo 115, M Cerrada 115, M Chamizo Llatas 115, N Colino 115, B De La Cruz 115, A Delgado Peris 115, D Domínguez Vázquez 115, C Fernandez Bedoya 115, J P Fernández Ramos 115, A Ferrando 115, J Flix 115, M C Fouz 115, P Garcia-Abia 115, O Gonzalez Lopez 115, S Goy Lopez 115, J M Hernandez 115, M I Josa 115, G Merino 115, J Puerta Pelayo 115, A Quintario Olmeda 115, I Redondo 115, L Romero 115, J Santaolalla 115, M S Soares 115, C Willmott 115, C Albajar 116, G Codispoti 116, J F de Trocóniz 116, H Brun 117, J Cuevas 117, J Fernandez Menendez 117, S Folgueras 117, I Gonzalez Caballero 117, L Lloret Iglesias 117, J Piedra Gomez 117, J A Brochero Cifuentes 118, I J Cabrillo 118, A Calderon 118, S H Chuang 118, J Duarte Campderros 118, M Felcini 118, M Fernandez 118, G Gomez 118, J Gonzalez Sanchez 118, A Graziano 118, C Jorda 118, A Lopez Virto 118, J Marco 118, R Marco 118, C Martinez Rivero 118, F Matorras 118, F J Munoz Sanchez 118, T Rodrigo 118, A Y Rodríguez-Marrero 118, A Ruiz-Jimeno 118, L Scodellaro 118, I Vila 118, R Vilar Cortabitarte 118, D Abbaneo 119, E Auffray 119, G Auzinger 119, M Bachtis 119, P Baillon 119, A H Ball 119, D Barney 119, J F Benitez 119, C Bernet 119, G Bianchi 119, P Bloch 119, A Bocci 119, A Bonato 119, C Botta 119, H Breuker 119, T Camporesi 119, G Cerminara 119, T Christiansen 119, J A Coarasa Perez 119, D D’Enterria 119, A Dabrowski 119, A De Roeck 119, S Di Guida 119, M Dobson 119, N Dupont-Sagorin 119, A Elliott-Peisert 119, B Frisch 119, W Funk 119, G Georgiou 119, M Giffels 119, D Gigi 119, K Gill 119, D Giordano 119, M Giunta 119, F Glege 119, R Gomez-Reino Garrido 119, P Govoni 119, S Gowdy 119, R Guida 119, M Hansen 119, P Harris 119, C Hartl 119, J Harvey 119, B Hegner 119, A Hinzmann 119, V Innocente 119, P Janot 119, K Kaadze 119, E Karavakis 119, K Kousouris 119, P Lecoq 119, Y-J Lee 119, P Lenzi 119, C Lourenço 119, N Magini 119, T Mäki 119, M Malberti 119, L Malgeri 119, M Mannelli 119, L Masetti 119, F Meijers 119, S Mersi 119, E Meschi 119, R Moser 119, M U Mozer 119, M Mulders 119, P Musella 119, E Nesvold 119, T Orimoto 119, L Orsini 119, E Palencia Cortezon 119, E Perez 119, L Perrozzi 119, A Petrilli 119, A Pfeiffer 119, M Pierini 119, M Pimiä 119, D Piparo 119, G Polese 119, L Quertenmont 119, A Racz 119, W Reece 119, J Rodrigues Antunes 119, G Rolandi 119, C Rovelli 119, M Rovere 119, H Sakulin 119, F Santanastasio 119, C Schäfer 119, C Schwick 119, I Segoni 119, S Sekmen 119, A Sharma 119, P Siegrist 119, P Silva 119, M Simon 119, P Sphicas 119, D Spiga 119, A Tsirou 119, G I Veres 119, J R Vlimant 119, H K Wöhri 119, S D Worm 119, W D Zeuner 119, W Bertl 120, K Deiters 120, W Erdmann 120, K Gabathuler 120, R Horisberger 120, Q Ingram 120, H C Kaestli 120, S König 120, D Kotlinski 120, U Langenegger 120, F Meier 120, D Renker 120, T Rohe 120, J Sibille 120, L Bäni 121, P Bortignon 121, M A Buchmann 121, B Casal 121, N Chanon 121, A Deisher 121, G Dissertori 121, M Dittmar 121, M Donegà 121, M Dünser 121, J Eugster 121, K Freudenreich 121, C Grab 121, D Hits 121, P Lecomte 121, W Lustermann 121, A C Marini 121, P Martinez Ruiz del Arbol 121, N Mohr 121, F Moortgat 121, C Nägeli 121, P Nef 121, F Nessi-Tedaldi 121, F Pandolfi 121, L Pape 121, F Pauss 121, M Peruzzi 121, F J Ronga 121, M Rossini 121, L Sala 121, A K Sanchez 121, A Starodumov 121, B Stieger 121, M Takahashi 121, L Tauscher 121, A Thea 121, K Theofilatos 121, D Treille 121, C Urscheler 121, R Wallny 121, H A Weber 121, L Wehrli 121, C Amsler 122, V Chiochia 122, S De Visscher 122, C Favaro 122, M Ivova Rikova 122, B Millan Mejias 122, P Otiougova 122, P Robmann 122, H Snoek 122, S Tupputi 122, M Verzetti 122, Y H Chang 123, K H Chen 123, C M Kuo 123, S W Li 123, W Lin 123, Z K Liu 123, Y J Lu 123, D Mekterovic 123, A P Singh 123, R Volpe 123, S S Yu 123, P Bartalini 124, P Chang 124, Y H Chang 124, Y W Chang 124, Y Chao 124, K F Chen 124, C Dietz 124, U Grundler 124, W-S Hou 124, Y Hsiung 124, K Y Kao 124, Y J Lei 124, R-S Lu 124, D Majumder 124, E Petrakou 124, X Shi 124, J G Shiu 124, Y M Tzeng 124, X Wan 124, M Wang 124, B Asavapibhop 125, N Srimanobhas 125, A Adiguzel 126, M N Bakirci 126, S Cerci 126, C Dozen 126, I Dumanoglu 126, E Eskut 126, S Girgis 126, G Gokbulut 126, E Gurpinar 126, I Hos 126, E E Kangal 126, T Karaman 126, G Karapinar 126, A Kayis Topaksu 126, G Onengut 126, K Ozdemir 126, S Ozturk 126, A Polatoz 126, K Sogut 126, D Sunar Cerci 126, B Tali 126, H Topakli 126, L N Vergili 126, M Vergili 126, I V Akin 127, T Aliev 127, B Bilin 127, S Bilmis 127, M Deniz 127, H Gamsizkan 127, A M Guler 127, K Ocalan 127, A Ozpineci 127, M Serin 127, R Sever 127, U E Surat 127, M Yalvac 127, E Yildirim 127, M Zeyrek 127, E Gülmez 128, B Isildak 128, M Kaya 128, O Kaya 128, S Ozkorucuklu 128, N Sonmez 128, K Cankocak 129, L Levchuk 130, F Bostock 131, J J Brooke 131, E Clement 131, D Cussans 131, H Flacher 131, R Frazier 131, J Goldstein 131, M Grimes 131, G P Heath 131, H F Heath 131, L Kreczko 131, S Metson 131, D M Newbold 131, K Nirunpong 131, A Poll 131, S Senkin 131, V J Smith 131, T Williams 131, L Basso 132, K W Bell 132, A Belyaev 132, C Brew 132, R M Brown 132, D J A Cockerill 132, J A Coughlan 132, K Harder 132, S Harper 132, J Jackson 132, B W Kennedy 132, E Olaiya 132, D Petyt 132, B C Radburn-Smith 132, C H Shepherd-Themistocleous 132, I R Tomalin 132, W J Womersley 132, R Bainbridge 133, G Ball 133, R Beuselinck 133, O Buchmuller 133, D Colling 133, N Cripps 133, M Cutajar 133, P Dauncey 133, G Davies 133, M Della Negra 133, W Ferguson 133, J Fulcher 133, D Futyan 133, A Gilbert 133, A Guneratne Bryer 133, G Hall 133, Z Hatherell 133, J Hays 133, G Iles 133, M Jarvis 133, G Karapostoli 133, L Lyons 133, A-M Magnan 133, J Marrouche 133, B Mathias 133, R Nandi 133, J Nash 133, A Nikitenko 133, A Papageorgiou 133, J Pela 133, M Pesaresi 133, K Petridis 133, M Pioppi 133, D M Raymond 133, S Rogerson 133, A Rose 133, M J Ryan 133, C Seez 133, P Sharp 133, A Sparrow 133, M Stoye 133, A Tapper 133, M Vazquez Acosta 133, T Virdee 133, S Wakefield 133, N Wardle 133, T Whyntie 133, M Chadwick 134, J E Cole 134, P R Hobson 134, A Khan 134, P Kyberd 134, D Leggat 134, D Leslie 134, W Martin 134, I D Reid 134, P Symonds 134, L Teodorescu 134, M Turner 134, K Hatakeyama 135, H Liu 135, T Scarborough 135, O Charaf 136, C Henderson 136, P Rumerio 136, A Avetisyan 137, T Bose 137, C Fantasia 137, A Heister 137, P Lawson 137, D Lazic 137, J Rohlf 137, D Sperka 137, J St John 137, L Sulak 137, J Alimena 138, S Bhattacharya 138, D Cutts 138, A Ferapontov 138, U Heintz 138, S Jabeen 138, G Kukartsev 138, E Laird 138, G Landsberg 138, M Luk 138, M Narain 138, D Nguyen 138, M Segala 138, T Sinthuprasith 138, T Speer 138, K V Tsang 138, R Breedon 139, G Breto 139, M Calderon De La Barca Sanchez 139, S Chauhan 139, M Chertok 139, J Conway 139, R Conway 139, P T Cox 139, J Dolen 139, R Erbacher 139, M Gardner 139, R Houtz 139, W Ko 139, A Kopecky 139, R Lander 139, T Miceli 139, D Pellett 139, F Ricci-Tam 139, B Rutherford 139, M Searle 139, J Smith 139, M Squires 139, M Tripathi 139, R Vasquez Sierra 139, V Andreev 140, D Cline 140, R Cousins 140, J Duris 140, S Erhan 140, P Everaerts 140, C Farrell 140, J Hauser 140, M Ignatenko 140, C Jarvis 140, C Plager 140, G Rakness 140, P Schlein 140, P Traczyk 140, V Valuev 140, M Weber 140, J Babb 141, R Clare 141, M E Dinardo 141, J Ellison 141, J W Gary 141, F Giordano 141, G Hanson 141, G Y Jeng 141, H Liu 141, O R Long 141, A Luthra 141, H Nguyen 141, S Paramesvaran 141, J Sturdy 141, S Sumowidagdo 141, R Wilken 141, S Wimpenny 141, W Andrews 142, J G Branson 142, G B Cerati 142, S Cittolin 142, D Evans 142, F Golf 142, A Holzner 142, R Kelley 142, M Lebourgeois 142, J Letts 142, I Macneill 142, B Mangano 142, S Padhi 142, C Palmer 142, G Petrucciani 142, M Pieri 142, M Sani 142, V Sharma 142, S Simon 142, E Sudano 142, M Tadel 142, Y Tu 142, A Vartak 142, S Wasserbaech 142, F Würthwein 142, A Yagil 142, J Yoo 142, D Barge 143, R Bellan 143, C Campagnari 143, M D’Alfonso 143, T Danielson 143, K Flowers 143, P Geffert 143, J Incandela 143, C Justus 143, P Kalavase 143, S A Koay 143, D Kovalskyi 143, V Krutelyov 143, S Lowette 143, N Mccoll 143, V Pavlunin 143, F Rebassoo 143, J Ribnik 143, J Richman 143, R Rossin 143, D Stuart 143, W To 143, C West 143, A Apresyan 144, A Bornheim 144, Y Chen 144, E Di Marco 144, J Duarte 144, M Gataullin 144, Y Ma 144, A Mott 144, H B Newman 144, C Rogan 144, M Spiropulu 144, V Timciuc 144, J Veverka 144, R Wilkinson 144, S Xie 144, Y Yang 144, R Y Zhu 144, B Akgun 145, V Azzolini 145, A Calamba 145, R Carroll 145, T Ferguson 145, Y Iiyama 145, D W Jang 145, Y F Liu 145, M Paulini 145, H Vogel 145, I Vorobiev 145, J P Cumalat 146, B R Drell 146, C J Edelmaier 146, W T Ford 146, A Gaz 146, B Heyburn 146, E Luiggi Lopez 146, J G Smith 146, K Stenson 146, K A Ulmer 146, S R Wagner 146, J Alexander 147, A Chatterjee 147, N Eggert 147, L K Gibbons 147, B Heltsley 147, A Khukhunaishvili 147, B Kreis 147, N Mirman 147, G Nicolas Kaufman 147, J R Patterson 147, A Ryd 147, E Salvati 147, W Sun 147, W D Teo 147, J Thom 147, J Thompson 147, J Tucker 147, J Vaughan 147, Y Weng 147, L Winstrom 147, P Wittich 147, D Winn 148, S Abdullin 149, M Albrow 149, J Anderson 149, L A T Bauerdick 149, A Beretvas 149, J Berryhill 149, P C Bhat 149, I Bloch 149, K Burkett 149, J N Butler 149, V Chetluru 149, H W K Cheung 149, F Chlebana 149, V D Elvira 149, I Fisk 149, J Freeman 149, Y Gao 149, D Green 149, O Gutsche 149, J Hanlon 149, R M Harris 149, J Hirschauer 149, B Hooberman 149, S Jindariani 149, M Johnson 149, U Joshi 149, B Kilminster 149, B Klima 149, S Kunori 149, S Kwan 149, C Leonidopoulos 149, J Linacre 149, D Lincoln 149, R Lipton 149, J Lykken 149, K Maeshima 149, J M Marraffino 149, S Maruyama 149, D Mason 149, P McBride 149, K Mishra 149, S Mrenna 149, Y Musienko 149, C Newman-Holmes 149, V O’Dell 149, O Prokofyev 149, E Sexton-Kennedy 149, S Sharma 149, W J Spalding 149, L Spiegel 149, P Tan 149, L Taylor 149, S Tkaczyk 149, N V Tran 149, L Uplegger 149, E W Vaandering 149, R Vidal 149, J Whitmore 149, W Wu 149, F Yang 149, F Yumiceva 149, J C Yun 149, D Acosta 150, P Avery 150, D Bourilkov 150, M Chen 150, T Cheng 150, S Das 150, M De Gruttola 150, G P Di Giovanni 150, D Dobur 150, A Drozdetskiy 150, R D Field 150, M Fisher 150, Y Fu 150, I K Furic 150, J Gartner 150, J Hugon 150, B Kim 150, J Konigsberg 150, A Korytov 150, A Kropivnitskaya 150, T Kypreos 150, J F Low 150, K Matchev 150, P Milenovic 150, G Mitselmakher 150, L Muniz 150, M Park 150, R Remington 150, A Rinkevicius 150, P Sellers 150, N Skhirtladze 150, M Snowball 150, J Yelton 150, M Zakaria 150, V Gaultney 151, S Hewamanage 151, L M Lebolo 151, S Linn 151, P Markowitz 151, G Martinez 151, J L Rodriguez 151, T Adams 152, A Askew 152, J Bochenek 152, J Chen 152, B Diamond 152, S V Gleyzer 152, J Haas 152, S Hagopian 152, V Hagopian 152, M Jenkins 152, K F Johnson 152, H Prosper 152, V Veeraraghavan 152, M Weinberg 152, M M Baarmand 153, B Dorney 153, M Hohlmann 153, H Kalakhety 153, I Vodopiyanov 153, M R Adams 154, I M Anghel 154, L Apanasevich 154, Y Bai 154, V E Bazterra 154, R R Betts 154, I Bucinskaite 154, J Callner 154, R Cavanaugh 154, O Evdokimov 154, L Gauthier 154, C E Gerber 154, D J Hofman 154, S Khalatyan 154, F Lacroix 154, M Malek 154, C O’Brien 154, C Silkworth 154, D Strom 154, P Turner 154, N Varelas 154, U Akgun 155, E A Albayrak 155, B Bilki 155, W Clarida 155, F Duru 155, S Griffiths 155, J-P Merlo 155, H Mermerkaya 155, A Mestvirishvili 155, A Moeller 155, J Nachtman 155, C R Newsom 155, E Norbeck 155, Y Onel 155, F Ozok 155, S Sen 155, E Tiras 155, J Wetzel 155, T Yetkin 155, K Yi 155, B A Barnett 156, B Blumenfeld 156, S Bolognesi 156, D Fehling 156, G Giurgiu 156, A V Gritsan 156, Z J Guo 156, G Hu 156, P Maksimovic 156, S Rappoccio 156, M Swartz 156, A Whitbeck 156, P Baringer 157, A Bean 157, G Benelli 157, R P Kenny Iii 157, M Murray 157, D Noonan 157, S Sanders 157, R Stringer 157, G Tinti 157, J S Wood 157, V Zhukova 157, A F Barfuss 158, T Bolton 158, I Chakaberia 158, A Ivanov 158, S Khalil 158, M Makouski 158, Y Maravin 158, S Shrestha 158, I Svintradze 158, J Gronberg 159, D Lange 159, D Wright 159, A Baden 160, M Boutemeur 160, B Calvert 160, S C Eno 160, J A Gomez 160, N J Hadley 160, R G Kellogg 160, M Kirn 160, T Kolberg 160, Y Lu 160, M Marionneau 160, A C Mignerey 160, K Pedro 160, A Peterman 160, A Skuja 160, J Temple 160, M B Tonjes 160, S C Tonwar 160, E Twedt 160, A Apyan 161, G Bauer 161, J Bendavid 161, W Busza 161, E Butz 161, I A Cali 161, M Chan 161, V Dutta 161, G Gomez Ceballos 161, M Goncharov 161, K A Hahn 161, Y Kim 161, M Klute 161, K Krajczar 161, W Li 161, P D Luckey 161, T Ma 161, S Nahn 161, C Paus 161, D Ralph 161, C Roland 161, G Roland 161, M Rudolph 161, G S F Stephans 161, F Stöckli 161, K Sumorok 161, K Sung 161, D Velicanu 161, E A Wenger 161, R Wolf 161, B Wyslouch 161, M Yang 161, Y Yilmaz 161, A S Yoon 161, M Zanetti 161, S I Cooper 162, B Dahmes 162, A De Benedetti 162, G Franzoni 162, A Gude 162, S C Kao 162, K Klapoetke 162, Y Kubota 162, J Mans 162, N Pastika 162, R Rusack 162, M Sasseville 162, A Singovsky 162, N Tambe 162, J Turkewitz 162, L M Cremaldi 163, R Kroeger 163, L Perera 163, R Rahmat 163, D A Sanders 163, E Avdeeva 164, K Bloom 164, S Bose 164, J Butt 164, D R Claes 164, A Dominguez 164, M Eads 164, J Keller 164, I Kravchenko 164, J Lazo-Flores 164, H Malbouisson 164, S Malik 164, G R Snow 164, U Baur 165, A Godshalk 165, I Iashvili 165, S Jain 165, A Kharchilava 165, A Kumar 165, S P Shipkowski 165, K Smith 165, G Alverson 166, E Barberis 166, D Baumgartel 166, M Chasco 166, J Haley 166, D Nash 166, D Trocino 166, D Wood 166, J Zhang 166, A Anastassov 167, A Kubik 167, N Mucia 167, N Odell 167, R A Ofierzynski 167, B Pollack 167, A Pozdnyakov 167, M Schmitt 167, S Stoynev 167, M Velasco 167, S Won 167, L Antonelli 168, D Berry 168, A Brinkerhoff 168, M Hildreth 168, C Jessop 168, D J Karmgard 168, J Kolb 168, K Lannon 168, W Luo 168, S Lynch 168, N Marinelli 168, D M Morse 168, T Pearson 168, M Planer 168, R Ruchti 168, J Slaunwhite 168, N Valls 168, M Wayne 168, M Wolf 168, B Bylsma 169, L S Durkin 169, C Hill 169, R Hughes 169, K Kotov 169, T Y Ling 169, D Puigh 169, M Rodenburg 169, C Vuosalo 169, G Williams 169, B L Winer 169, N Adam 170, E Berry 170, P Elmer 170, D Gerbaudo 170, V Halyo 170, P Hebda 170, J Hegeman 170, A Hunt 170, P Jindal 170, D Lopes Pegna 170, P Lujan 170, D Marlow 170, T Medvedeva 170, M Mooney 170, J Olsen 170, P Piroué 170, X Quan 170, A Raval 170, B Safdi 170, H Saka 170, D Stickland 170, C Tully 170, J S Werner 170, A Zuranski 170, J G Acosta 171, E Brownson 171, X T Huang 171, A Lopez 171, H Mendez 171, S Oliveros 171, J E Ramirez Vargas 171, A Zatserklyaniy 171, E Alagoz 172, V E Barnes 172, D Benedetti 172, G Bolla 172, D Bortoletto 172, M De Mattia 172, A Everett 172, Z Hu 172, M Jones 172, O Koybasi 172, M Kress 172, A T Laasanen 172, N Leonardo 172, V Maroussov 172, P Merkel 172, D H Miller 172, N Neumeister 172, I Shipsey 172, D Silvers 172, A Svyatkovskiy 172, M Vidal Marono 172, H D Yoo 172, J Zablocki 172, Y Zheng 172, S Guragain 173, N Parashar 173, A Adair 174, C Boulahouache 174, K M Ecklund 174, F J M Geurts 174, B P Padley 174, R Redjimi 174, J Roberts 174, J Zabel 174, B Betchart 175, A Bodek 175, Y S Chung 175, R Covarelli 175, P de Barbaro 175, R Demina 175, Y Eshaq 175, T Ferbel 175, A Garcia-Bellido 175, P Goldenzweig 175, J Han 175, A Harel 175, D C Miner 175, D Vishnevskiy 175, M Zielinski 175, A Bhatti 176, R Ciesielski 176, L Demortier 176, K Goulianos 176, G Lungu 176, S Malik 176, C Mesropian 176, S Arora 177, A Barker 177, J P Chou 177, C Contreras-Campana 177, E Contreras-Campana 177, D Duggan 177, D Ferencek 177, Y Gershtein 177, R Gray 177, E Halkiadakis 177, D Hidas 177, A Lath 177, S Panwalkar 177, M Park 177, R Patel 177, V Rekovic 177, J Robles 177, K Rose 177, S Salur 177, S Schnetzer 177, C Seitz 177, S Somalwar 177, R Stone 177, S Thomas 177, G Cerizza 178, M Hollingsworth 178, S Spanier 178, Z C Yang 178, A York 178, R Eusebi 179, W Flanagan 179, J Gilmore 179, T Kamon 179, V Khotilovich 179, R Montalvo 179, I Osipenkov 179, Y Pakhotin 179, A Perloff 179, J Roe 179, A Safonov 179, T Sakuma 179, S Sengupta 179, I Suarez 179, A Tatarinov 179, D Toback 179, N Akchurin 180, J Damgov 180, C Dragoiu 180, P R Dudero 180, C Jeong 180, K Kovitanggoon 180, S W Lee 180, T Libeiro 180, Y Roh 180, I Volobouev 180, E Appelt 181, A G Delannoy 181, C Florez 181, S Greene 181, A Gurrola 181, W Johns 181, C Johnston 181, P Kurt 181, C Maguire 181, A Melo 181, M Sharma 181, P Sheldon 181, B Snook 181, S Tuo 181, J Velkovska 181, M W Arenton 182, M Balazs 182, S Boutle 182, B Cox 182, B Francis 182, J Goodell 182, R Hirosky 182, A Ledovskoy 182, C Lin 182, C Neu 182, J Wood 182, R Yohay 182, S Gollapinni 183, R Harr 183, P E Karchin 183, C Kottachchi Kankanamge Don 183, P Lamichhane 183, A Sakharov 183, M Anderson 184, D A Belknap 184, L Borrello 184, D Carlsmith 184, M Cepeda 184, S Dasu 184, E Friis 184, L Gray 184, K S Grogg 184, M Grothe 184, R Hall-Wilton 184, M Herndon 184, A Hervé 184, P Klabbers 184, J Klukas 184, A Lanaro 184, C Lazaridis 184, J Leonard 184, R Loveless 184, A Mohapatra 184, I Ojalvo 184, F Palmonari 184, G A Pierro 184, I Ross 184, A Savin 184, W H Smith 184, J Swanson 184
PMCID: PMC4370880  PMID: 25814865

Abstract

A search for physics beyond the standard model is performed with events having one or more hadronically decaying τ leptons, highly energetic jets, and large transverse momentum imbalance. The data sample corresponds to an integrated luminosity of 4.98 fb−1 of proton-proton collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s}=7 ~\text {TeV} $\end{document} collected with the CMS detector at the LHC in 2011. The number of observed events is consistent with predictions for standard model processes. Lower limits on the mass of the gluino in supersymmetric models are determined.

Introduction

The standard model (SM) of particle physics has been successful in explaining a wide variety of data. In spite of this, the SM is incomplete. For example, it possesses a divergence in the Higgs sector [1] and has no cold dark matter (DM) candidate [2]. Many models of physics beyond the SM (BSM) have been proposed in order to address these problems.

DM particles, if produced in proton-proton collisions at the CERN Large Hadron Collider (LHC), would escape detection and result in a significant transverse momentum (p T) imbalance in the detector. Additionally, cascade decays of heavy colored particles to final states with a high multiplicity of energetic jets and τ leptons appear very naturally in many BSM physics scenarios. Hence, events with multiple τ lepton candidates, large jet multiplicity, and significant transverse momentum imbalance, represent a distinct signature of new physics. In this paper, focus is placed on final states with hadronically decaying τ leptons. In what follows, the visible part of a hadronically decaying τ lepton will be referred to as τ h.

In certain models of supersymmetry (SUSY), the lightest supersymmetric particle (LSP) is a candidate for DM. It has been appreciated for some time that the DM relic density may be sensitive to coannihilation processes involving the LSP and the next-to-lightest supersymmetric particle (NLSP). Coannihilation is characterized by a mass difference (ΔM) between the NLSP and the LSP of approximately 5–15 GeV [36]. This small mass difference would be necessary to allow the NLSP to coannihilate with the LSP in the early universe, leading to the dark matter abundance that is currently observed [7]. If the supersymmetric partner of the τ lepton, the stau (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widetilde{ \tau } $\end{document}), is the NLSP, and if the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widetilde{ \tau } $\end{document} decays primarily to a τ lepton and the LSP, small values of ΔM would lead to final states with low-energy τ leptons (p T∼ΔM) [8]. Decays of colored SUSY particles can produce the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widetilde{ \tau } $\end{document} via chargino (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widetilde{\chi} ^{\pm}$\end{document}) or neutralino (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widetilde{\chi}^{0} $\end{document}) intermediate states (e.g., \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widetilde{\chi}^{0}_{2} \to\tau \widetilde{ \tau } \to \tau\tau \widetilde{\chi}^{0}_{1} $\end{document}), resulting in final states with at least one τ h.

We present a search for BSM particles in events with exactly one τ h lepton and jets (single-τ h final state), and in events with jets and two or more τ h leptons (multiple-τ h final state). These two topologies provide complementary sensitivity to models with a wide range of ΔM values. For example, in the case of very small values of ΔM (∼5 GeV), the low-energy τ h cannot be effectively detected and the search for new physics in the single-τ h final state has better sensitivity. The analysis is performed using proton-proton collision data at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt {s} = 7 ~\text{TeV} $\end{document} collected with the Compact Muon Solenoid (CMS) detector [9] at the LHC in 2011. The data sample corresponds to an integrated luminosity of 4.98±0.11 fb−1. The search is characterized by methods that determine the backgrounds directly from data, to reduce the reliance on simulation. To illustrate the sensitivity of this search to BSM processes, the constrained minimal supersymmetric extension of the standard model, or minimal supergravity, is chosen as the benchmark [3, 10, 11]; we denote this benchmark as “CMSSM”. An interpretation of the results in the context of simplified model spectra (SMS) [12, 13] is also presented. The ATLAS collaboration has published a result on a search for one or more hadronically decaying tau leptons, highly energetic jets, and a large transverse momentum imbalance probing minimal Gauge Mediated Symmetry Breaking (GMSB) models [14].

The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid, of 6 m inner diameter, providing a magnetic field of 3.8 T. Within the field volume are a silicon pixel and strip tracker, a crystal electromagnetic calorimeter (ECAL), which includes a silicon sensor preshower detector in front of the ECAL endcaps, and a brass-scintillator hadron calorimeter. Muons are measured in gas-ionization detectors embedded in the steel return yoke. In addition to the barrel and endcap detectors, CMS has extensive forward calorimetry.

The inner tracker measures charged particles within |η|<2.5 and provides an impact parameter resolution of about 15 μm and a p T resolution of about 1.5 % for 100 GeV particles. Collision events are selected with a first-level trigger based on fast electronics, and a higher-level trigger that runs a version of the offline reconstruction program optimized for speed.

The CMS experiment uses a right-handed coordinate system, with the origin at the nominal interaction point, the x axis pointing to the center of the LHC ring, the y axis pointing up (perpendicular to the plane of the LHC ring), and the z axis along the counterclockwise beam direction. The polar angle θ is measured from the positive z axis and the azimuthal angle in the xy plane. The pseudorapidity is given by η=−ln[tan(θ/2)].

Object reconstruction and identification

Jets in the detector are reconstructed using particle-flow (PF) objects [15]. In the PF approach, information from all subdetectors is combined to reconstruct and identify final-state particles (muons, electrons, photons, and charged and neutral hadrons) produced in the collision. The anti-k T clustering algorithm [16] with a distance parameter R=0.5 is used for jet clustering. Jets are required to satisfy criteria designed to identify anomalous behavior in the calorimeters, and to be well separated from any identified τ lepton.

Validation and efficiency studies are performed utilizing events with a τ h lepton and a light-lepton , with representing an electron (e) or muon (μ). Muons are reconstructed using the tracker and muon chambers. Selection requirements based on the minimum number of hits in the silicon tracker, pixel detector, and muon chambers are applied to suppress muon backgrounds from decays-in-flight of pions or kaons [17]. Electrons are reconstructed by combining tracks with ECAL clusters. Requirements are imposed to distinguish between prompt and non-prompt electrons, where the latter can arise from charged pion decay or photon conversion [18]. The light-lepton candidates are required to satisfy both track and ECAL isolation requirements. The track isolation variable is defined as the sum of the p T of the tracks, as measured by the tracking system, within an isolation cone of radius \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta R = \sqrt{(\Delta\eta)^{2} + (\Delta\phi)^{2}}=0.4$\end{document} centered on the light-lepton track. The ECAL isolation variable is based on the amount of energy deposited in the ECAL within the same isolation cone. In both cases the contribution from the light-lepton candidate is removed from the sum.

Reconstruction of hadronically decaying τ leptons is performed using the hadron-plus-strips (HPS) algorithm [19], designed to optimize the performance of τ h reconstruction by considering specific τ h decay modes. To suppress backgrounds in which light-quark or gluon jets mimic hadronic τ decays, a τ h candidate is required to be spatially isolated from other energy deposits in the calorimeter. Charged hadrons and photons not considered in the reconstruction of the τ h decay mode are used to calculate the isolation. Additionally, τ h candidates are required to be distinguished from electrons and muons in the event. In this analysis, two HPS isolation definitions are used. The τ h isolation definition used for single-τ h final states rejects a τ h candidate if one or more charged hadrons with p T>1.0 GeV or one or more photons with transverse energy E T>1.5 GeV is found within an isolation cone of radius ΔR=0.5. The τ h isolation definition used for multiple-τ h final states rejects a τ h candidate if one or more charged hadrons with p T>1.5 GeV or one or more photons with transverse energy E T>2.0 GeV is found within an isolation cone of radius ΔR=0.3. The isolation criteria used for the multiple-τ h final state increases the signal-to-background ratio while reducing the rate of τ h misidentification. This affects the yield of events with light-quark or gluon jets that are misidentified as τ h leptons, which depends on the square of the misidentification rate. Here a final state with exactly two τ h candidates is considered since events with more than two τ h candidates are only a small fraction (<1 %) of events.

The missing transverse momentum Inline graphic is defined as:

graphic file with name 10052_2013_2493_Equ1_HTML.gif 1

where the sum runs over all the jets with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{\mathrm {T}} ^{\text{jet}} > 30 ~\text{GeV} $\end{document} inside the fiducial detector volume of |η|<5. The vector Inline graphic is the negative of the vector sum in Eq. (1). The observable \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H_{\mathrm{T}} = \sum {\boldsymbol{p}}_{\mathrm{T}} ^{\text{jet}}$\end{document} is used to estimate the overall energy scale of the event. For the single-τ h final state, H T is calculated using jets with p T>50 GeV and will be referred to as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H_{\mathrm {T}} ^{50}$\end{document}. For the multiple-τ h final state, H T is calculated using jets with p T>30 GeV and will be referred to as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H_{\mathrm {T}} ^{30}$\end{document}. In both instances of the H T calculation, we consider all jets in |η|<5 (the fiducial detector limit). The use of a lower p T threshold for the jets in the multiple-τ h final state increases the efficiency of signal events without significantly increasing the background.

Signal and background samples

The major sources of SM background are top-quark pair (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm {t}\overline{\mathrm {t}}$\end{document}) events and events with a W or Z boson accompanied by jets. Both \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm {t}\overline{\mathrm {t}}$\end{document} and W+jets events can have genuine τ h leptons, large genuine Inline graphic from W boson decays, and jets that can be misidentified as a τ h. Similarly, Z+jets events with Z(→νν) and with one or more jets misidentified as a τ h lepton provide a source of background. Z+jets events with Z(→νν) present a background because of the genuine τ h leptons and the genuine Inline graphic from the neutrinos in the τ h decay. QCD multijet events can become a background when a mismeasured jet gives rise to large Inline graphic and jets are misidentified as τ h leptons.

Data are compared with predictions obtained from samples of Monte Carlo (MC) simulated events. Signal and background MC samples are produced with the pythia 6.4.22 [20] and MadGraph [21] generators using the Z2 tune [22] and the NLO CTEQ6L1 parton distribution function (PDF) set [23]. The τ lepton decays are simulated with the Tauola [24] program. The generated events are processed with a detailed simulation of the CMS apparatus using the Geant4 package [25]. The MC yields are normalized to the integrated luminosity of the data using next-to-leading order (NLO) cross sections [2631]. For the 2011 LHC running conditions, the mean number of interactions in a single beam crossing is ∼10. The effect of multiple interactions per bunch crossing (pileup) is taken into account by superimposing MC minimum-bias events so that the probability distribution for overlapping pp collisions in the simulation matches the measured distribution.

Event selection

Events for both the single- and multiple-τ h final states are selected using a trigger that requires Inline graphic. This trigger allows us to maintain sensitivity in regions where the p T value of the τ h is small (p T∼15 GeV). This trigger efficiency, for an offline selection requirement of Inline graphic, is 98.9 %. For the τ h efficiency and validation studies, samples are chosen using triggers that require the presence of both a τ h candidate and a muon.

The τ h candidates must satisfy p T>15 GeV and |η|<2.1. For the single-τ h final state we require that no additional light leptons be present in the event. This requirement suppresses background from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm {t}\overline{\mathrm {t}} $\end{document}, W+jets, and Z+jets events. For the multiple-τ h final state there is no requirement placed on the number of light leptons.

For the single-τ h final state, we define a baseline event selection \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H_{\mathrm{T}} ^{50} > 350 ~\text{GeV} $\end{document} and Inline graphic. The sample obtained with the baseline selection is used to validate the background predictions. The signal region (SR) for the single-τ h final state is defined by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H_{\mathrm{T}} ^{50} > 600 ~\text {GeV} $\end{document} and Inline graphic.

For the multiple-τ h final state, the SR is defined by Inline graphic and by the requirement that there be at least two jets with p T>100 GeV and |η|<3.0. QCD multijet events are rejected by requiring the azimuthal difference Inline graphic between the second leading jet in p T and Inline graphic to satisfy Inline graphic Finally, events are required to contain at least one τ h τ h pair separated by ΔR(τ h,i,τ h,j)>0.3.

Background estimate

The background contributions are categorized differently for the single- and multiple-τ h final states. For the single-τ h final state, the background contributions are divided into events containing a genuine τ h and events where a jet is misidentified as a τ h. For the multiple-τ h final state, the main background contribution arises from misidentified τ h leptons. We identify the different sources of background individually using dedicated data control regions (CR).

Estimate of backgrounds in the single-τh final state

In the single-τ h final state, the largest background contribution comes from W + jets events that contain a genuine τ h lepton. The other significant contribution arises from QCD multijet events in which a jet is misidentified as a τ h. The W+jets background contribution is estimated using a sample of W+jets events with W→μν. The QCD multijet background is determined by selecting a QCD-dominated CR and evaluating the τ h misidentification rate.

Estimate of the W + jets background in the single-τh final state

To evaluate the W+jets background, we exploit the similarity between W decays to a muon and to a tau lepton and select a sample of W+jets events with W(→μν). This sample will be referred to as the muon control sample. To select the muon control sample, events are required to contain exactly one muon and no reconstructed τ h or electron. To emulate the τ h acceptance, the muon is required to satisfy |η|<2.1. The yields in the muon control sample are corrected for muon reconstruction (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varepsilon_{\mu}^{\text{reco}}$\end{document}) and isolation efficiency (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varepsilon_{\mu}^{\text{iso}}$\end{document}). The muon reconstruction efficiency is derived from data using a sample of Z + jets events and parameterized as a function of p T and η. The muon isolation criteria help to distinguish between muons from the decay of the W boson and muons from semileptonic decays of c and b quarks. The isolation efficiency is parameterized as a function of the separation from the nearest jet and the momentum of the jet. A correction factor (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$P^{ \mathrm{W} }_{\mu}$\end{document}) is applied to the muons in the muon control sample to account for muons that do not come from a τ-lepton decay. This correction factor depends on the p T of the muon and the Inline graphic value in the event and is derived from a simulated sample of W+jets events.

As the muons in the muon control sample are selected to mimic a τ h, a correction is applied to emulate the probability to reconstruct and identify a τ h lepton. The reconstruction and identification efficiency \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varepsilon_{\tau }^{\text{reco}}$\end{document} is parameterized as a function of the p T of the τ h candidate and as a function of the total number N of charged particles and photons in the isolation cone [Fig. 1(a)]. Corrections are also applied to account for the hadronic branching fraction (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f_{\tau}^{\text{bf(hadr)}}$\end{document}) of a τ lepton. Except for the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f_{\tau}^{\text{bf(hadr)}}$\end{document} the values of the correction factors differ in each event. The corrections are combined to define an overall event weight, defined as:

\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ f^\text{corr}_\text{event} = \frac{P_{\mu}^{ \mathrm {W} } \times \varepsilon_{\tau} \times f_{\tau}^{\text{bf(hadr)}}}{\varepsilon _{\mu}^{\text{reco}} \times\varepsilon_{\mu}^{\text{iso}}}. $$\end{document} 2
Fig. 1.

Fig. 1

(a) Dependence of the τ h reconstruction efficiency \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\epsilon_{\tau}^{\text{reco}}$\end{document} on the number of additional particles N in the isolation cone in bins of τ h lepton p T for the single-τ h final state, where N is the total number of the photons and charged hadrons in the isolation cone, and (b) dependence of τ h response on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{\mathrm{T}} ^{\tau , \text{gen}}$\end{document}. Both distributions are derived from a simulated sample of W(→τν)+jets events

A τ h response template is derived from simulated events. The response template is given by the ratio of the reconstructed energy of the τ h to the true generator-level energy. The τ h response depends on the transverse momentum of the generated τ lepton [Fig. 1(b)] and on the number of reconstructed primary vertices in the event. The muon p T spectrum is smeared as a function of p T and the number of primary vertices to mimic the p T distribution of the τ h.

Fully simulated W+jets events are used to verify the procedure. Figure 2 shows the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H_{\mathrm{T}} ^{50}$\end{document} and Inline graphic distributions from simulated W+jets events for the single-τ h final state. These events satisfy the baseline selection described in Sect. 5. The reconstructed τ h is required to match a hadronically decaying generated tau lepton, to ensure that only the genuine tau background is addressed in this check. The event yield and distributions are compared with the prediction from the simulated muon control sample and agree within statistical uncertainties, thus verifying the closure of the method in MC simulation. Hence, the predicted \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H_{\mathrm{T}} ^{50}$\end{document} and Inline graphic distributions from the muon control sample can be taken to describe a τ h sample within statistical uncertainties.

Fig. 2.

Fig. 2

Distributions of (a) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H_{\mathrm{T}} ^{50}$\end{document} and (bInline graphic for the genuine τ h estimate in simulated W+jets events for the single-τ h final state. The black triangles show the results for events that satisfy the baseline selection and that contain a reconstructed τ h matched to the visible part of a generated, hadronically decaying τ lepton. The filled green areas show the prediction obtained from the simulated muon control sample. The hatched areas are the total uncertainty on the prediction (Color figure online)

The muon control sample consists primarily of W+jets events, but also contains \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm {t}\overline {\mathrm {t}} $\end{document} events in which one W boson decays into a muon while the other W boson decays either into an unidentified τ lepton or into a light lepton that is not reconstructed. Any isolated muons produced through the decay of b or c quarks can also contribute to the muon control sample. SM processes containing a Z boson or two W bosons can also contribute to the muon control sample if one of the two decay muons is not reconstructed.

The true event yields of each process as determined from simulation are summarized in Table 1 for the baseline and SR selections. For both selections the number of predicted events with a genuine τ h lepton is seen to agree with the true number of events. The value of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varepsilon_{\tau}^{\text{reco}}$\end{document} that is used to calculate the predicted rate is measured in a sample of W+jets and is different from the value that would be measured in a sample of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm {t}\overline{\mathrm {t}}$\end{document} events. This leads to an overestimation of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm {t}\overline{\mathrm {t}}$\end{document} contribution. A systematic uncertainty is assigned to account for this overestimation.

Table 1.

The selected and predicted background contributions for simulated events with a genuine τ h passing the baseline and signal selection in the single-τ h final state. The reconstructed τ h is required to match the visible part of the generated, hadronically decaying τ-lepton. The predictions are derived from the muon control sample

L=4.98 fb−1 Baseline selection Signal selection
Selected Predicted Selected Predicted
W(→ℓν)+jets 452±30 441±21 28.9±7.5 34.9±5.9
\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm {t}\overline{\mathrm {t}}$\end{document} 60.6±3.7 63.2±2.1 1.6±0.6 2.9±0.4
Z(→ℓℓ)+ jets 10.9±2.1 8.4±1.3 0.8±0.6 0.4±0.3
W+W 15.1±1.6 14.4±1.1 0.5±0.3 1.3±0.3
Sum 539±30 527±21 31.8±7.5 39.5±5.9

Estimate of the QCD multijet background in the single-τh final state

To estimate the background where a jet is misidentified as a τ h lepton, a QCD-dominated control sample is obtained by selecting events with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H_{\mathrm{T}} ^{50} > 350 ~\text{GeV} $\end{document} and Inline graphic. The control sample is selected using a prescaled H T trigger with criteria that lead to a sample where about 99 % of the events arise from QCD multijet production. The probability for a jet to be misidentified as a τ h lepton is measured by determining the fraction of jets from the single-τ h control sample that pass the τ h identification criteria. Jets considered in the calculation of the misidentification rate satisfy the requirements p T>5 GeV and |η|<2.5. The misidentification rates f i for each jet i depend on η and p T and are used to determine an overall weight, which is applied to each event. The event weights are defined as:

\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ w^{\text{corr}}_{\text{event}} = 1 - \prod_i^n (1-f_i), $$\end{document} 3

where n is the number of jets. The measured misidentification rates shown in Fig. 3(a) are applied to data events in the region with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H_{\mathrm{T}} ^{50}>350 ~\text {GeV} $\end{document} and with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H_{\mathrm{T}} ^{50}>600$\end{document} for two regions of Inline graphic: Inline graphic and Inline graphic. These four regions are dominated by QCD multijet events. The results for data and simulation, as well as the predicted fraction of QCD multijet events, are shown in Table 2. The ratio of selected events over predicted events is statistically compatible with one and stable over the range of Inline graphic. Figure 3(b) shows the Inline graphic distributions of predicted and selected events for simulated QCD multijet events with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H_{\mathrm {T}} ^{50}>350 ~\text{GeV} $\end{document}. The two distributions agree over the whole range of Inline graphic.

Fig. 3.

Fig. 3

(a) The rate of jet misidentification as a τ h lepton in simulation (triangular symbols) and data (circular symbols) as a function of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{\mathrm{T}} ^{\text{jet}}$\end{document} for events with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H_{\mathrm{T}} ^{50}>350 ~\text{GeV} $\end{document} and Inline graphic; (b) The Inline graphic distribution estimated in simulated events with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H_{\mathrm{T}} ^{50}>350 ~\text {GeV} $\end{document}, where the triangular symbols represent events that pass the baseline selection, the filled blue area shows the predicted events, and the hatched area shows the total uncertainty on the prediction. These distributions correspond to the single-τ h final state (Color figure online)

Table 2.

The percentage of QCD multijet events in the Inline graphic binned samples for different QCD multijet dominated regions in the single-τ h final state

\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H_{\mathrm{T}} ^{50}>350 ~\text{GeV} $\end{document} Inline graphic
60–80 80–100 >250
QCD fraction 97 % 93 % 6 %
selected/predicted (sim) 0.98±0.06 0.96±0.07 1.24±0.28
selected/predicted (data) 1.01±0.08 0.88±0.13
\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H_{\mathrm{T}} ^{50}>600 ~\text{GeV} $\end{document} >400
QCD fraction 96 % 93 % 17 %
selected/predicted (sim) 0.94±0.09 0.85±0.09 2.43±1.45
selected/predicted (data) 1.14±0.26 0.97±0.37

Estimate of backgrounds in the multiple-τh final state

The estimate of the SM background contributions to the SR sample for multiple-τ h events is based on the number of observed events in CRs. The events in each CR are selected with similar selection requirements to those used in the SR, but are enriched with events from the background process in question. Correction factors and selection efficiencies are measured in those CRs and used to extrapolate to the SR. We use the observed jet multiplicity in each CR along with the measured rate at which a jet is misidentified as a τ h to calculate the yield in the SR. The following equation is used to estimate each background contribution B:

\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ N_{\mathrm{B}}^\mathrm{SR} = N_{\mathrm{B}}^\mathrm{CR}\bigl[ \alpha _{\tau\tau}{\mathcal{P}} (0) + \alpha_{\tau j}{\mathcal{P}} (1) + \alpha_{jj}{\mathcal{P}} (2)\bigr], $$\end{document} 4

where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N_{\mathrm{B}}^{\mathrm{SR}}$\end{document} is the predicted rate in the SR, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N_{\mathrm{B}}^{\mathrm{CR}}$\end{document} is the observed number of events in the CR, and α xy is the correction factor for acceptance and efficiency for events in the CR with true physics objects “x” and “y”. Here the physics object can be a τ h or a quark or gluon jet. Since the dominant SM backgrounds contribute to the SR when jets are misidentified as τ h lepton, the background estimation strategy outlined in Eq. (4) relies on the determination of the event probability \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal{P}} (m)$\end{document} for at least “m” jets to be misidentified as a τ h, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal{P}} (m)$\end{document} is the product of three factors: (i) the probability P(N) for an event to contain N jets, (ii) the number of possible ways for exactly n jets to pass the τ h identification criteria given N possible jets C(N,n)=N!/n!(Nn)!, and (iii) the probability f for a single jet to be misidentified as a τ h. The \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal{P}} (m)$\end{document} terms are given by:

\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{P}} (m)=\sum_{N=m}^{\infty}P(N)\sum _{n=m}^{N}C(N,n)f^{n}(1-f)^{N-n}. $$\end{document} 5

Equation (5) would be identical to Eq. (3) if used in the case of the single-τ h final state. Equation (4) is used to estimate the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm {t}\overline{\mathrm {t}}$\end{document}, W+jets, and Z+jets background contributions to the SR. The P(N) terms are determined from data using the jet multiplicity distribution in each CR, while the f terms are measured for each background process by determining the fraction of jets in each CR that pass the τ h identification criteria. Since the QCD multijet contribution to the SR for the multiple-τ h final state is negligible according to simulation, a data-to-MC scale factor is used to correct the QCD multijet prediction from simulation. In the sections that follow, the selections used to define high purity CRs are outlined and the correction factors α xy used in Eq. (4) are defined. The fraction of events with two τ h leptons is denoted A ττ, the fraction with one τ h lepton and one jet misidentified as a τ h lepton is denoted A τj, and the fraction with two jets misidentified as τ h leptons is denoted A jj.

Estimate of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm {t}\overline{\mathrm {t}}$\end{document} event background to the multiple-τh final state

To estimate the contribution of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm {t}\overline{\mathrm {t}}$\end{document} events to the multiple-τ h SR, a CR is selected by removing the τ h isolation requirement and by requiring the presence of at least two b-quark jets (b jets), identified using the track-counting-high-efficiency (TCHE) algorithm at the medium working point [32]. Because QCD multijet, W+jets, Z(→ττ)+jets and Z(→νν)+jets events are unlikely to contain two b jets, this requirement provides a sample in which about 99 % of the events are \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm {t}\overline{\mathrm {t}}$\end{document} events, according to simulation. Figure 4(a) shows the p T distribution of τ h leptons in the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm {t}\overline {\mathrm {t}}$\end{document} CR for data and simulation.

Fig. 4.

Fig. 4

Data-to-MC comparison for the multiple-τ h final state: (a) the p T distribution of the τ h candidate in the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm {t}\overline{\mathrm {t}}$\end{document} CR; (bInline graphic distribution in the Z(→μμ)+jets CR; (cInline graphic distribution in the W+jets CR; and (dInline graphic distribution with the requirement Inline graphic. The bottom panes show the ratio between data and background while the hatched area depicts the total uncertainty on the MC

According to simulation, the fraction of events in the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm {t}\overline{\mathrm {t}}$\end{document} control sample that contains one genuine τ h is A τj=0.166±0.011, while the fraction without a genuine τ h is A jj=0.834±0.025. The genuine τ h τ h contribution is negligible (A ττ∼0) according to simulation. Incomplete knowledge of the genuine τ h τ h contribution is included as a source of systematic uncertainty in the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm {t}\overline{\mathrm {t}}$\end{document} background prediction. Therefore, α τj in Eq. (4) is given by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A_{\tau j}{\varepsilon_{\tau}^{\text{iso}}}/{P(\text{2 $\mathrm {b}$\ jets})}$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varepsilon_{\tau}^{\text{iso}}$\end{document} is the probability for a τ h lepton to pass the isolation requirement, while α jj is given by A jj/P(2 b jets). The probability \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$P(\text{2 $\mathrm {b}$\ jets})$\end{document} to identify two or more b jets is determined by the b jet identification efficiency factor [32]. The number of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm {t}\overline{\mathrm {t}}$\end{document} events in the SR is calculated as:

\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ N_{ \mathrm {t}\overline{\mathrm {t}} }^\mathrm{SR} = \frac{N^\mathrm{CR}_{t \overline{t}}}{P(\text{2 $\mathrm {b}$\ jets})}\bigl[ A_{\tau j} \varepsilon_{\tau}^{\text{iso}}{\mathcal{P}} (1) + A_{j j}{ \mathcal{P}} (2) \bigr]. $$\end{document} 6

The probability for a jet in a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm {t}\overline {\mathrm {t}}$\end{document} event to be misidentified as a τ h lepton has an average measured value of f=0.022±0.004. Cross checks are made to validate the use of the b-jet identification efficiency as measured in Ref. [32] for this analysis. The estimated \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm {t}\overline{\mathrm {t}}$\end{document} contribution in the SR is determined to be \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N_{ \mathrm {t}\overline{\mathrm {t}} }^{\mathrm{SR}} = 2.03 \pm0.36$\end{document}.

Estimate of the Z(→νν)+jets event background to the multiple-τh final state

The contribution of Z(→νν)+jets events to the multiple-τ h SR is evaluated by selecting a sample of Z(→μμ)+jets events and treating the muons as neutrinos. The sample is collected using a trigger designed to select a muon and a τ h. Jet selection criteria similar to those used for the SR sample are imposed. In addition, we require two muons passing the criteria outlined in Sect. 3. The control sample has a purity of about 99 % as estimated from simulation. The Inline graphic distribution for events in this CR is shown in Fig. 4(b). The Z(→νν)+jets background is estimated by interpreting the p T of the pair of muons as Inline graphic. In order to predict the Z(→νν)+jets rate in the SR, the Z(→μμ)+jets sample is corrected for the ratio of the branching fractions R=B(Z→νν)/B(Z→μμ), for trigger efficiencies, for the geometric acceptance A μ as measured from simulation, and for the reconstruction efficiency \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varepsilon_{\mu}^{\text{reco}}$\end{document} as measured from data. Therefore, α jj in Eq. (4) is given by:

graphic file with name 10052_2013_2493_Equ7_HTML.gif 7

Since there is no prompt production of a genuine τ h in the Z(→μμ)+jets sample, α τj=0 and α ττ=0. The Z(→νν)+jets contribution to the SR is calculated as:

graphic file with name 10052_2013_2493_Equ8_HTML.gif 8

where Inline graphic is the Inline graphic trigger efficiency and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varepsilon^{\text{Trigger}}_{\mu\tau}$\end{document} the μτ h trigger efficiency. The efficiency for the Inline graphic signal selection (Inline graphic) is determined by calculating the fraction of the observed events in the CR that have Inline graphic. The muon identification efficiency ε μ is measured using a “tag-and-probe” method. The probability for a jet to be misidentified as a τ h lepton has a measured value of f=0.016±0.002. The estimated Z(→νν)+jets contribution to the SR is determined to be \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N_{ \mathrm {Z} (\to\nu\nu )}^{\mathrm{SR}} = 0.03 \pm0.02$\end{document}.

Estimate of the Z(→ττ)+jets event background to the multiple-τh final state

The contribution from Z→ττ events is determined with the Z(→μμ)+jets CR sample used to estimate the background from Z(→νν)+jets, with the muons treated as τ h leptons. The α xy factors are more difficult to estimate for Z→ττ events since there are several ways in which Z→ττ events can contribute to the SR: (i) both τ h leptons pass the kinematic acceptance and identification criteria; (ii) both τ h leptons pass the kinematic acceptance criteria, but only one passes the identification criteria; (iii) one τ h fails the kinematic acceptance criteria, while the other τ h passes both the kinematic acceptance and identification criteria; or (iv) both τ h leptons fail the kinematic acceptance criteria. The Z(→ττ)+jets contribution to the SR is calculated as:

\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \begin{aligned}[b] N_{ \mathrm {Z} \to\tau\tau}^\mathrm{SR} &= N^\mathrm{CR}_{ \mathrm {Z} \to\mu\mu}R \biggl[ \frac{A_{\tau}^{2}\varepsilon_{\tau}^{2}}{A_{\mu}^{2}\varepsilon _{\mu}^{\text{reco 2}}} + \frac{2A_{\tau}^{2}\varepsilon_{\tau}(1-\varepsilon_{\tau })}{A_{\mu}^{2}\varepsilon_{\mu}^{\text{reco 2}}}{\mathcal{P}} (1) \\ &\quad {}+\frac{2A_{\tau}(1-A_{\tau})\varepsilon_{\tau}}{A_{\mu }^{2}\varepsilon_{\mu}^{\text{reco 2}}}{\mathcal{P}} (1) + \frac{(1-A_{\tau})^{2}}{A_{\mu}^{2}\varepsilon_{\mu}^{\text{reco 2}}}{\mathcal{P}} (2) \biggr], \end{aligned} $$\end{document} 9

where R is given by:

graphic file with name 10052_2013_2493_Equ10_HTML.gif 10

A τ is the τ h acceptance, ε τ is the τ h identification efficiency in this control sample, and f=0.016±0.002. The estimated Z (→ττ) + jets contribution to the SR is determined to be \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N_{{ \mathrm {Z} } (\to\tau\tau )}^{\mathrm{SR}} = 0.21 \pm0.13$\end{document}.

Estimate of the W + jets event background to the multiple-τh final state

To select the W+jets CR, the τ h isolation requirement, which discriminates between a τ h lepton and other jets, is removed from the SR selection requirements. However, the lack of the τ h isolation requirement increases the contribution from other backgrounds as most of the backgrounds arise because jets are misidentified as a τ h lepton. To minimize the contribution from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm {t}\overline{\mathrm {t}}$\end{document} production, events are required to have no jets identified as a b jet. This requirement reduces the contamination from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm {t}\overline{\mathrm {t}}$\end{document} events to around 5 %. The purity of the W+jets CR is approximately 65 %. Figure 4(c) shows the Inline graphic distribution, defined as the magnitude of the negative of the vector sum of the transverse momentum of all PF objects in the event, for events in the W+jets CR. The contributions of QCD multijet, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm {t}\overline{\mathrm {t}}$\end{document}, and Z(→νν)+jets events are subtracted in order to determine the number of W+jets events in the CR. The predicted rates for QCD multijet, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm {t}\overline{\mathrm {t}}$\end{document}, and Z(→νν)+jets events are determined by extrapolating from their corresponding CRs. Since there is no genuine multiple-τ h production in W+jets, α ττ=0. According to simulation, the fraction of events in the CR with one genuine τ h is A τj=0.149±0.016, while the fraction of events without a genuine τ h is A jj=0.851±0.038. Therefore, α τj in Eq. (4) is given by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A_{\tau j}{\varepsilon_{\tau}^{\text{iso}}}/{P(\text{0 $\mathrm {b}$\ jets})}$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varepsilon_{\tau}^{\text{iso}}$\end{document} is the probability for a τ h to pass the isolation requirement and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$P(\text{0 $\mathrm {b}$\ jets})$\end{document} is the probability to not have any light-quark or gluon jet misidentified as a b jet. Similarly, α jj is given by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${A_{jj}}/{P(\text{0 $\mathrm {b}$\ jets})}$\end{document}. The contribution of W+jets events to the SR is then calculated as:

\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ N_{W+\text{jets}}^\mathrm{SR} = \frac{N^{\text{After subtraction}}_{ \mathrm{W} +\textrm {jets}}}{P(\text{0 $\mathrm {b}$\ jets})} \bigl[ A_{\tau j} \varepsilon _{\tau}^{\text {iso}}{\mathcal{P}} (1) + A_{jj}{ \mathcal{P}} (2) \bigr]. $$\end{document} 11

The average rate at which jets are misidentified as a τ h lepton is measured to be 0.019±0.001. The rate f b at which light-quark jets or gluon jets are misidentified as a b jet is used to determine \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$P(\text{0 $\mathrm {b}$\ jets})$\end{document}. The estimated W+jets contribution to the SR is determined to be \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N_{ \mathrm{W} + \textrm{jets}}^{\mathrm{SR}} = 5.20 \pm0.63$\end{document}.

Estimate of the QCD multijet event background to the multiple-τh final state

QCD multijet events contribute to the multiple-τ h SR when mismeasurements of jet energies lead to large values of Inline graphic and when jets are misidentified as τ h candidates. By removing the τ h isolation criteria and inverting the Inline graphic requirement, a QCD CR sample with about 99 % purity is obtained. Figure 4(d) shows the expected and observed Inline graphic distributions for this sample. A scale factor is obtained from this CR and used to correct the signal prediction for QCD multijet events in simulation. The estimated contribution to the SR from QCD multijet events is determined to be \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N_{\mathrm{QCD}}^{\mathrm{SR}} = 0.02 \pm0.02$\end{document}.

Systematic uncertainties

Systematic uncertainties are taken into account for both signal and background events and are described separately. Both the signal and background are affected by the systematic uncertainty in the identification of the τ h candidate. The systematic uncertainty for τ h identification is obtained using a Z→ττ enhanced region and by correcting this cross section by that measured for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm {Z} \to{\rm ee}$\end{document} and Z→μμ events. This uncertainty is validated on a control sample of Z→ττ events. The level of agreement between data and simulation is found to be at the level of 7 %. Further validation of the performance of τ h identification in a SUSY-like environment is performed by selecting a W(→τντ h νν) +jets CR with large hadronic activity (H T) and large transverse momentum imbalance (Inline graphic). The level of agreement between the predicted rate for W(→τντ h νν) events and the observed number of events is within 7 % and is determined as a function of H T and Inline graphic.

Systematic uncertainties on background events

The principal sources of systematic uncertainty on the background predictions arise from the correction factors, the finite number of events in the CRs, the measured rates at which jets are misidentified as a τ h lepton, and the level of agreement between the observed and predicted numbers of events in CRs.

The contributions to the uncertainties on the correction factors are different for each background category. The dominant effect is due to the uncertainty in the τ h identification efficiency. In the multiple-τ h final state, uncertainties in the jet-energy scale (JES) [33] and the τ h-energy scale (TES) [34] are used to evaluate how changes in H T, Inline graphic, and jet kinematics affect the correction factors. The systematic uncertainty on the correction factors due to the JES and TES is at most ∼3 % for all backgrounds. Smaller contributions to the uncertainties in the correction factors arise from the muon reconstruction and isolation efficiency (<1 %), the uncertainty in the branching fractions (≪1 %), and the uncertainties in trigger efficiency (1 %).

The systematic uncertainties on the measured rates for jet misidentification as a τ h lepton are dominated by the size of the jet sample used to measure these rates and range from 2 % for the single-τ h final state to 5.6–10 % for the multiple-τ h final state. The level of agreement between the observed and predicted number of events in MC studies of the CRs is used to assign an additional systematic uncertainty and ranges from 2 % for the single-τ h final state to 3 % for the multiple-τ h final state. Finally, the systematic uncertainty arising from statistical uncertainties on the number of events in the CRs ranges from 2–5 % for the multiple-τ h final state to 3–10 % for the single-τ h final state.

Systematic uncertainties on signal events

The main sources of systematic uncertainties in the SR are due to trigger efficiencies, identification efficiencies, the energy, and momentum scales, the luminosity measurement and PDFs. The uncertainty on the luminosity measurement is 2.2 % [35]. Systematic uncertainties on the Inline graphic triggers (2.5 %) are measured using a sample in which around 99 % of the events are \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm {t}\overline{\mathrm {t}}$\end{document} events, which have a similar topology to events in the SR samples. The systematic uncertainties on the TES and JES (3.0 %) yield an uncertainty on the signal acceptance of 2.3 %. The uncertainty on the Inline graphic scale depends on the uncertainty of the JES (2–5 % depending on the η and p T values of the jet) and on the unclustered energy scale (10 %). Unclustered energy is defined as the energy found “outside” any reconstructed lepton or jet with p T>10 GeV. The unclustered energy scale uncertainty has a negligible systematic uncertainty on the signal acceptance. The systematic uncertainty due to imprecise knowledge of the PDFs (11 %) is determined by comparing the CTEQ6.6L [36], MSTW 2008 NLO [37], and NNPDF2.1 [38] PDFs with the default PDF [39]. The systematic uncertainty due to the imprecise modeling of the initial-state and final-state radiation [40] is negligible (≪1 %). The systematic uncertainties associated with event pileup are also negligible. Uncertainties on the theoretical cross sections are evaluated by varying the PDFs and by changing the renormalization and factorization scales by a factor of two [2631].

Results

For the single-τ h final state, the number of background events containing a genuine τ h, as well as the number of background events containing a misidentified τ h, are estimated with data. The results for the baseline and the full selection are listed in Table 3. Figure 5 shows the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H_{\mathrm {T}} ^{50}$\end{document} and Inline graphic distributions of data and the different background predictions. The observed number of events in data is in agreement with the SM predictions.

Table 3.

Number of data and estimated background events with statistical and systematic uncertainties, respectively, in the single-τ h final state

Process Baseline Signal region
Fake-τ h 67±2±19 3.4±0.4±1.0
Real-τ h 367±10±27 25.9±2.5±2.3
Estimated ∑SM 434±10±33 29.3±2.6±2.5
Data 444 28

Fig. 5.

Fig. 5

Distributions of (a) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H_{\mathrm{T}} ^{50}$\end{document}, and (b) Inline graphic for the single-τ h final state. The points with errors represent data that satisfy the baseline selection while the filled green (light) and filled blue (dark) areas shows the predicted backgrounds due to events containing a genuine τ h and a misidentified τ h, respectively. The hatched area shows the total uncertainty on the prediction (Color figure online)

The largest sources of background for the multiple-τ h final state are from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm {t}\overline {\mathrm {t}}$\end{document} and W+jets events. A counting experiment is performed and the background predictions from data are compared with the observed number of events. Table 4 lists these background predictions and the observed number of events in the SR. Figure 6 shows the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H_{\mathrm{T}} ^{30}$\end{document} as well as the M eff distributions in the SR, where M eff is the sum Inline graphic. The background distributions in Fig. 6 are taken from simulation and normalized over the full spectrum. The estimated number of events due to the SM background processes is in agreement with the number of observed events in the SR.

Table 4.

Number of data and estimated background events with statistical and systematic uncertainties, respectively, in the multiple-τ h final state

Process Signal region
QCD multijet events 0.02±0.02±0.17
W+jets 5.20±0.63±0.62
\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm {t}\overline{\mathrm {t}} $\end{document} 2.03±0.36±0.34
Z(→ττ)+jets 0.21±0.13±0.17
Z(→νν)+jets 0.03±0.02±0.50
Estimated ∑SM 7.49±0.74±0.90
Data 9

Fig. 6.

Fig. 6

Stacked distributions of (a) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H_{\mathrm {T}} ^{30}$\end{document}, and (bM eff in the SR for the multiple-τ h final state. The background distributions are taken from MC events that are normalized to the predictions based on data over the full region. The shapes obtained from MC simulation are used for illustrative purposes only

Limits on new physics

The observed numbers of events in the single-τ h and multiple-τ h final states do not reveal any evidence of physics beyond the standard model. Exclusion limits are set using the CLs [41] criterion in the context of the CMSSM [42]. The CMSSM parameter space with tanβ=40, A 0=−500 GeV, μ>0, and M t=173.2 GeV is chosen as a possible scenario with a light \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widetilde{ \tau } $\end{document} and a value of ΔM≤20 GeV. The excluded regions are shown for the single-τ h and multiple-τ h final states in Figs. 7(a) and 7(b), respectively. The limits are set using a simple counting experiment. Systematic uncertainties are treated as nuisance parameters and marginalized, and contamination from signal events in the control samples is taken into account. In the CLs method, both the background-only as well as the signal + background hypothesis are used to derive the confidence levels CLs and the resulting limits and the uncertainty bands on the exclusion contours. In the case of very small values of ΔM(∼5 GeV), the lower-energy τ h cannot be effectively detected and only the energetic τ h from the decay of the neutralino can be observed. The search for new physics with a single τ lepton has a better sensitivity in this case. The single-τ h and multiple-τ h topologies thus have complementary sensitivity and together provide coverage for models with a wide range of ΔM values.

Fig. 7.

Fig. 7

95 % CL exclusion limits in the CMSSM plane at tanβ=40 for: (a) Single-τ h final state, and (b) multiple-τ h final state. In the figures shown, the solid red line (Obs. Limit) denotes the experimental limit while the dotted red lines (Obs. ±σ (theory)) represent the uncertainty on the experimental limit due to uncertainties on the theoretical cross sections. The blue band (Exp. ±σ) represents the expected uncertainties. The contours of constant squark and gluino mass are in units of  GeV (Color figure online)

Using the limits set by the single-τ h analysis, a common gaugino mass m 1/2 of <495 GeV is excluded at 95 % Confidence Level (CL) for a common scalar mass m 0 of <440 GeV. For the multiple-τ h analysis, m 1/2<465 GeV is excluded at 95 % CL for m 0=440 GeV. A gluino with mass <1.15 TeV is excluded at 95 % CL for m 0<440 GeV. It can be noted that the single-τ h analysis shows better sensitivity for small values of ΔM, which is near the boundary of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widetilde { \tau } = \mathrm{LSP}$\end{document}.

The results for the multiple-τ h final states are also interpreted in the context of SMS [13]. The ττ SMS scenario (T3tauh) is studied where gluinos are produced in pairs and subsequently decay to τ lepton pairs and an LSP via a neutralino (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widetilde{\mathrm{g}} \to \mathrm {q} \overline{\mathrm {q}} \widetilde {\chi}^{0}_{2} $\end{document}; \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widetilde{\chi }^{0}_{2} \to\tau\overline{\tau} \to\tau\tau \widetilde{\chi}^{0}_{1} $\end{document}). The diagram for the T3tauh model is given in Fig. 8. A gluino mass of <740 GeV is excluded at 95 % CL for LSP masses up to 205 GeV (here, the mass of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widetilde{\chi}^{0}_{2} $\end{document} is the average of the masses of the gluino and the LSP). Figure 9(a) shows the 95 % CL exclusion region obtained for T3tauh. The limits on the mass of the gluino and LSP are shown with a solid red line.

Fig. 8.

Fig. 8

Diagram for the T3tauh SMS model

Fig. 9.

Fig. 9

Exclusion limits for the multiple-τ h final state: (a) 95 % CL exclusion region obtained for the T3tauh model, where the solid red line represents the limits on the mass of the gluino and the LSP; (b) 95 % CL cross section upper limits as a function of gluino mass in the GMSB scenario. In this figure σ prod represents the cross section for the production of a pair of gluinos with subsequent decay into τ lepton pairs at a 100 % branching fraction (Color figure online)

In the simplified GMSB scenario, the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widetilde{ \tau } $\end{document} is the NLSP and decays to a τ lepton and a gravitino \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widetilde{ \mathrm {G} } $\end{document}, with a mass of the order of ∼ keV [4345] (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widetilde{\chi}^{0}_{2} \to\tau \widetilde{ \tau } \to\tau\tau \widetilde{ \mathrm {G} } $\end{document}). The topology for this simplified GMSB scenario is similar to that of T3tauh except for the assumption that both the gluinos decay to τ-lepton pairs with a branching fraction of 100 %. Therefore, the results are also interpreted in the simplified GMSB scenario using the T3tauh scenario. The signal acceptance is corrected to account for the final state containing up to four τ leptons. A gluino with mass <860 GeV is excluded at 95 % CL. Figure 9(b) shows the exclusion limits for the simplified GMSB scenario as a function of the gluino mass.

Since the SMS topologies considered in this paper are characterized by two τ leptons in the final state, we do not present SMS limits for the single-τ h final state.

Summary

A search for physics beyond the standard model with one or more hadronically decaying τ leptons, highly energetic jets, and large transverse momentum imbalance in the final state is presented. The data sample corresponds to an integrated luminosity of 4.98±0.11 fb−1 of pp collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s}=7 ~\text{TeV} $\end{document} collected with the CMS detector. The final number of events selected in data is consistent with the predictions for standard model processes. We set upper limits on the cross sections for the CMSSM, GMSB, and SMS scenarios. Within the CMSSM framework at tanβ=40, a gaugino mass m 1/2<495 GeV is excluded at 95 % CL for scalar masses m 0<440 GeV. This result sets a lower limit on the mass of the gluino at 1.15 TeV with 95 % CL in this region. In the multiple-τ h final state, a gluino with a mass less than 740 GeV is excluded for the T3tauh simplified model while a gluino with a mass less than 860 GeV is excluded for the simplified GMSB scenario at 95 % CL.

Acknowledgements

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: the Austrian Federal Ministry of Science and Research; the Belgian Fonds de la Recherche Scientifique, and Fonds voor Wetenschappelijk Onderzoek; the Brazilian Funding Agencies (CNPq, CAPES, FAPERJ, and FAPESP); the Bulgarian Ministry of Education and Science; CERN; the Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China; the Colombian Funding Agency (COLCIENCIAS); the Croatian Ministry of Science, Education and Sport; the Research Promotion Foundation, Cyprus; the Ministry of Education and Research, Recurrent financing contract SF0690030s09 and European Regional Development Fund, Estonia; the Academy of Finland, Finnish Ministry of Education and Culture, and Helsinki Institute of Physics; the Institut National de Physique Nucléaire et de Physique des Particules/CNRS, and Commissariat à l’Énergie Atomique et aux Énergies Alternatives/CEA, France; the Bundesministerium für Bildung und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; the General Secretariat for Research and Technology, Greece; the National Scientific Research Foundation, and National Office for Research and Technology, Hungary; the Department of Atomic Energy and the Department of Science and Technology, India; the Institute for Studies in Theoretical Physics and Mathematics, Iran; the Science Foundation, Ireland; the Istituto Nazionale di Fisica Nucleare, Italy; the Korean Ministry of Education, Science and Technology and the World Class University program of NRF, Korea; the Lithuanian Academy of Sciences; the Mexican Funding Agencies (CINVESTAV, CONACYT, SEP, and UASLP-FAI); the Ministry of Science and Innovation, New Zealand; the Pakistan Atomic Energy Commission; the Ministry of Science and Higher Education and the National Science Centre, Poland; the Fundação para a Ciência e a Tecnologia, Portugal; JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); the Ministry of Education and Science of the Russian Federation, the Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, and the Russian Foundation for Basic Research; the Ministry of Science and Technological Development of Serbia; the Secretaría de Estado de Investigación, Desarrollo e Innovación and Programa Consolider-Ingenio 2010, Spain; the Swiss Funding Agencies (ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, and SER); the National Science Council, Taipei; the Scientific and Technical Research Council of Turkey, and Turkish Atomic Energy Authority; the Science and Technology Facilities Council, UK; the US Department of Energy, and the US National Science Foundation.

Individuals have received support from the Marie-Curie programme and the European Research Council (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexander von Humboldt Foundation; the Austrian Science Fund (FWF); the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Council of Science and Industrial Research, India; the Compagnia di San Paolo (Torino); the HOMING PLUS programme of Foundation for Polish Science, cofinanced from European Union, Regional Development Fund; and the Norman Hackerman Advanced Research Program.

Open Access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

  • 1.Gunion J.F., et al. The Higgs Hunter’s Guide. 2000. [Google Scholar]
  • 2.Komatsu E., et al. Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation. Astrophys. J. Suppl. 2011;192:18. doi: 10.1088/0067-0049/192/2/18. [DOI] [Google Scholar]
  • 3. S.P. Martin, A supersymmetry primer (1997). arXiv:hep-ph/9709356
  • 4.Wess J., Zumino B. Supergauge transformations in four-dimensions. Nucl. Phys. B. 1974;70:39. doi: 10.1016/0550-3213(74)90355-1. [DOI] [Google Scholar]
  • 5.Chamseddine A.H., Arnowitt R., Nath P. Locally supersymmetric grand unification. Phys. Rev. Lett. 1982;49:970. doi: 10.1103/PhysRevLett.49.970. [DOI] [Google Scholar]
  • 6.Hall L., Lykken J., Weinberg S. Supergravity as the messenger of supersymmetry breaking. Phys. Rev. D. 1983;27:2359. doi: 10.1103/PhysRevD.27.2359. [DOI] [Google Scholar]
  • 7.Griest K., Seckel D. Three exceptions in the calculation of relic abundances. Phys. Rev. D. 1991;43:3191. doi: 10.1103/PhysRevD.43.3191. [DOI] [PubMed] [Google Scholar]
  • 8.Arnowitt R., et al. Determining the dark matter relic density in the minimal supergravity stau–neutralino coannihilation region at the large hadron collider. Phys. Rev. Lett. 2008;100:231802. doi: 10.1103/PhysRevLett.100.231802. [DOI] [PubMed] [Google Scholar]
  • 9.CMS Collaboration The CMS experiment at the CERN LHC. J. Instrum. 2008;03:S08004. doi: 10.1088/1748-0221/3/08/S08004. [DOI] [Google Scholar]
  • 10.Kane G.L., et al. Study of constrained minimal supersymmetry. Phys. Rev. D. 1994;49:6173. doi: 10.1103/PhysRevD.49.6173. [DOI] [PubMed] [Google Scholar]
  • 11.Chamseddine A.H., Arnowitt R.L., Nath P. Locally supersymmetric grand unification. Phys. Rev. Lett. 1982;49:970. doi: 10.1103/PhysRevLett.49.970. [DOI] [Google Scholar]
  • 12.Alwall J., Schuster P.C., Toro N. Simplified models for a first characterization of new physics at the LHC. Phys. Rev. D. 2009;79:075020. doi: 10.1103/PhysRevD.79.075020. [DOI] [Google Scholar]
  • 13.Alves D., et al. Simplified models for LHC new physics searches. J. Phys. G. 2012;39:105005. doi: 10.1088/0954-3899/39/10/105005. [DOI] [Google Scholar]
  • 14.ATLAS Collaboration Search for supersymmetry in events with large missing transverse momentum, jets, and at least one tau lepton in 7 TeV proton–proton collision data with the ATLAS detector. Eur. Phys. J. C. 2012;72:2215. doi: 10.1140/epjc/s10052-012-2215-7. [DOI] [Google Scholar]
  • 15. CMS Collaboration, Commissioning of the particle-flow reconstruction in minimum-bias and jet events from pp collisions at 7 TeV. CMS Physics Analysis Summary CMS-PAS-PFT-10-002 (2010)
  • 16.Cacciari M., Salam G.P., Soyez G. The anti-kt jet clustering algorithm. J. High Energy Phys. 2008;04:063. doi: 10.1088/1126-6708/2008/04/063. [DOI] [Google Scholar]
  • 17. CMS Collaboration, Performance of muon identification in pp collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s}=7\ \mathrm{TeV}$\end{document}. CMS Physics Analysis Summary CMS-PAS-MUO-10-002 (2010)
  • 18. CMS Collaboration, Electron reconstruction and identification at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s}=7\ \mathrm{TeV}$\end{document}. CMS physics analysis summary CMS-PAS-EGM-10-004 (2010)
  • 19. CMS Collaboration, Performance of tau reconstruction algorithms in 2010 data collected with CMS. CMS Physics Analysis Summary CMS-PAS-TAU-11-001 (2011)
  • 20.Sjöstrand T., Mrenna S., Skands P.Z. PYTHIA 6.4 physics and manual. J. High Energy Phys. 2006;05:026. doi: 10.1088/1126-6708/2006/05/026. [DOI] [Google Scholar]
  • 21.Alwall J. MadGraph/MadEvent v4: the new web generation. J. High Energy Phys. 2008;09:028. [Google Scholar]
  • 22.CMS Collaboration Measurement of the underlying event activity at the LHC with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s} = 7\ \mathrm{TeV}$\end{document} and comparison with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s} = 0.9\ \mathrm{TeV}$\end{document} J. High Energy Phys. 2011;09:109. [Google Scholar]
  • 23.Pumplin J., et al. New generation of parton distributions with uncertainties from global QCD analysis. J. High Energy Phys. 2002;07:012. doi: 10.1088/1126-6708/2002/07/012. [DOI] [Google Scholar]
  • 24.Wąs Z. TAUOLA the library for tau lepton decay. Nucl. Phys. B, Proc. Suppl. 2001;98:96. doi: 10.1016/S0920-5632(01)01200-2. [DOI] [Google Scholar]
  • 25.GEANT4 Collaboration GEANT4–a simulation toolkit. Nucl. Instrum. Methods. 2003;506:250. doi: 10.1016/S0168-9002(03)01368-8. [DOI] [Google Scholar]
  • 26. M. Krämer et al., Supersymmetry production cross sections in pp collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s} = 7\ \mathrm{TeV}$\end{document} (2012). arXiv:1206.2892
  • 27.Beenakker W., et al. Squark and gluino production at hadron colliders. Nucl. Phys. B. 1997;492:51. [Google Scholar]
  • 28.Kulesza A., Motyka L. Threshold resummation for squark–antisquark and gluino-pair production at the LHC. Phys. Rev. Lett. 2009;102:111802. doi: 10.1103/PhysRevLett.102.111802. [DOI] [PubMed] [Google Scholar]
  • 29.Kulesza A., Motyka L. Soft gluon resummation for the production of gluino–gluino and squark–antisquark pairs at the LHC. Phys. Rev. D. 2009;80:095004. doi: 10.1103/PhysRevD.80.095004. [DOI] [PubMed] [Google Scholar]
  • 30.Beenakker W., et al. Soft-gluon resummation for squark and gluino hadroproduction. J. High Energy Phys. 2009;0912:041. doi: 10.1088/1126-6708/2009/12/041. [DOI] [Google Scholar]
  • 31.Beenakker W., et al. Squark and gluino hadroproduction. Int. J. Mod. Phys. A. 2011;26:2637. doi: 10.1142/S0217751X11053560. [DOI] [Google Scholar]
  • 32. CMS Collaboration, b-jet identification in the CMS experiment. CMS physics analysis summary CMS-PAS-BTV-11-004 (2011)
  • 33.CMS Collaboration Determination of jet energy calibration and transverse momentum resolution in CMS. J. Instrum. 2011;06:P11002. doi: 10.1088/1748-0221/6/11/P11002. [DOI] [Google Scholar]
  • 34.CMS Collaboration Performance of τ-lepton reconstruction and identification in CMS. J. Instrum. 2011;7:P01001. doi: 10.1088/1748-0221/7/01/P01001. [DOI] [Google Scholar]
  • 35. CMS Collaboration, Absolute calibration of the luminosity measurement at CMS: winter 2012 update. CMS physics analysis summary CMS-PAS-SMP-12-008 (2012)
  • 36.Nadolsky P.M., et al. Implications of CTEQ global analysis for collider observables. Phys. Rev. D. 2008;78:013004. doi: 10.1103/PhysRevD.78.013004. [DOI] [Google Scholar]
  • 37.Martin A.D., et al. Parton distributions for the LHC. Eur. Phys. J. C. 2009;63:189. doi: 10.1140/epjc/s10052-009-1072-5. [DOI] [Google Scholar]
  • 38.Ball R.D., et al. A first unbiased global NLO determination of parton distributions and their uncertainties. Nucl. Phys. B. 2010;838:136. doi: 10.1016/j.nuclphysb.2010.05.008. [DOI] [Google Scholar]
  • 39. M. Botje et al., The PDF4LHC Working Group interim recommendations (2011). arXiv:1101.0538
  • 40.Miu G., Sjöstrand T. W production in an improved parton-shower approach. Phys. Lett. B. 1999;449:313. doi: 10.1016/S0370-2693(99)00068-4. [DOI] [Google Scholar]
  • 41.Nakamura K., Particle Data Group et al. Review of particle physics. J. Phys. G. 2010;37:075021. doi: 10.1088/0954-3899/37/7A/075021. [DOI] [Google Scholar]
  • 42. M. Matchev, R. Remington, Updated templates for the interpretation of LHC results on supersymmetry in the context of mSUGRA (2012). arXiv:1202.6580
  • 43.Dine M., Fishler W. A phenomenological model of particle physics based on supersymmetry. Phys. Lett. B. 1982;110:227. doi: 10.1016/0370-2693(82)91241-2. [DOI] [Google Scholar]
  • 44.Nappi C.R., Ovrut B.A. Supersymmetric extension of the SU(3) × SU(2) × U(1) model. Phys. Lett. B. 1982;113:175. doi: 10.1016/0370-2693(82)90418-X. [DOI] [Google Scholar]
  • 45.Alvarez-Gaume L., Claudson M., Wise M.B. Low-energy supersymmetry. Nucl. Phys. B. 1982;207:96. doi: 10.1016/0550-3213(82)90138-9. [DOI] [Google Scholar]

Articles from The European Physical Journal. C, Particles and Fields are provided here courtesy of Springer

RESOURCES