Skip to main content
Springer logoLink to Springer
. 2012 Jun 21;72:2043. doi: 10.1140/epjc/s10052-012-2043-9

Measurement of Inline graphic production with a veto on additional central jet activity in pp collisions at Inline graphic TeV using the ATLAS detector

The ATLAS Collaboration1, G Aad 68, B Abbott 138, J Abdallah 16, S Abdel Khalek 142, A A Abdelalim 69, A Abdesselam 145, O Abdinov 15, B Abi 139, M Abolins 113, O S AbouZeid 198, H Abramowicz 193, H Abreu 173, E Acerbi 114,115, B S Acharya 205,206, L Adamczyk 57, D L Adams 37, T N Addy 78, J Adelman 219, M Aderholz 125, S Adomeit 124, P Adragna 100, T Adye 159, S Aefsky 32, J A Aguilar-Saavedra 154, M Aharrouche 106, S P Ahlen 31, F Ahles 68, A Ahmad 188, M Ahsan 60, G Aielli 164,165, T Akdogan 24, T P A Åkesson 104, G Akimoto 195, A V Akimov 120, A Akiyama 90, M S Alam 2, M A Alam 101, J Albert 212, S Albrand 77, M Aleksa 44, I N Aleksandrov 88, F Alessandria 114, C Alexa 38, G Alexander 193, G Alexandre 69, T Alexopoulos 14, M Alhroob 205,207, M Aliev 21, G Alimonti 114, J Alison 148, M Aliyev 15, B M M Allbrooke 23, P P Allport 98, S E Allwood-Spiers 75, J Almond 107, A Aloisio 128,129, R Alon 215, A Alonso 104, B Alvarez Gonzalez 113, M G Alviggi 128,129, K Amako 89, P Amaral 44, C Amelung 32, V V Ammosov 158, A Amorim 153, G Amorós 210, N Amram 193, C Anastopoulos 44, L S Ancu 22, N Andari 142, T Andeen 53, C F Anders 30, G Anders 80, K J Anderson 45, A Andreazza 114,115, V Andrei 80, M-L Andrieux 77, X S Anduaga 94, A Angerami 53, F Anghinolfi 44, A Anisenkov 134, N Anjos 153, A Annovi 67, A Antonaki 13, M Antonelli 67, A Antonov 122, J Antos 182, F Anulli 162, S Aoun 108, L Aperio Bella 9, R Apolle 145, G Arabidze 113, I Aracena 180, Y Arai 89, A T H Arce 64, S Arfaoui 188, J-F Arguin 20, E Arik 24, M Arik 24, A J Armbruster 112, O Arnaez 106, V Arnal 105, C Arnault 142, A Artamonov 121, G Artoni 162,163, D Arutinov 30, S Asai 195, R Asfandiyarov 216, S Ask 42, B Åsman 185,186, L Asquith 10, K Assamagan 37, A Astbury 212, B Aubert 9, E Auge 142, K Augsten 157, M Aurousseau 183, G Avolio 204, R Avramidou 14, D Axen 211, C Ay 76, G Azuelos 119, Y Azuma 195, M A Baak 44, G Baccaglioni 114, C Bacci 166,167, A M Bach 20, H Bachacou 173, K Bachas 44, M Backes 69, M Backhaus 30, E Badescu 38, P Bagnaia 162,163, S Bahinipati 3, Y Bai 48, D C Bailey 198, T Bain 198, J T Baines 159, O K Baker 219, M D Baker 37, S Baker 102, E Banas 58, P Banerjee 119, Sw Banerjee 216, D Banfi 44, A Bangert 190, V Bansal 212, H S Bansil 23, L Barak 215, S P Baranov 120, A Barashkou 88, A Barbaro Galtieri 20, T Barber 68, E L Barberio 111, D Barberis 70,71, M Barbero 30, D Y Bardin 88, T Barillari 125, M Barisonzi 218, T Barklow 180, N Barlow 42, B M Barnett 159, R M Barnett 20, A Baroncelli 166, G Barone 69, A J Barr 145, F Barreiro 105, J Barreiro Guimarães da Costa 79, P Barrillon 142, R Bartoldus 180, A E Barton 95, V Bartsch 189, R L Bates 75, L Batkova 181, J R Batley 42, A Battaglia 22, M Battistin 44, F Bauer 173, H S Bawa 180, S Beale 124, T Beau 103, P H Beauchemin 202, R Beccherle 70, P Bechtle 30, H P Beck 22, S Becker 124, M Beckingham 175, K H Becks 218, A J Beddall 26, A Beddall 26, S Bedikian 219, V A Bednyakov 88, C P Bee 108, M Begel 37, S Behar Harpaz 192, P K Behera 86, M Beimforde 125, C Belanger-Champagne 110, P J Bell 69, W H Bell 69, G Bella 193, L Bellagamba 28, F Bellina 44, M Bellomo 44, A Belloni 79, O Beloborodova 134, K Belotskiy 122, O Beltramello 44, O Benary 193, D Benchekroun 168, M Bendel 106, K Bendtz 185,186, N Benekos 208, Y Benhammou 193, E Benhar Noccioli 69, J A Benitez Garcia 200, D P Benjamin 64, M Benoit 142, J R Bensinger 32, K Benslama 160, S Bentvelsen 132, D Berge 44, E Bergeaas Kuutmann 61, N Berger 9, F Berghaus 212, E Berglund 132, J Beringer 20, P Bernat 102, R Bernhard 68, C Bernius 37, T Berry 101, C Bertella 108, A Bertin 28,29, F Bertinelli 44, F Bertolucci 150,151, M I Besana 114,115, N Besson 173, S Bethke 125, W Bhimji 65, R M Bianchi 44, M Bianco 96,97, O Biebel 124, S P Bieniek 102, K Bierwagen 76, J Biesiada 20, M Biglietti 166, H Bilokon 67, M Bindi 28,29, S Binet 142, A Bingul 26, C Bini 162,163, C Biscarat 221, U Bitenc 68, K M Black 31, R E Blair 10, J-B Blanchard 173, G Blanchot 44, T Blazek 181, C Blocker 32, J Blocki 58, A Blondel 69, W Blum 106, U Blumenschein 76, G J Bobbink 132, V B Bobrovnikov 134, S S Bocchetta 104, A Bocci 64, C R Boddy 145, M Boehler 61, J Boek 218, N Boelaert 54, J A Bogaerts 44, A Bogdanchikov 134, A Bogouch 116, C Bohm 185, J Bohm 155, V Boisvert 101, T Bold 57, V Boldea 38, N M Bolnet 173, M Bomben 103, M Bona 100, V G Bondarenko 122, M Bondioli 204, M Boonekamp 173, C N Booth 176, S Bordoni 103, C Borer 22, A Borisov 158, G Borissov 95, I Borjanovic 17, M Borri 107, S Borroni 112, V Bortolotto 166,167, K Bos 132, D Boscherini 28, M Bosman 16, H Boterenbrood 132, D Botterill 159, J Bouchami 119, J Boudreau 152, E V Bouhova-Thacker 95, D Boumediene 52, C Bourdarios 142, N Bousson 108, A Boveia 45, J Boyd 44, I R Boyko 88, N I Bozhko 158, I Bozovic-Jelisavcic 18, J Bracinik 23, A Braem 44, P Branchini 166, G W Brandenburg 79, A Brandt 12, G Brandt 145, O Brandt 76, U Bratzler 196, B Brau 109, J E Brau 141, H M Braun 218, B Brelier 198, J Bremer 44, K Brendlinger 148, R Brenner 209, S Bressler 215, D Britton 75, F M Brochu 42, I Brock 30, R Brock 113, T J Brodbeck 95, E Brodet 193, F Broggi 114, C Bromberg 113, J Bronner 125, G Brooijmans 53, W K Brooks 47, G Brown 107, H Brown 12, P A Bruckman de Renstrom 58, D Bruncko 182, R Bruneliere 68, S Brunet 84, A Bruni 28, G Bruni 28, M Bruschi 28, T Buanes 19, Q Buat 77, F Bucci 69, J Buchanan 145, N J Buchanan 3, P Buchholz 178, R M Buckingham 145, A G Buckley 65, S I Buda 38, I A Budagov 88, B Budick 135, V Büscher 106, L Bugge 144, O Bulekov 122, A C Bundock 98, M Bunse 62, T Buran 144, H Burckhart 44, S Burdin 98, T Burgess 19, S Burke 159, E Busato 52, P Bussey 75, C P Buszello 209, F Butin 44, B Butler 180, J M Butler 31, C M Buttar 75, J M Butterworth 102, W Buttinger 42, S Cabrera Urbán 210, D Caforio 28,29, O Cakir 4, P Calafiura 20, G Calderini 103, P Calfayan 124, R Calkins 133, L P Caloba 33, R Caloi 162,163, D Calvet 52, S Calvet 52, R Camacho Toro 52, P Camarri 164,165, M Cambiaghi 146,147, D Cameron 144, L M Caminada 20, S Campana 44, M Campanelli 102, V Canale 128,129, F Canelli 45, A Canepa 199, J Cantero 105, L Capasso 128,129, M D M Capeans Garrido 44, I Caprini 38, M Caprini 38, D Capriotti 125, M Capua 55,56, R Caputo 106, R Cardarelli 164, T Carli 44, G Carlino 128, L Carminati 114,115, B Caron 110, S Caron 131, E Carquin 47, G D Carrillo Montoya 216, A A Carter 100, J R Carter 42, J Carvalho 153, D Casadei 135, M P Casado 16, M Cascella 150,151, C Caso 70,71, A M Castaneda Hernandez 216, E Castaneda-Miranda 216, V Castillo Gimenez 210, N F Castro 153, G Cataldi 96, P Catastini 79, A Catinaccio 44, J R Catmore 44, A Cattai 44, G Cattani 164,165, S Caughron 113, D Cauz 205,207, P Cavalleri 103, D Cavalli 114, M Cavalli-Sforza 16, V Cavasinni 150,151, F Ceradini 166,167, A S Cerqueira 34, A Cerri 44, L Cerrito 100, F Cerutti 67, S A Cetin 25, F Cevenini 128,129, A Chafaq 168, D Chakraborty 133, I Chalupkova 156, K Chan 3, B Chapleau 110, J D Chapman 42, J W Chapman 112, E Chareyre 103, D G Charlton 23, V Chavda 107, C A Chavez Barajas 44, S Cheatham 110, S Chekanov 10, S V Chekulaev 199, G A Chelkov 88, M A Chelstowska 131, C Chen 87, H Chen 37, S Chen 50, T Chen 50, X Chen 216, S Cheng 48, A Cheplakov 88, V F Chepurnov 88, R Cherkaoui El Moursli 172, V Chernyatin 37, E Cheu 11, S L Cheung 198, L Chevalier 173, G Chiefari 128,129, L Chikovani 72, J T Childers 44, A Chilingarov 95, G Chiodini 96, A S Chisholm 23, R T Chislett 102, M V Chizhov 88, G Choudalakis 45, S Chouridou 174, I A Christidi 102, A Christov 68, D Chromek-Burckhart 44, M L Chu 191, J Chudoba 155, G Ciapetti 162,163, A K Ciftci 4, R Ciftci 4, D Cinca 52, V Cindro 99, C Ciocca 28, A Ciocio 20, M Cirilli 112, M Citterio 114, M Ciubancan 38, A Clark 69, P J Clark 65, W Cleland 152, J C Clemens 108, B Clement 77, C Clement 185,186, R W Clifft 159, Y Coadou 108, M Cobal 205,207, A Coccaro 175, J Cochran 87, P Coe 145, J G Cogan 180, J Coggeshall 208, E Cogneras 221, J Colas 9, A P Colijn 132, N J Collins 23, C Collins-Tooth 75, J Collot 77, G Colon 109, P Conde Muiño 153, E Coniavitis 145, M C Conidi 16, M Consonni 131, S M Consonni 114,115, V Consorti 68, S Constantinescu 38, C Conta 146,147, G Conti 79, F Conventi 128, J Cook 44, M Cooke 20, B D Cooper 102, A M Cooper-Sarkar 145, K Copic 20, T Cornelissen 218, M Corradi 28, F Corriveau 110, A Cortes-Gonzalez 208, G Cortiana 125, G Costa 114, M J Costa 210, D Costanzo 176, T Costin 45, D Côté 44, L Courneyea 212, G Cowan 101, C Cowden 42, B E Cox 107, K Cranmer 135, F Crescioli 150,151, M Cristinziani 30, G Crosetti 55,56, R Crupi 96,97, S Crépé-Renaudin 77, C-M Cuciuc 38, C Cuenca Almenar 219, T Cuhadar Donszelmann 176, M Curatolo 67, C J Curtis 23, C Cuthbert 190, P Cwetanski 84, H Czirr 178, P Czodrowski 63, Z Czyczula 219, S D’Auria 75, M D’Onofrio 98, A D’Orazio 162,163, P V M Da Silva 33, C Da Via 107, W Dabrowski 57, A Dafinca 145, T Dai 112, C Dallapiccola 109, M Dam 54, M Dameri 70,71, D S Damiani 174, H O Danielsson 44, D Dannheim 125, V Dao 69, G Darbo 70, G L Darlea 39, W Davey 30, T Davidek 156, N Davidson 111, R Davidson 95, E Davies 145, M Davies 119, A R Davison 102, Y Davygora 80, E Dawe 179, I Dawson 176, J W Dawson 10, R K Daya-Ishmukhametova 32, K De 12, R de Asmundis 128, S De Castro 28,29, P E De Castro Faria Salgado 37, S De Cecco 103, J de Graat 124, N De Groot 131, P de Jong 132, C De La Taille 142, H De la Torre 105, B De Lotto 205,207, L de Mora 95, L De Nooij 132, D De Pedis 162, A De Salvo 162, U De Sanctis 205,207, A De Santo 189, J B De Vivie De Regie 142, G De Zorzi 162,163, S Dean 102, W J Dearnaley 95, R Debbe 37, C Debenedetti 65, B Dechenaux 77, D V Dedovich 88, J Degenhardt 148, C Del Papa 205,207, J Del Peso 105, T Del Prete 150,151, T Delemontex 77, M Deliyergiyev 99, A Dell’Acqua 44, L Dell’Asta 31, M Della Pietra 128, D della Volpe 128,129, M Delmastro 9, N Delruelle 44, P A Delsart 77, C Deluca 188, S Demers 219, M Demichev 88, B Demirkoz 16, J Deng 204, S P Denisov 158, D Derendarz 58, J E Derkaoui 171, F Derue 103, P Dervan 98, K Desch 30, E Devetak 188, P O Deviveiros 132, A Dewhurst 159, B DeWilde 188, S Dhaliwal 198, R Dhullipudi 37, A Di Ciaccio 164,165, L Di Ciaccio 9, A Di Girolamo 44, B Di Girolamo 44, S Di Luise 166,167, A Di Mattia 216, B Di Micco 44, R Di Nardo 67, A Di Simone 164,165, R Di Sipio 28,29, M A Diaz 46, F Diblen 26, E B Diehl 112, J Dietrich 61, T A Dietzsch 80, S Diglio 111, K Dindar Yagci 59, J Dingfelder 30, C Dionisi 162,163, P Dita 38, S Dita 38, F Dittus 44, F Djama 108, T Djobava 73, M A B do Vale 35, A Do Valle Wemans 153, T K O Doan 9, M Dobbs 110, R Dobinson 44, D Dobos 44, E Dobson 44, J Dodd 53, C Doglioni 69, T Doherty 75, Y Doi 89, J Dolejsi 156, I Dolenc 99, Z Dolezal 156, B A Dolgoshein 122, T Dohmae 195, M Donadelli 36, M Donega 148, J Donini 52, J Dopke 44, A Doria 128, A Dos Anjos 216, M Dosil 16, A Dotti 150,151, M T Dova 94, A D Doxiadis 132, A T Doyle 75, Z Drasal 156, J Drees 218, N Dressnandt 148, H Drevermann 44, C Driouichi 54, M Dris 14, J Dubbert 125, S Dube 20, E Duchovni 215, G Duckeck 124, A Dudarev 44, F Dudziak 87, M Dührssen 44, I P Duerdoth 107, L Duflot 142, M-A Dufour 110, M Dunford 44, H Duran Yildiz 4, R Duxfield 176, M Dwuznik 57, F Dydak 44, M Düren 74, W L Ebenstein 64, J Ebke 124, S Eckweiler 106, K Edmonds 106, C A Edwards 101, N C Edwards 75, W Ehrenfeld 61, T Ehrich 125, T Eifert 180, G Eigen 19, K Einsweiler 20, E Eisenhandler 100, T Ekelof 209, M El Kacimi 170, M Ellert 209, S Elles 9, F Ellinghaus 106, K Ellis 100, N Ellis 44, J Elmsheuser 124, M Elsing 44, D Emeliyanov 159, R Engelmann 188, A Engl 124, B Epp 85, A Eppig 112, J Erdmann 76, A Ereditato 22, D Eriksson 185, J Ernst 2, M Ernst 37, J Ernwein 173, D Errede 208, S Errede 208, E Ertel 106, M Escalier 142, C Escobar 152, X Espinal Curull 16, B Esposito 67, F Etienne 108, A I Etienvre 173, E Etzion 193, D Evangelakou 76, H Evans 84, L Fabbri 28,29, C Fabre 44, R M Fakhrutdinov 158, S Falciano 162, Y Fang 216, M Fanti 114,115, A Farbin 12, A Farilla 166, J Farley 188, T Farooque 198, S Farrell 204, S M Farrington 145, P Farthouat 44, P Fassnacht 44, D Fassouliotis 13, B Fatholahzadeh 198, A Favareto 114,115, L Fayard 142, S Fazio 55,56, R Febbraro 52, P Federic 181, O L Fedin 149, W Fedorko 113, M Fehling-Kaschek 68, L Feligioni 108, D Fellmann 10, C Feng 51, E J Feng 45, A B Fenyuk 158, J Ferencei 182, J Ferland 119, W Fernando 10, S Ferrag 75, J Ferrando 75, V Ferrara 61, A Ferrari 209, P Ferrari 132, R Ferrari 146, D E Ferreira de Lima 75, A Ferrer 210, M L Ferrer 67, D Ferrere 69, C Ferretti 112, A Ferretto Parodi 70,71, M Fiascaris 45, F Fiedler 106, A Filipčič 99, A Filippas 14, F Filthaut 131, M Fincke-Keeler 212, M C N Fiolhais 153, L Fiorini 210, A Firan 59, G Fischer 61, P Fischer 30, M J Fisher 136, M Flechl 68, I Fleck 178, J Fleckner 106, P Fleischmann 217, S Fleischmann 218, T Flick 218, A Floderus 104, L R Flores Castillo 216, M J Flowerdew 125, M Fokitis 14, T Fonseca Martin 22, D A Forbush 175, A Formica 173, A Forti 107, D Fortin 199, J M Foster 107, D Fournier 142, A Foussat 44, A J Fowler 64, K Fowler 174, H Fox 95, P Francavilla 16, S Franchino 146,147, D Francis 44, T Frank 215, M Franklin 79, S Franz 44, M Fraternali 146,147, S Fratina 148, S T French 42, C Friedrich 61, F Friedrich 63, R Froeschl 44, D Froidevaux 44, J A Frost 42, C Fukunaga 196, E Fullana Torregrosa 44, B G Fulsom 180, J Fuster 210, C Gabaldon 44, O Gabizon 215, T Gadfort 37, S Gadomski 69, G Gagliardi 70,71, P Gagnon 84, C Galea 124, E J Gallas 145, V Gallo 22, B J Gallop 159, P Gallus 155, K K Gan 136, Y S Gao 180, V A Gapienko 158, A Gaponenko 20, F Garberson 219, M Garcia-Sciveres 20, C García 210, J E García Navarro 210, R W Gardner 45, N Garelli 44, H Garitaonandia 132, V Garonne 44, J Garvey 23, C Gatti 67, G Gaudio 146, B Gaur 178, L Gauthier 173, P Gauzzi 162,163, I L Gavrilenko 120, C Gay 211, G Gaycken 30, J-C Gayde 44, E N Gazis 14, P Ge 51, Z Gecse 211, C N P Gee 159, D A A Geerts 132, Ch Geich-Gimbel 30, K Gellerstedt 185,186, C Gemme 70, A Gemmell 75, M H Genest 77, S Gentile 162,163, M George 76, S George 101, P Gerlach 218, A Gershon 193, C Geweniger 80, H Ghazlane 169, N Ghodbane 52, B Giacobbe 28, S Giagu 162,163, V Giakoumopoulou 13, V Giangiobbe 16, F Gianotti 44, B Gibbard 37, A Gibson 198, S M Gibson 44, L M Gilbert 145, V Gilewsky 117, D Gillberg 43, A R Gillman 159, D M Gingrich 3, J Ginzburg 193, N Giokaris 13, M P Giordani 207, R Giordano 128,129, F M Giorgi 21, P Giovannini 125, P F Giraud 173, D Giugni 114, M Giunta 119, P Giusti 28, B K Gjelsten 144, L K Gladilin 123, C Glasman 105, J Glatzer 68, A Glazov 61, K W Glitza 218, G L Glonti 88, J R Goddard 100, J Godfrey 179, J Godlewski 44, M Goebel 61, T Göpfert 63, C Goeringer 106, C Gössling 62, T Göttfert 125, S Goldfarb 112, T Golling 219, A Gomes 153, L S Gomez Fajardo 61, R Gonçalo 101, J Goncalves Pinto Firmino Da Costa 61, L Gonella 30, A Gonidec 44, S Gonzalez 216, S González de la Hoz 210, G Gonzalez Parra 16, M L Gonzalez Silva 41, S Gonzalez-Sevilla 69, J J Goodson 188, L Goossens 44, P A Gorbounov 121, H A Gordon 37, I Gorelov 130, G Gorfine 218, B Gorini 44, E Gorini 96,97, A Gorišek 99, E Gornicki 58, V N Goryachev 158, B Gosdzik 61, A T Goshaw 10, M Gosselink 132, M I Gostkin 88, I Gough Eschrich 204, M Gouighri 168, D Goujdami 170, M P Goulette 69, A G Goussiou 175, C Goy 9, S Gozpinar 32, I Grabowska-Bold 57, P Grafström 44, K-J Grahn 61, F Grancagnolo 96, S Grancagnolo 21, V Grassi 188, V Gratchev 149, N Grau 53, H M Gray 44, J A Gray 188, E Graziani 166, O G Grebenyuk 149, T Greenshaw 98, Z D Greenwood 37, K Gregersen 54, I M Gregor 61, P Grenier 180, J Griffiths 175, N Grigalashvili 88, A A Grillo 174, S Grinstein 16, Y V Grishkevich 123, J-F Grivaz 142, E Gross 215, J Grosse-Knetter 76, J Groth-Jensen 215, K Grybel 178, V J Guarino 10, D Guest 219, C Guicheney 52, A Guida 96,97, S Guindon 76, H Guler 110, J Gunther 155, B Guo 198, J Guo 53, A Gupta 45, Y Gusakov 88, V N Gushchin 158, P Gutierrez 138, N Guttman 193, O Gutzwiller 216, C Guyot 173, C Gwenlan 145, C B Gwilliam 98, A Haas 180, S Haas 44, C Haber 20, H K Hadavand 59, D R Hadley 23, P Haefner 125, F Hahn 44, S Haider 44, Z Hajduk 58, H Hakobyan 220, D Hall 145, J Haller 76, K Hamacher 218, P Hamal 140, M Hamer 76, A Hamilton 184, S Hamilton 202, H Han 48, L Han 49, K Hanagaki 143, K Hanawa 201, M Hance 20, C Handel 106, P Hanke 80, J R Hansen 54, J B Hansen 54, J D Hansen 54, P H Hansen 54, P Hansson 180, K Hara 201, G A Hare 174, T Harenberg 218, S Harkusha 116, D Harper 112, R D Harrington 65, O M Harris 175, K Harrison 23, J Hartert 68, F Hartjes 132, T Haruyama 89, A Harvey 78, S Hasegawa 127, Y Hasegawa 177, S Hassani 173, M Hatch 44, D Hauff 125, S Haug 22, M Hauschild 44, R Hauser 113, M Havranek 30, B M Hawes 145, C M Hawkes 23, R J Hawkings 44, A D Hawkins 104, D Hawkins 204, T Hayakawa 90, T Hayashi 201, D Hayden 101, H S Hayward 98, S J Haywood 159, E Hazen 31, M He 51, S J Head 23, V Hedberg 104, L Heelan 12, S Heim 113, B Heinemann 20, S Heisterkamp 54, L Helary 9, C Heller 124, M Heller 44, S Hellman 185,186, D Hellmich 30, C Helsens 16, R C W Henderson 95, M Henke 80, A Henrichs 76, A M Henriques Correia 44, S Henrot-Versille 142, F Henry-Couannier 108, C Hensel 76, T Henß 218, C M Hernandez 12, Y Hernández Jiménez 210, R Herrberg 21, G Herten 68, R Hertenberger 124, L Hervas 44, G G Hesketh 102, N P Hessey 132, E Higón-Rodriguez 210, D Hill 10, J C Hill 42, N Hill 10, K H Hiller 61, S Hillert 30, S J Hillier 23, I Hinchliffe 20, E Hines 148, M Hirose 143, F Hirsch 62, D Hirschbuehl 218, J Hobbs 188, N Hod 193, M C Hodgkinson 176, P Hodgson 176, A Hoecker 44, M R Hoeferkamp 130, J Hoffman 59, D Hoffmann 108, M Hohlfeld 106, M Holder 178, S O Holmgren 185, T Holy 157, J L Holzbauer 113, Y Homma 90, T M Hong 148, L Hooft van Huysduynen 135, T Horazdovsky 157, C Horn 180, S Horner 68, J-Y Hostachy 77, S Hou 191, M A Houlden 98, A Hoummada 168, J Howarth 107, D F Howell 145, I Hristova 21, J Hrivnac 142, I Hruska 155, T Hryn’ova 9, P J Hsu 106, S-C Hsu 20, G S Huang 138, Z Hubacek 157, F Hubaut 108, F Huegging 30, A Huettmann 61, T B Huffman 145, E W Hughes 53, G Hughes 95, R E Hughes-Jones 107, M Huhtinen 44, P Hurst 79, M Hurwitz 20, U Husemann 61, N Huseynov 88, J Huston 113, J Huth 79, G Iacobucci 69, G Iakovidis 14, M Ibbotson 107, I Ibragimov 178, R Ichimiya 90, L Iconomidou-Fayard 142, J Idarraga 142, P Iengo 128, O Igonkina 132, Y Ikegami 89, M Ikeno 89, Y Ilchenko 59, D Iliadis 194, N Ilic 198, M Imori 195, T Ince 30, J Inigo-Golfin 44, P Ioannou 13, M Iodice 166, K Iordanidou 13, V Ippolito 162,163, A Irles Quiles 210, C Isaksson 209, A Ishikawa 90, M Ishino 91, R Ishmukhametov 59, C Issever 145, S Istin 24, A V Ivashin 158, W Iwanski 58, H Iwasaki 89, J M Izen 60, V Izzo 128, B Jackson 148, J N Jackson 98, P Jackson 180, M R Jaekel 44, V Jain 84, K Jakobs 68, S Jakobsen 54, J Jakubek 157, D K Jana 138, E Jansen 102, H Jansen 44, A Jantsch 125, M Janus 68, G Jarlskog 104, L Jeanty 79, K Jelen 57, I Jen-La Plante 45, P Jenni 44, A Jeremie 9, P Jež 54, S Jézéquel 9, M K Jha 28, H Ji 216, W Ji 106, J Jia 188, Y Jiang 49, M Jimenez Belenguer 61, G Jin 49, S Jin 48, O Jinnouchi 197, M D Joergensen 54, D Joffe 59, L G Johansen 19, M Johansen 185,186, K E Johansson 185, P Johansson 176, S Johnert 61, K A Johns 11, K Jon-And 185,186, G Jones 145, R W L Jones 95, T W Jones 102, T J Jones 98, O Jonsson 44, C Joram 44, P M Jorge 153, J Joseph 20, K D Joshi 107, J Jovicevic 187, T Jovin 18, X Ju 216, C A Jung 62, R M Jungst 44, V Juranek 155, P Jussel 85, A Juste Rozas 16, V V Kabachenko 158, S Kabana 22, M Kaci 210, A Kaczmarska 58, P Kadlecik 54, M Kado 142, H Kagan 136, M Kagan 79, S Kaiser 125, E Kajomovitz 192, S Kalinin 218, L V Kalinovskaya 88, S Kama 59, N Kanaya 195, M Kaneda 44, S Kaneti 42, T Kanno 197, V A Kantserov 122, J Kanzaki 89, B Kaplan 219, A Kapliy 45, J Kaplon 44, D Kar 75, M Karagounis 30, M Karagoz 145, M Karnevskiy 61, V Kartvelishvili 95, A N Karyukhin 158, L Kashif 216, G Kasieczka 81, R D Kass 136, A Kastanas 19, M Kataoka 9, Y Kataoka 195, E Katsoufis 14, J Katzy 61, V Kaushik 11, K Kawagoe 93, T Kawamoto 195, G Kawamura 106, M S Kayl 132, V A Kazanin 134, M Y Kazarinov 88, R Keeler 212, R Kehoe 59, M Keil 76, G D Kekelidze 88, J S Keller 175, J Kennedy 124, M Kenyon 75, O Kepka 155, N Kerschen 44, B P Kerševan 99, S Kersten 218, K Kessoku 195, J Keung 198, F Khalil-zada 15, H Khandanyan 208, A Khanov 139, D Kharchenko 88, A Khodinov 122, A G Kholodenko 158, A Khomich 80, T J Khoo 42, G Khoriauli 30, A Khoroshilov 218, N Khovanskiy 88, V Khovanskiy 121, E Khramov 88, J Khubua 73, H Kim 185,186, M S Kim 3, S H Kim 201, N Kimura 214, O Kind 21, B T King 98, M King 90, R S B King 145, J Kirk 159, L E Kirsch 32, A E Kiryunin 125, T Kishimoto 90, D Kisielewska 57, T Kittelmann 152, A M Kiver 158, E Kladiva 182, M Klein 98, U Klein 98, K Kleinknecht 106, M Klemetti 110, A Klier 215, P Klimek 185,186, A Klimentov 37, R Klingenberg 62, J A Klinger 107, E B Klinkby 54, T Klioutchnikova 44, P F Klok 131, S Klous 132, E-E Kluge 80, T Kluge 98, P Kluit 132, S Kluth 125, N S Knecht 198, E Kneringer 85, J Knobloch 44, E B F G Knoops 108, A Knue 76, B R Ko 64, T Kobayashi 195, M Kobel 63, M Kocian 180, P Kodys 156, K Köneke 44, A C König 131, S Koenig 106, L Köpke 106, F Koetsveld 131, P Koevesarki 30, T Koffas 43, E Koffeman 132, L A Kogan 145, S Kohlmann 218, F Kohn 76, Z Kohout 157, T Kohriki 89, T Koi 180, T Kokott 30, G M Kolachev 134, H Kolanoski 21, V Kolesnikov 88, I Koletsou 114, J Koll 113, M Kollefrath 68, S D Kolya 107, A A Komar 120, Y Komori 195, T Kondo 89, T Kono 61, A I Kononov 68, R Konoplich 135, N Konstantinidis 102, A Kootz 218, S Koperny 57, K Korcyl 58, K Kordas 194, V Koreshev 158, A Korn 145, A Korol 134, I Korolkov 16, E V Korolkova 176, V A Korotkov 158, O Kortner 125, S Kortner 125, V V Kostyukhin 30, M J Kotamäki 44, S Kotov 125, V M Kotov 88, A Kotwal 64, C Kourkoumelis 13, V Kouskoura 194, A Koutsman 199, R Kowalewski 212, T Z Kowalski 57, W Kozanecki 173, A S Kozhin 158, V Kral 157, V A Kramarenko 123, G Kramberger 99, M W Krasny 103, A Krasznahorkay 135, J Kraus 113, J K Kraus 30, F Krejci 157, J Kretzschmar 98, N Krieger 76, P Krieger 198, K Kroeninger 76, H Kroha 125, J Kroll 148, J Kroseberg 30, J Krstic 17, U Kruchonak 88, H Krüger 30, T Kruker 22, N Krumnack 87, Z V Krumshteyn 88, A Kruth 30, T Kubota 111, S Kuday 4, S Kuehn 68, A Kugel 82, T Kuhl 61, D Kuhn 85, V Kukhtin 88, Y Kulchitsky 116, S Kuleshov 47, C Kummer 124, M Kuna 103, N Kundu 145, J Kunkle 148, A Kupco 155, H Kurashige 90, M Kurata 201, Y A Kurochkin 116, V Kus 155, E S Kuwertz 187, M Kuze 197, J Kvita 179, R Kwee 21, A La Rosa 69, L La Rotonda 55,56, L Labarga 105, J Labbe 9, S Lablak 168, C Lacasta 210, F Lacava 162,163, H Lacker 21, D Lacour 103, V R Lacuesta 210, E Ladygin 88, R Lafaye 9, B Laforge 103, T Lagouri 105, S Lai 68, E Laisne 77, M Lamanna 44, L Lambourne 102, C L Lampen 11, W Lampl 11, E Lancon 173, U Landgraf 68, M P J Landon 100, J L Lane 107, C Lange 61, A J Lankford 204, F Lanni 37, K Lantzsch 218, S Laplace 103, C Lapoire 30, J F Laporte 173, T Lari 114, A V Larionov 158, A Larner 145, C Lasseur 44, M Lassnig 44, P Laurelli 67, V Lavorini 55,56, W Lavrijsen 20, P Laycock 98, A B Lazarev 88, O Le Dortz 103, E Le Guirriec 108, C Le Maner 198, E Le Menedeu 16, C Lebel 119, T LeCompte 10, F Ledroit-Guillon 77, H Lee 132, J S H Lee 143, S C Lee 191, L Lee 219, M Lefebvre 212, M Legendre 173, A Leger 69, B C LeGeyt 148, F Legger 124, C Leggett 20, M Lehmacher 30, G Lehmann Miotto 44, X Lei 11, M A L Leite 36, R Leitner 156, D Lellouch 215, M Leltchouk 53, B Lemmer 76, V Lendermann 80, K J C Leney 184, T Lenz 132, G Lenzen 218, B Lenzi 44, K Leonhardt 63, S Leontsinis 14, F Lepold 80, C Leroy 119, J-R Lessard 212, J Lesser 185, C G Lester 42, C M Lester 148, J Levêque 9, D Levin 112, L J Levinson 215, M S Levitski 158, A Lewis 145, G H Lewis 135, A M Leyko 30, M Leyton 21, B Li 108, H Li 216, S Li 49, X Li 112, Z Liang 145, H Liao 52, B Liberti 164, P Lichard 44, M Lichtnecker 124, K Lie 208, W Liebig 19, C Limbach 30, A Limosani 111, M Limper 86, S C Lin 191, F Linde 132, J T Linnemann 113, E Lipeles 148, L Lipinsky 155, A Lipniacka 19, T M Liss 208, D Lissauer 37, A Lister 69, A M Litke 174, C Liu 43, D Liu 191, H Liu 112, J B Liu 112, M Liu 49, Y Liu 49, M Livan 146,147, S S A Livermore 145, A Lleres 77, J Llorente Merino 105, S L Lloyd 100, E Lobodzinska 61, P Loch 11, W S Lockman 174, T Loddenkoetter 30, F K Loebinger 107, A Loginov 219, C W Loh 211, T Lohse 21, K Lohwasser 68, M Lokajicek 155, J Loken 145, V P Lombardo 9, R E Long 95, L Lopes 153, D Lopez Mateos 79, J Lorenz 124, N Lorenzo Martinez 142, M Losada 203, P Loscutoff 20, F Lo Sterzo 162,163, M J Losty 199, X Lou 60, A Lounis 142, K F Loureiro 203, J Love 31, P A Love 95, A J Lowe 180, F Lu 48, H J Lubatti 175, C Luci 162,163, A Lucotte 77, A Ludwig 63, D Ludwig 61, I Ludwig 68, J Ludwig 68, F Luehring 84, G Luijckx 132, W Lukas 85, D Lumb 68, L Luminari 162, E Lund 144, B Lund-Jensen 187, B Lundberg 104, J Lundberg 185,186, J Lundquist 54, M Lungwitz 106, G Lutz 125, D Lynn 37, J Lys 20, E Lytken 104, H Ma 37, L L Ma 216, J A Macana Goia 119, G Maccarrone 67, A Macchiolo 125, B Maček 99, J Machado Miguens 153, R Mackeprang 54, R J Madaras 20, W F Mader 63, R Maenner 82, T Maeno 37, P Mättig 218, S Mättig 61, L Magnoni 44, E Magradze 76, Y Mahalalel 193, K Mahboubi 68, S Mahmoud 98, G Mahout 23, C Maiani 162,163, C Maidantchik 33, A Maio 153, S Majewski 37, Y Makida 89, N Makovec 142, P Mal 173, B Malaescu 44, Pa Malecki 58, P Malecki 58, V P Maleev 149, F Malek 77, U Mallik 86, D Malon 10, C Malone 180, S Maltezos 14, V Malyshev 134, S Malyukov 44, R Mameghani 124, J Mamuzic 18, A Manabe 89, L Mandelli 114, I Mandić 99, R Mandrysch 21, J Maneira 153, P S Mangeard 113, L Manhaes de Andrade Filho 33, I D Manjavidze 88, A Mann 76, P M Manning 174, A Manousakis-Katsikakis 13, B Mansoulie 173, A Manz 125, A Mapelli 44, L Mapelli 44, L March 105, J F Marchand 43, F Marchese 164,165, G Marchiori 103, M Marcisovsky 155, C P Marino 212, F Marroquim 33, R Marshall 107, Z Marshall 44, F K Martens 198, S Marti-Garcia 210, A J Martin 219, B Martin 44, B Martin 113, F F Martin 148, J P Martin 119, Ph Martin 77, T A Martin 23, V J Martin 65, B Martin dit Latour 69, S Martin-Haugh 189, M Martinez 16, V Martinez Outschoorn 79, A C Martyniuk 212, M Marx 107, F Marzano 162, A Marzin 138, L Masetti 106, T Mashimo 195, R Mashinistov 120, J Masik 107, A L Maslennikov 134, I Massa 28,29, G Massaro 132, N Massol 9, P Mastrandrea 162,163, A Mastroberardino 55,56, T Masubuchi 195, P Matricon 142, H Matsumoto 195, H Matsunaga 195, T Matsushita 90, C Mattravers 145, J M Maugain 44, J Maurer 108, S J Maxfield 98, E N May 10, A Mayne 176, R Mazini 191, M Mazur 30, L Mazzaferro 164,165, M Mazzanti 114, S P Mc Kee 112, A McCarn 208, R L McCarthy 188, T G McCarthy 43, N A McCubbin 159, K W McFarlane 78, J A Mcfayden 176, H McGlone 75, G Mchedlidze 73, R A McLaren 44, T Mclaughlan 23, S J McMahon 159, R A McPherson 212, A Meade 109, J Mechnich 132, M Mechtel 218, M Medinnis 61, R Meera-Lebbai 138, T Meguro 143, R Mehdiyev 119, S Mehlhase 54, A Mehta 98, K Meier 80, B Meirose 104, C Melachrinos 45, B R Mellado Garcia 216, F Meloni 114,115, L Mendoza Navas 203, Z Meng 191, A Mengarelli 28,29, S Menke 125, C Menot 44, E Meoni 16, K M Mercurio 79, P Mermod 69, L Merola 128,129, C Meroni 114, F S Merritt 45, H Merritt 136, A Messina 44, J Metcalfe 130, A S Mete 87, C Meyer 106, C Meyer 45, J-P Meyer 173, J Meyer 217, J Meyer 76, T C Meyer 44, W T Meyer 87, J Miao 51, S Michal 44, L Micu 38, R P Middleton 159, S Migas 98, L Mijović 61, G Mikenberg 215, M Mikestikova 155, M Mikuž 99, D W Miller 45, R J Miller 113, W J Mills 211, C Mills 79, A Milov 215, D A Milstead 185,186, D Milstein 215, A A Minaenko 158, M Miñano Moya 210, I A Minashvili 88, A I Mincer 135, B Mindur 57, M Mineev 88, Y Ming 216, L M Mir 16, G Mirabelli 162, L Miralles Verge 16, A Misiejuk 101, J Mitrevski 174, G Y Mitrofanov 158, V A Mitsou 210, S Mitsui 89, P S Miyagawa 176, K Miyazaki 90, J U Mjörnmark 104, T Moa 185,186, P Mockett 175, S Moed 79, V Moeller 42, K Mönig 61, N Möser 30, S Mohapatra 188, W Mohr 68, S Mohrdieck-Möck 125, R Moles-Valls 210, J Molina-Perez 44, J Monk 102, E Monnier 108, S Montesano 114,115, F Monticelli 94, S Monzani 28,29, R W Moore 3, G F Moorhead 111, C Mora Herrera 69, A Moraes 75, N Morange 173, J Morel 76, G Morello 55,56, D Moreno 106, M Moreno Llácer 210, P Morettini 70, M Morgenstern 63, M Morii 79, J Morin 100, A K Morley 44, G Mornacchi 44, S V Morozov 122, J D Morris 100, L Morvaj 127, H G Moser 125, M Mosidze 73, J Moss 136, R Mount 180, E Mountricha 14, S V Mouraviev 120, E J W Moyse 109, M Mudrinic 18, F Mueller 80, J Mueller 152, K Mueller 30, T A Müller 124, T Mueller 106, D Muenstermann 44, Y Munwes 193, W J Murray 159, I Mussche 132, E Musto 128,129, A G Myagkov 158, M Myska 155, J Nadal 16, K Nagai 201, K Nagano 89, A Nagarkar 136, Y Nagasaka 83, M Nagel 125, A M Nairz 44, Y Nakahama 44, K Nakamura 195, T Nakamura 195, I Nakano 137, G Nanava 30, A Napier 202, R Narayan 81, M Nash 102, N R Nation 31, T Nattermann 30, T Naumann 61, G Navarro 203, H A Neal 112, E Nebot 105, P Yu Nechaeva 120, T J Neep 107, A Negri 146,147, G Negri 44, S Nektarijevic 69, A Nelson 204, T K Nelson 180, S Nemecek 155, P Nemethy 135, A A Nepomuceno 33, M Nessi 44, M S Neubauer 208, A Neusiedl 106, R M Neves 135, P Nevski 37, P R Newman 23, V Nguyen Thi Hong 173, R B Nickerson 145, R Nicolaidou 173, L Nicolas 176, B Nicquevert 44, F Niedercorn 142, J Nielsen 174, T Niinikoski 44, N Nikiforou 53, A Nikiforov 21, V Nikolaenko 158, K Nikolaev 88, I Nikolic-Audit 103, K Nikolics 69, K Nikolopoulos 37, H Nilsen 68, P Nilsson 12, Y Ninomiya 195, A Nisati 162, T Nishiyama 90, R Nisius 125, L Nodulman 10, M Nomachi 143, I Nomidis 194, M Nordberg 44, P R Norton 159, J Novakova 156, M Nozaki 89, L Nozka 140, I M Nugent 199, A-E Nuncio-Quiroz 30, G Nunes Hanninger 111, T Nunnemann 124, E Nurse 102, B J O’Brien 65, S W O’Neale 23, D C O’Neil 179, V O’Shea 75, L B Oakes 124, F G Oakham 43, H Oberlack 125, J Ocariz 103, A Ochi 90, S Oda 195, S Odaka 89, J Odier 108, H Ogren 84, A Oh 107, S H Oh 64, C C Ohm 185,186, T Ohshima 127, H Ohshita 177, S Okada 90, H Okawa 204, Y Okumura 127, T Okuyama 195, A Olariu 38, M Olcese 70, A G Olchevski 88, S A Olivares Pino 46, M Oliveira 153, D Oliveira Damazio 37, E Oliver Garcia 210, D Olivito 148, A Olszewski 58, J Olszowska 58, C Omachi 90, A Onofre 153, P U E Onyisi 45, C J Oram 199, M J Oreglia 45, Y Oren 193, D Orestano 166,167, N Orlando 96,97, I Orlov 134, C Oropeza Barrera 75, R S Orr 198, B Osculati 70,71, R Ospanov 148, C Osuna 16, G Otero y Garzon 41, J P Ottersbach 132, M Ouchrif 171, E A Ouellette 212, F Ould-Saada 144, A Ouraou 173, Q Ouyang 48, A Ovcharova 20, M Owen 107, S Owen 176, V E Ozcan 24, N Ozturk 12, A Pacheco Pages 16, C Padilla Aranda 16, S Pagan Griso 20, E Paganis 176, F Paige 37, P Pais 109, K Pajchel 144, G Palacino 200, C P Paleari 11, S Palestini 44, D Pallin 52, A Palma 153, J D Palmer 23, Y B Pan 216, E Panagiotopoulou 14, B Panes 46, N Panikashvili 112, S Panitkin 37, D Pantea 38, M Panuskova 155, V Paolone 152, A Papadelis 185, Th D Papadopoulou 14, A Paramonov 10, D Paredes Hernandez 52, W Park 37, M A Parker 42, F Parodi 70,71, J A Parsons 53, U Parzefall 68, S Pashapour 76, E Pasqualucci 162, S Passaggio 70, A Passeri 166, F Pastore 166,167, Fr Pastore 101, G Pásztor 69, S Pataraia 218, N Patel 190, J R Pater 107, S Patricelli 128,129, T Pauly 44, M Pecsy 181, M I Pedraza Morales 216, S V Peleganchuk 134, D Pelikan 209, H Peng 49, B Penning 45, A Penson 53, J Penwell 84, M Perantoni 33, K Perez 53, T Perez Cavalcanti 61, E Perez Codina 199, M T Pérez García-Estañ 210, V Perez Reale 53, L Perini 114,115, H Pernegger 44, R Perrino 96, P Perrodo 9, S Persembe 4, V D Peshekhonov 88, K Peters 44, B A Petersen 44, J Petersen 44, T C Petersen 54, E Petit 9, A Petridis 194, C Petridou 194, E Petrolo 162, F Petrucci 166,167, D Petschull 61, M Petteni 179, R Pezoa 47, A Phan 111, P W Phillips 159, G Piacquadio 44, A Picazio 69, E Piccaro 100, M Piccinini 28,29, S M Piec 61, R Piegaia 41, D T Pignotti 136, J E Pilcher 45, A D Pilkington 107, J Pina 153, M Pinamonti 205,207, A Pinder 145, J L Pinfold 3, J Ping 50, B Pinto 153, O Pirotte 44, C Pizio 114,115, R Placakyte 61, M Plamondon 212, M-A Pleier 37, A V Pleskach 158, E Plotnikova 88, A Poblaguev 37, S Poddar 80, F Podlyski 52, L Poggioli 142, T Poghosyan 30, M Pohl 69, F Polci 77, G Polesello 146, A Policicchio 55,56, A Polini 28, J Poll 100, V Polychronakos 37, D M Pomarede 173, D Pomeroy 32, K Pommès 44, L Pontecorvo 162, B G Pope 113, G A Popeneciu 38, D S Popovic 17, A Poppleton 44, X Portell Bueso 44, C Posch 31, G E Pospelov 125, S Pospisil 157, I N Potrap 125, C J Potter 189, C T Potter 141, G Poulard 44, J Poveda 216, V Pozdnyakov 88, R Prabhu 102, P Pralavorio 108, A Pranko 20, S Prasad 44, R Pravahan 37, S Prell 87, K Pretzl 22, L Pribyl 44, D Price 84, J Price 98, L E Price 10, M J Price 44, D Prieur 152, M Primavera 96, K Prokofiev 135, F Prokoshin 47, S Protopopescu 37, J Proudfoot 10, X Prudent 63, M Przybycien 57, H Przysiezniak 9, S Psoroulas 30, E Ptacek 141, E Pueschel 109, J Purdham 112, M Purohit 37, P Puzo 142, Y Pylypchenko 86, J Qian 112, Z Qian 108, Z Qin 61, A Quadt 76, D R Quarrie 20, W B Quayle 216, F Quinonez 46, M Raas 131, V Radescu 61, B Radics 30, P Radloff 141, T Rador 24, F Ragusa 114,115, G Rahal 221, A M Rahimi 136, D Rahm 37, S Rajagopalan 37, M Rammensee 68, M Rammes 178, A S Randle-Conde 59, K Randrianarivony 43, P N Ratoff 95, F Rauscher 124, T C Rave 68, M Raymond 44, A L Read 144, D M Rebuzzi 146,147, A Redelbach 217, G Redlinger 37, R Reece 148, K Reeves 60, A Reichold 132, E Reinherz-Aronis 193, A Reinsch 141, I Reisinger 62, C Rembser 44, Z L Ren 191, A Renaud 142, M Rescigno 162, S Resconi 114, B Resende 173, P Reznicek 124, R Rezvani 198, A Richards 102, R Richter 125, E Richter-Was 9, M Ridel 103, M Rijpstra 132, M Rijssenbeek 188, A Rimoldi 146,147, L Rinaldi 28, R R Rios 59, I Riu 16, G Rivoltella 114,115, F Rizatdinova 139, E Rizvi 100, S H Robertson 110, A Robichaud-Veronneau 145, D Robinson 42, J E M Robinson 102, A Robson 75, J G Rocha de Lima 133, C Roda 150,151, D Roda Dos Santos 44, D Rodriguez 203, A Roe 76, S Roe 44, O Røhne 144, V Rojo 2, S Rolli 202, A Romaniouk 122, M Romano 28,29, V M Romanov 88, G Romeo 41, E Romero Adam 210, L Roos 103, E Ros 210, S Rosati 162, K Rosbach 69, A Rose 189, M Rose 101, G A Rosenbaum 198, E I Rosenberg 87, P L Rosendahl 19, O Rosenthal 178, L Rosselet 69, V Rossetti 16, E Rossi 162,163, L P Rossi 70, M Rotaru 38, I Roth 215, J Rothberg 175, D Rousseau 142, C R Royon 173, A Rozanov 108, Y Rozen 192, X Ruan 48, F Rubbo 16, I Rubinskiy 61, B Ruckert 124, N Ruckstuhl 132, V I Rud 123, C Rudolph 63, G Rudolph 85, F Rühr 11, F Ruggieri 166,167, A Ruiz-Martinez 87, V Rumiantsev 117, L Rumyantsev 88, K Runge 68, Z Rurikova 68, N A Rusakovich 88, J P Rutherfoord 11, C Ruwiedel 20, P Ruzicka 155, Y F Ryabov 149, V Ryadovikov 158, P Ryan 113, M Rybar 156, G Rybkin 142, N C Ryder 145, S Rzaeva 15, A F Saavedra 190, I Sadeh 193, H F-W Sadrozinski 174, R Sadykov 88, F Safai Tehrani 162, H Sakamoto 195, G Salamanna 100, A Salamon 164, M Saleem 138, D Salek 44, D Salihagic 125, A Salnikov 180, J Salt 210, B M Salvachua Ferrando 10, D Salvatore 55,56, F Salvatore 189, A Salvucci 131, A Salzburger 44, D Sampsonidis 194, B H Samset 144, A Sanchez 128,129, V Sanchez Martinez 210, H Sandaker 19, H G Sander 106, M P Sanders 124, M Sandhoff 218, T Sandoval 42, C Sandoval 203, R Sandstroem 125, S Sandvoss 218, D P C Sankey 159, A Sansoni 67, C Santamarina Rios 110, C Santoni 52, R Santonico 164,165, H Santos 153, J G Saraiva 153, T Sarangi 216, E Sarkisyan-Grinbaum 12, F Sarri 150,151, G Sartisohn 218, O Sasaki 89, N Sasao 91, I Satsounkevitch 116, G Sauvage 9, E Sauvan 9, J B Sauvan 142, P Savard 198, V Savinov 152, D O Savu 44, L Sawyer 37, D H Saxon 75, J Saxon 148, L P Says 52, C Sbarra 28, A Sbrizzi 28,29, O Scallon 119, D A Scannicchio 204, M Scarcella 190, J Schaarschmidt 142, P Schacht 125, D Schaefer 148, U Schäfer 106, S Schaepe 30, S Schaetzel 81, A C Schaffer 142, D Schaile 124, R D Schamberger 188, A G Schamov 134, V Scharf 80, V A Schegelsky 149, D Scheirich 112, M Schernau 204, M I Scherzer 53, C Schiavi 70,71, J Schieck 124, M Schioppa 55,56, S Schlenker 44, J L Schlereth 10, E Schmidt 68, K Schmieden 30, C Schmitt 106, S Schmitt 81, M Schmitz 30, A Schöning 81, M Schott 44, D Schouten 199, J Schovancova 155, M Schram 110, C Schroeder 106, N Schroer 82, G Schuler 44, M J Schultens 30, J Schultes 218, H-C Schultz-Coulon 80, H Schulz 21, J W Schumacher 30, M Schumacher 68, B A Schumm 174, Ph Schune 173, C Schwanenberger 107, A Schwartzman 180, Ph Schwemling 103, R Schwienhorst 113, R Schwierz 63, J Schwindling 173, T Schwindt 30, M Schwoerer 9, G Sciolla 32, W G Scott 159, J Searcy 141, G Sedov 61, E Sedykh 149, E Segura 16, S C Seidel 130, A Seiden 174, F Seifert 63, J M Seixas 33, G Sekhniaidze 128, S J Sekula 59, K E Selbach 65, D M Seliverstov 149, B Sellden 185, G Sellers 98, M Seman 182, N Semprini-Cesari 28,29, C Serfon 124, L Serin 142, L Serkin 76, R Seuster 125, H Severini 138, M E Sevior 111, A Sfyrla 44, E Shabalina 76, M Shamim 141, L Y Shan 48, J T Shank 31, Q T Shao 111, M Shapiro 20, P B Shatalov 121, L Shaver 11, K Shaw 205,207, D Sherman 219, P Sherwood 102, A Shibata 135, H Shichi 127, S Shimizu 44, M Shimojima 126, T Shin 78, M Shiyakova 88, A Shmeleva 120, M J Shochet 45, D Short 145, S Shrestha 87, E Shulga 122, M A Shupe 11, P Sicho 155, A Sidoti 162, F Siegert 68, Dj Sijacki 17, O Silbert 215, J Silva 153, Y Silver 193, D Silverstein 180, S B Silverstein 185, V Simak 157, O Simard 173, Lj Simic 17, S Simion 142, B Simmons 102, R Simoniello 114,115, M Simonyan 54, P Sinervo 198, N B Sinev 141, V Sipica 178, G Siragusa 217, A Sircar 37, A N Sisakyan 88, S Yu Sivoklokov 123, J Sjölin 185,186, T B Sjursen 19, L A Skinnari 20, H P Skottowe 79, K Skovpen 134, P Skubic 138, N Skvorodnev 32, M Slater 23, T Slavicek 157, K Sliwa 202, J Sloper 44, V Smakhtin 215, B H Smart 65, S Yu Smirnov 122, Y Smirnov 122, L N Smirnova 123, O Smirnova 104, B C Smith 79, D Smith 180, K M Smith 75, M Smizanska 95, K Smolek 157, A A Snesarev 120, S W Snow 107, J Snow 138, S Snyder 37, M Soares 153, R Sobie 212, J Sodomka 157, A Soffer 193, C A Solans 210, M Solar 157, J Solc 157, E Soldatov 122, U Soldevila 210, E Solfaroli Camillocci 162,163, A A Solodkov 158, O V Solovyanov 158, N Soni 3, V Sopko 157, B Sopko 157, M Sosebee 12, R Soualah 205,207, A Soukharev 134, S Spagnolo 96,97, F Spanò 101, R Spighi 28, G Spigo 44, F Spila 162,163, R Spiwoks 44, M Spousta 156, T Spreitzer 198, B Spurlock 12, R D St Denis 75, J Stahlman 148, R Stamen 80, E Stanecka 58, R W Stanek 10, C Stanescu 166, M Stanescu-Bellu 61, S Stapnes 144, E A Starchenko 158, J Stark 77, P Staroba 155, P Starovoitov 61, A Staude 124, P Stavina 181, G Steele 75, P Steinbach 63, P Steinberg 37, I Stekl 157, B Stelzer 179, H J Stelzer 113, O Stelzer-Chilton 199, H Stenzel 74, S Stern 125, K Stevenson 100, G A Stewart 44, J A Stillings 30, M C Stockton 110, K Stoerig 68, G Stoicea 38, S Stonjek 125, P Strachota 156, A R Stradling 12, A Straessner 63, J Strandberg 187, S Strandberg 185,186, A Strandlie 144, M Strang 136, E Strauss 180, M Strauss 138, P Strizenec 182, R Ströhmer 217, D M Strom 141, J A Strong 101, R Stroynowski 59, J Strube 159, B Stugu 19, I Stumer 37, J Stupak 188, P Sturm 218, N A Styles 61, D A Soh 191, D Su 180, HS Subramania 3, A Succurro 16, Y Sugaya 143, T Sugimoto 127, C Suhr 133, K Suita 90, M Suk 156, V V Sulin 120, S Sultansoy 7, T Sumida 91, X Sun 77, J E Sundermann 68, K Suruliz 176, S Sushkov 16, G Susinno 55,56, M R Sutton 189, Y Suzuki 89, Y Suzuki 90, M Svatos 155, Yu M Sviridov 158, S Swedish 211, I Sykora 181, T Sykora 156, B Szeless 44, J Sánchez 210, D Ta 132, K Tackmann 61, A Taffard 204, R Tafirout 199, N Taiblum 193, Y Takahashi 127, H Takai 37, R Takashima 92, H Takeda 90, T Takeshita 177, Y Takubo 89, M Talby 108, A Talyshev 134, M C Tamsett 37, J Tanaka 195, R Tanaka 142, S Tanaka 161, S Tanaka 89, Y Tanaka 126, A J Tanasijczuk 179, K Tani 90, N Tannoury 108, G P Tappern 44, S Tapprogge 106, D Tardif 198, S Tarem 192, F Tarrade 43, G F Tartarelli 114, P Tas 156, M Tasevsky 155, E Tassi 55,56, M Tatarkhanov 20, Y Tayalati 171, C Taylor 102, F E Taylor 118, G N Taylor 111, W Taylor 200, M Teinturier 142, M Teixeira Dias Castanheira 100, P Teixeira-Dias 101, K K Temming 68, H Ten Kate 44, P K Teng 191, S Terada 89, K Terashi 195, J Terron 105, M Testa 67, R J Teuscher 198, J Thadome 218, J Therhaag 30, T Theveneaux-Pelzer 103, M Thioye 219, S Thoma 68, J P Thomas 23, E N Thompson 53, P D Thompson 23, P D Thompson 198, A S Thompson 75, L A Thomsen 54, E Thomson 148, M Thomson 42, R P Thun 112, F Tian 53, M J Tibbetts 20, T Tic 155, V O Tikhomirov 120, Y A Tikhonov 134, S Timoshenko 122, P Tipton 219, F J Tique Aires Viegas 44, S Tisserant 108, B Toczek 57, T Todorov 9, S Todorova-Nova 202, B Toggerson 204, J Tojo 93, S Tokár 181, K Tokunaga 90, K Tokushuku 89, K Tollefson 113, M Tomoto 127, L Tompkins 45, K Toms 130, G Tong 48, A Tonoyan 19, C Topfel 22, N D Topilin 88, I Torchiani 44, E Torrence 141, H Torres 103, E Torró Pastor 210, J Toth 108, F Touchard 108, D R Tovey 176, T Trefzger 217, L Tremblet 44, A Tricoli 44, I M Trigger 199, S Trincaz-Duvoid 103, M F Tripiana 94, W Trischuk 198, A Trivedi 37, B Trocmé 77, C Troncon 114, M Trottier-McDonald 179, M Trzebinski 58, A Trzupek 58, C Tsarouchas 44, J C-L Tseng 145, M Tsiakiris 132, P V Tsiareshka 116, D Tsionou 9, G Tsipolitis 14, V Tsiskaridze 68, E G Tskhadadze 72, I I Tsukerman 121, V Tsulaia 20, J-W Tsung 30, S Tsuno 89, D Tsybychev 188, A Tua 176, A Tudorache 38, V Tudorache 38, J M Tuggle 45, M Turala 58, D Turecek 157, I Turk Cakir 8, E Turlay 132, R Turra 114,115, P M Tuts 53, A Tykhonov 99, M Tylmad 185,186, M Tyndel 159, G Tzanakos 13, K Uchida 30, I Ueda 195, R Ueno 43, M Ugland 19, M Uhlenbrock 30, M Uhrmacher 76, F Ukegawa 201, G Unal 44, D G Underwood 10, A Undrus 37, G Unel 204, Y Unno 89, D Urbaniec 53, G Usai 12, M Uslenghi 146,147, L Vacavant 108, V Vacek 157, B Vachon 110, S Vahsen 20, J Valenta 155, P Valente 162, S Valentinetti 28,29, S Valkar 156, E Valladolid Gallego 210, S Vallecorsa 192, J A Valls Ferrer 210, H van der Graaf 132, E van der Kraaij 132, R Van Der Leeuw 132, E van der Poel 132, D van der Ster 44, N van Eldik 109, P van Gemmeren 10, Z van Kesteren 132, I van Vulpen 132, M Vanadia 125, W Vandelli 44, G Vandoni 44, A Vaniachine 10, P Vankov 61, F Vannucci 103, F Varela Rodriguez 44, R Vari 162, T Varol 109, D Varouchas 20, A Vartapetian 12, K E Varvell 190, V I Vassilakopoulos 78, F Vazeille 52, T Vazquez Schroeder 76, G Vegni 114,115, J J Veillet 142, C Vellidis 13, F Veloso 153, R Veness 44, S Veneziano 162, A Ventura 96,97, D Ventura 175, M Venturi 68, N Venturi 198, V Vercesi 146, M Verducci 175, W Verkerke 132, J C Vermeulen 132, A Vest 63, M C Vetterli 179, I Vichou 208, T Vickey 184, O E Vickey Boeriu 184, G H A Viehhauser 145, S Viel 211, M Villa 28,29, M Villaplana Perez 210, E Vilucchi 67, M G Vincter 43, E Vinek 44, V B Vinogradov 88, M Virchaux 173, J Virzi 20, O Vitells 215, M Viti 61, I Vivarelli 68, F Vives Vaque 3, S Vlachos 14, D Vladoiu 124, M Vlasak 157, N Vlasov 30, A Vogel 30, P Vokac 157, G Volpi 67, M Volpi 111, G Volpini 114, H von der Schmitt 125, J von Loeben 125, H von Radziewski 68, E von Toerne 30, V Vorobel 156, A P Vorobiev 158, V Vorwerk 16, M Vos 210, R Voss 44, T T Voss 218, J H Vossebeld 98, N Vranjes 173, M Vranjes Milosavljevic 132, V Vrba 155, M Vreeswijk 132, T Vu Anh 68, R Vuillermet 44, I Vukotic 142, W Wagner 218, P Wagner 148, H Wahlen 218, J Wakabayashi 127, S Walch 112, J Walder 95, R Walker 124, W Walkowiak 178, R Wall 219, P Waller 98, C Wang 64, H Wang 216, H Wang 49, J Wang 191, J Wang 77, J C Wang 175, R Wang 130, S M Wang 191, T Wang 30, A Warburton 110, C P Ward 42, M Warsinsky 68, A Washbrook 65, C Wasicki 61, P M Watkins 23, A T Watson 23, I J Watson 190, M F Watson 23, G Watts 175, S Watts 107, A T Waugh 190, B M Waugh 102, M Weber 159, M S Weber 22, P Weber 76, A R Weidberg 145, P Weigell 125, J Weingarten 76, C Weiser 68, H Wellenstein 32, P S Wells 44, T Wenaus 37, D Wendland 21, S Wendler 152, Z Weng 191, T Wengler 44, S Wenig 44, N Wermes 30, M Werner 68, P Werner 44, M Werth 204, M Wessels 80, J Wetter 202, C Weydert 77, K Whalen 43, S J Wheeler-Ellis 204, S P Whitaker 31, A White 12, M J White 111, S White 150,151, S R Whitehead 145, D Whiteson 204, D Whittington 84, F Wicek 142, D Wicke 218, F J Wickens 159, W Wiedenmann 216, M Wielers 159, P Wienemann 30, C Wiglesworth 100, L A M Wiik-Fuchs 68, P A Wijeratne 102, A Wildauer 210, M A Wildt 61, I Wilhelm 156, H G Wilkens 44, J Z Will 124, E Williams 53, H H Williams 148, W Willis 53, S Willocq 109, J A Wilson 23, M G Wilson 180, A Wilson 112, I Wingerter-Seez 9, S Winkelmann 68, F Winklmeier 44, M Wittgen 180, M W Wolter 58, H Wolters 153, W C Wong 60, G Wooden 112, B K Wosiek 58, J Wotschack 44, M J Woudstra 109, K W Wozniak 58, K Wraight 75, C Wright 75, M Wright 75, B Wrona 98, S L Wu 216, X Wu 69, Y Wu 49, E Wulf 53, R Wunstorf 62, B M Wynne 65, S Xella 54, M Xiao 173, S Xie 68, Y Xie 48, C Xu 49, D Xu 176, G Xu 48, B Yabsley 190, S Yacoob 184, M Yamada 89, H Yamaguchi 195, A Yamamoto 89, K Yamamoto 87, S Yamamoto 195, T Yamamura 195, T Yamanaka 195, J Yamaoka 64, T Yamazaki 195, Y Yamazaki 90, Z Yan 31, H Yang 112, U K Yang 107, Y Yang 84, Y Yang 48, Z Yang 185,186, S Yanush 117, Y Yao 20, Y Yasu 89, G V Ybeles Smit 160, J Ye 59, S Ye 37, M Yilmaz 6, R Yoosoofmiya 152, K Yorita 214, R Yoshida 10, C Young 180, C J Young 145, S Youssef 31, D Yu 37, J Yu 12, J Yu 139, L Yuan 90, A Yurkewicz 133, B Zabinski 58, V G Zaets 158, R Zaidan 86, A M Zaitsev 158, Z Zajacova 44, L Zanello 162,163, A Zaytsev 134, C Zeitnitz 218, M Zeller 219, M Zeman 155, A Zemla 58, C Zendler 30, O Zenin 158, T Ženiš 181, Z Zinonos 150,151, S Zenz 20, D Zerwas 142, G Zevi della Porta 79, Z Zhan 51, D Zhang 49, H Zhang 113, J Zhang 10, X Zhang 51, Z Zhang 142, L Zhao 135, T Zhao 175, Z Zhao 49, A Zhemchugov 88, S Zheng 48, J Zhong 145, B Zhou 112, N Zhou 204, Y Zhou 191, C G Zhu 51, H Zhu 61, J Zhu 112, Y Zhu 49, X Zhuang 124, V Zhuravlov 125, D Zieminska 84, R Zimmermann 30, S Zimmermann 30, S Zimmermann 68, M Ziolkowski 178, R Zitoun 9, L Živković 53, V V Zmouchko 158, G Zobernig 216, A Zoccoli 28,29, A Zsenei 44, M zur Nedden 21, V Zutshi 133, L Zwalinski 44
PMCID: PMC4370895  PMID: 25814839

Abstract

A measurement of the jet activity in Inline graphic events produced in proton–proton collisions at a centre-of-mass energy of 7 TeV is presented, using 2.05 fb−1 of integrated luminosity collected by the ATLAS detector at the Large Hadron Collider. The Inline graphic events are selected in the dilepton decay channel with two identified b-jets from the top quark decays. Events are vetoed if they contain an additional jet with transverse momentum above a threshold in a central rapidity interval. The fraction of events surviving the jet veto is presented as a function of this threshold for four different central rapidity interval definitions. An alternate measurement is also performed, in which events are vetoed if the scalar transverse momentum sum of the additional jets in each rapidity interval is above a threshold. In both measurements, the data are corrected for detector effects and compared to the theoretical models implemented in MC@NLO, Powheg, Alpgen and Sherpa. The experimental uncertainties are often smaller than the spread of theoretical predictions, allowing deviations between data and theory to be observed in some regions of phase space.

Introduction

Measurements of the top quark provide an important test of the Standard Model (SM) and any observed deviation from the SM predictions could indicate the presence of new physics. However, many top quark measurements have large uncertainties that arise from the theoretical description of quark and gluon radiation in the standard Monte Carlo (MC) event generators. Recent measurements that are affected by such modelling uncertainties include the Inline graphic production cross-section [14], the spin correlations in Inline graphic events [5], the charge asymmetry [6, 7] and the top quark mass [4]. In addition, a significant disagreement between data and the prediction from MC@NLO [8, 9] was observed by the D0 Collaboration in the transverse momentum distribution of the Inline graphic system [10]. This disagreement obscures the interpretation of the observed forward-backward asymmetry in terms of a deviation from SM predictions. Measurements sensitive to the theoretical description of quark and gluon radiation in events containing a Inline graphic final state are therefore needed in order to constrain the modelling and reduce the impact on future experimental measurements.

In this article, a jet veto is used to quantify the jet activity that arises from quark and gluon radiation produced in association with the Inline graphic system. The events are selected in the dilepton decay channel so that the additional jets can be easily distinguished from the Inline graphic decay products (two leptons and two jets originating from b-quarks). The variable of interest is the ‘gap fraction’, defined as

graphic file with name M11.gif 1

where N is the number of selected Inline graphic events and n(Q0) is the subset of these events that do not contain an additional jet with transverse momentum, pT, above a threshold, Q0, in a central rapidity1 interval. The minimum jet pT used in the measurement is 25 GeV. The measurement is corrected for detector effects and presented in a fiducial region. The gap fraction can then be written as

graphic file with name M13.gif 2

where σ is the fiducial cross section for inclusive Inline graphic production and σ(Q0) is the fiducial cross section for Inline graphic events produced in the absence of an additional jet with pT>Q0 in the rapidity interval. The gap fraction is measured for multiple values of Q0 and for four jet rapidity intervals: |y|<0.8, 0.8≤|y|<1.5, 1.5≤|y|<2.1 and |y|<2.1.

The veto criterion can be extended to probe jet activity beyond the leading additional jet. An alternate definition of the gap fraction is used in this case,

graphic file with name M16.gif 3

where n(Qsum) is the number of Inline graphic events, and σ(Qsum) is the cross section, in which the scalar transverse momentum sum of the additional jets in the rapidity interval is less than Qsum. The gap fraction defined using Q0 is mainly sensitive to the leading-pT emission accompanying the Inline graphic system, whereas the gap fraction defined using Qsum is sensitive to all hard emissions accompanying the Inline graphic system.

Many of the experimental systematic uncertainties cancel in the ratio, as observed in the ATLAS measurement of the gap fraction in dijet events [11]. The data are therefore expected to constrain the modelling of quark and gluon radiation in Inline graphic events and provide useful information about the general theoretical description of jet vetoes, which have been proposed as a tool to enhance new physics signals [1214], and to study the properties of new fundamental particles [1517].

ATLAS detector

The ATLAS detector [18] surrounds one of the proton–proton interaction points at the Large Hadron Collider. The inner tracking detector is composed of silicon pixel detectors, silicon microstrip detectors and a transition radiation tracking detector. The inner detector is surrounded by a superconducting solenoid that provides a 2 T magnetic field. This allows the momentum of charged particles that pass through the inner detector to be determined for |η|<2.5. Outside the solenoid are liquid-argon electromagnetic sampling calorimeters (|η|<3.2). Hadronic energy measurements are provided by a scintillator tile calorimeter in the central region (|η|<1.7) and by liquid-argon calorimetry up to |η|<4.9. The muon spectrometer system surrounds the calorimeter system and incorporates a toroidal magnet system, with a field of approximately 0.5 and 1 T in the barrel and endcap regions respectively. The muon spectrometer provides precision measurements of the momentum of muons up to |η|<2.7, while the corresponding trigger chambers are limited to |η|<2.4.

The data are collected using a three-level trigger system. The first level is implemented in hardware and reduces the data rate to less than 75 kHz. The following two software trigger levels reduce the rate to several hundred Hz. The data passing the trigger selections are recorded for use in subsequent analyses.

The measurements presented in this paper use data from proton–proton collisions at a centre-of-mass energy Inline graphic, and rely on triggers designed to select events that contain high transverse momentum electrons or muons. The integrated luminosity of the data sample is 2.05±0.08 fb−1 [19, 20].

Theoretical predictions

The theoretical predictions for Inline graphic production are produced using the MC@NLO [8, 9], Powheg [21, 22], Alpgen [23], Sherpa [24] and AcerMC [25, 26] event generators.

MC@NLO provides a calculation of Inline graphic production at next-to-leading order (NLO) accuracy and is interfaced to Herwig [27] and Jimmy [28] for parton showering, hadronisation and underlying event from multiple partonic interactions. The parton distribution functions (PDF) chosen to generate the MC@NLO events are CTEQ6.6 [29] and the underlying event tune for Herwig/Jimmy is chosen to be AUET1 [30]. Powheg also produces the Inline graphic final state to NLO accuracy using the CTEQ6.6 PDF. The parton showering, hadronisation and underlying event are added by interfacing to either Pythia [31], with underlying event tune AMBT1 [32], or to Herwig/Jimmy, with underlying event tune AUET1.

Alpgen provides leading order (LO) matrix elements for Inline graphic production with up to three additional partons in the final state. The Alpgen events are generated using the CTEQ6L1 PDF [29] and interfaced to Herwig/Jimmy for parton showering, hadronisation and underlying event (tune AUET1). The MLM matching procedure [33] is used to remove double counting between partons produced by the matrix element and parton shower. Sherpa is also used to generate Inline graphic events with up to three additional partons in the final state. This provides an independent LO matrix-element calculation with a different matching scheme (CKKW [34]) between the matrix element and the parton shower. The events are generated with the default underlying event tune and the CTEQ6L1 PDF.

AcerMC consists of a LO matrix element for Inline graphic production and is interfaced to Pythia to provide the hadronic final state, using the MRST2007LO PDF [35] and underlying event tune AMBT1. Three samples are produced with nominal, increased and decreased initial state radiation (ISR).2 These samples have been previously used to assess ISR-based modelling uncertainties in ATLAS top quark measurements [13, 5, 6].

Simulation samples

In order to simulate the events observed in the detector, several MC samples are passed through the GEANT4 [36] simulation of the ATLAS detector [37] and are processed with the same reconstruction chain as used for the data. The MC@NLO and Powheg samples described in Sect. 3 are used to simulate the Inline graphic events. The background contribution from single top, Z+jets and diboson production is estimated using MC@NLO [38], Alpgen and Herwig, respectively. The hadronic final state for each of these backgrounds is generated using Herwig/Jimmy with underlying event tune AUET1. The MC samples are overlaid with additional minimum bias events generated with Pythia to simulate the effect of additional proton–proton interactions. The simulated events are re-weighted such that the average number of interactions per proton–proton bunch crossing, 〈μ〉, is the same in data and MC simulation. This average varies between data-taking periods and is typically in the range 4<〈μ〉<8.

Corrections are applied to the simulation to reflect the observed performance in the data. The electron reconstruction efficiency, energy scale and energy resolution are corrected to match the observed distributions in W and Zee events [39]. The muon reconstruction efficiency, momentum scale and momentum resolution are corrected to match the observation in Zμμ events. The jet energy resolution is found to be larger in the data than predicted by the simulation and additional smearing is applied to the simulated jets to ensure the resolution matches that in the data. The efficiency and rejection rate of the algorithm used to identify jets that have originated from b-quarks is measured in the data and the simulation is corrected on a per-jet basis to match the observed performance. All these corrections have associated systematic uncertainties and the effect of these on the measurement of the gap fraction is discussed in Sect. 7.

Event selection

The selection of Inline graphic events closely follows the selection used in the recent measurement of the Inline graphic production cross section [3]. Electrons are required to have transverse energy ET>25 GeV and |η|<2.47, whereas muons are required to have pT>20 GeV and |η|<2.5. Electrons in the transition region between the barrel and endcap calorimeters (1.37<|η|<1.52) are excluded.

Jets are reconstructed using the anti-kt algorithm [40, 41], with a radius parameter R=0.4, using clusters of adjacent calorimeter cells calibrated at the electromagnetic (EM) energy scale. These jets are corrected for the calorimeter response and other detector effects using energy and pseudorapidity dependent calibration factors derived from simulation and validated using data [42]. The calibrated jets, j, used in the analysis are required to have pT>25 GeV, |y|<2.4 and are required to be well separated from the selected leptons  (electrons or muons) by

graphic file with name M31.gif 4

Jets originating from b-quarks (b-jets) are identified using the IP3D+SV1 algorithm [43] and are referred to as b-tagged jets. This algorithm, based on impact parameter and secondary vertex information, has an average per-jet efficiency of 70 % for jets originating from b-quarks in simulated Inline graphic events and rejects approximately 99 % of jets originating from light quarks and gluons.

The scalar sum of visible transverse momentum, HT, is calculated using the transverse momenta of all the reconstructed jets and leptons that satisfy the selection criteria defined above. The missing transverse momentum, Inline graphic, is reconstructed from EM-scale clusters corrected according to the energy scale of associated jets/electrons and the measured muon momenta.

To create a highly enriched Inline graphic sample, events are required to have two opposite sign high-pT leptons and at least two b-tagged jets. The analysis is then divided into the three dilepton decay channels, ee, and μμ, and additional channel-dependent selection criteria are applied to reduce backgrounds further. The background in the ee and μμ channels arising from Zee/μμ events is suppressed by requiring Inline graphic and that the dilepton mass, mℓℓ, is not in the range of the Z-boson mass, i.e. |mℓℓ−91 GeV|>10 GeV. In addition, events are required to have mℓℓ>15 GeV in order to reject backgrounds from vector-meson decays. The backgrounds in the channel from Zττ and diboson events are suppressed by requiring HT to be greater than 130 GeV. A summary of the event selection criteria is presented in Table 1.

Table 1.

Selection requirements applied to the three analysis channels

Selection Channel
ee μμ
Electrons 2 with E T>25 GeV,
|η|<2.47
1 with E T>25 GeV,
|η|<2.47
Muons 2 with p T>20 GeV,
|η|<2.5
1 with p T>20 GeV,
|η|<2.5
Inline graphic >40 GeV >40 GeV
H T >130 GeV
m ℓℓ >15 GeV,
|m ℓℓ−91 GeV|>10 GeV
>15 GeV,
|m ℓℓ−91 GeV|>10 GeV
b-tagged jets At least 2 with p T>25 GeV, |y|<2.4, ΔR(j,)>0.4

The number of selected events in the three channels is 242 (ee), 436 (μμ) and 1095 (). The dominant background contributions after the selection requirements are single top (Wt) production and events in which at least one lepton originates from heavy flavour decay or jet misidentification. The latter contribution consists of mainly W+jets and multijet events and is estimated from the data using a method described in reference [3]. The Wt background is estimated using the MC sample discussed in Sect. 4. The total background contamination is estimated to be less than 6 %, which is smaller than the uncertainty on the theoretical calculation of the Inline graphic cross section [4446]. The expected background contributions are not subtracted from the data, but are considered as a source of systematic uncertainty on the measurement. Figure 1 shows the distribution of the lepton and b-tagged jet pT for the selected data events compared with the prediction from the MC@NLOInline graphic simulation. Good agreement is seen in all such distributions.

Fig. 1.

Fig. 1

The distribution of (a) lepton p T and (bb-tagged jet p T for the selected events compared to the MC@NLO simulation of Inline graphic events. The data is shown as closed (black) circles with the statistical uncertainty. The MC@NLO prediction is normalised to the data and is shown as a solid (red) line. The overflow events at high p T are added into the final bin of each histogram (Color figure online)

The gap fraction in each rapidity interval is computed using the additional jets in the event. To suppress jets from overlapping proton–proton collisions, the additional jets are required to be fully contained within the inner detector acceptance (|y|<2.1) and the jet vertex fraction (JVF) algorithm is used to identify jets from the primary interaction. After associating tracks to jets (ΔR(jet,track)<0.4), the JVF is defined as the scalar summed transverse momentum of associated tracks from the primary vertex divided by the summed transverse momentum of associated tracks from all vertices. Each additional jet is required to satisfy JVF>0.75. The transverse momentum and rapidity distributions for the highest-pT additional jet in the region |y|<2.1 is shown in Fig. 2. Reasonable agreement is seen between the data and the MC@NLOInline graphic simulation.

Fig. 2.

Fig. 2

Distribution of (a) leading additional jet p T and (b) leading additional jet rapidity in the selected events compared to the MC@NLO simulation of Inline graphic events. The data is shown as closed (black) circles with the statistical uncertainty. The MC@NLO prediction is normalised to the data and is shown as a solid (red) line. In the p T distribution, the overflow events at high p T are added into the final bin of the histogram. In the rapidity distribution, variable bin sizes are used such that the bin edges match the rapidity intervals used to construct the gap fractions (Color figure online)

Correction for detector effects

The data are corrected for detector effects to produce results at the particle level. The particle level Inline graphic events are defined in each channel using the same event selection criteria applied to the reconstructed data, as presented in Table 1. Final state stable particles are defined as those that have a mean lifetime >10 mm. Electrons are required to have ET>25 GeV and |η|<2.47, whereas muons are required to have pT>20 GeV and |η|<2.5.3 Jets are reconstructed using the anti-kt algorithm with R=0.4, using all stable particles except muons and neutrinos, and are required to have pT>25 GeV and |y|<2.4. Jets originating from b-quarks are defined as any jet that is within ΔR<0.3 of a B-hadron, where the B-hadrons are required to have pT>5 GeV. HT is defined as the scalar sum of jet and lepton transverse momenta and Inline graphic is defined using all final state neutrinos.

The correction factor, C, for the gap fraction at a specific value of x=Q0 or Qsum, is defined as

graphic file with name M44.gif 5

where freco(x) is the reconstructed gap fraction and ftruth(x) is the particle level gap fraction. The use of simple correction factors is justified because the purity of the selected events is greater than 70 % for each value of Q0 or Qsum. The purity of the selected events is defined as the number of events that pass the event selection at both the reconstructed and particle level, divided by the number of events that pass the event selection at reconstructed level, using the MC@NLO simulation of Inline graphic events.

The MC@NLO simulation is also used to derive the baseline correction factors used in this measurement. These correction factors depend on the rapidity interval used to veto jet activity, with corrections of 2 %–5 % for Q0=25 GeV that decrease with increasing Q0. The systematic uncertainties on these correction factors due to physics and detector modelling are discussed in Sect. 7.

Systematic uncertainties

Uncertainties related to the inclusive Inline graphic event selection were found to cancel in the gap fraction and are neglected in the final systematic uncertainty. These include the uncertainties on the lepton momentum scale, momentum resolution and reconstruction efficiency, the b-jet energy scale, the trigger efficiency for each analysis channel and the integrated luminosity. The dominant sources of systematic uncertainty are those that directly affect the additional jets. These non-negligible sources of uncertainty are discussed in this section and a summary is presented in Fig. 3.

Fig. 3.

Fig. 3

Breakdown of the systematic uncertainties on the gap fraction as a function of Q 0 for (a) |y|<0.8 and (b) |y|<2.1. The step size in Q 0 was chosen to be commensurate with the jet energy resolution. The individual systematic uncertainties are shown as labelled lines of different styles and the total systematic uncertainty is shown as the outer solid line. The statistical uncertainty on the data is shown as the shaded area. The breakdown of the systematic uncertainties above Q 0=200 GeV is consistent with the results at Q 0=200 GeV. ‘Pileup’ refers to the effect of jets produced in a different proton–proton interaction. ‘Unfolding’ refers to the procedure used to correct the measured gap fraction to particle level

The experimental aspects that affect the additional jets are the jet energy scale (JES), the jet energy resolution (JER), the jet reconstruction efficiency and the JVF selection requirement. The uncertainty on the gap fraction due to the JES is estimated by rescaling the jet energies in the simulation by the known uncertainty [42]. The uncertainty on the JES includes the impact of soft energy added to jets from multiple proton–proton interactions. The uncertainty on the gap fraction due to jet reconstruction efficiency [42] and the jet energy resolution is estimated by varying each of these in the simulation within the allowed uncertainties determined from data. The relative uncertainty on the gap fraction due to the JES and JER uncertainties is 3.5 % or less if jets are vetoed in the full rapidity interval (|y|<2.1), and 1.5 % or less if jets are vetoed in the smaller sub-intervals (e.g. |y|<0.8). The uncertainty from the jet reconstruction efficiency is found to be negligible compared to the JES and JER uncertainties for all four rapidity intervals.

The bias due to the JVF selection efficiency is estimated by performing the full analysis (selection plus correction for detector effects) with a relaxed requirement of JVF>0.1. The relative difference between the results obtained with the standard and relaxed requirement is found to be up to 2 % at Q0=25 GeV and is negligible above Q0 of approximately 100 GeV. This difference is taken as the systematic uncertainty due to the JVF selection efficiency.

Jets produced by additional proton–proton interactions are suppressed by the JVF requirement. However, those jets that pass this requirement represent a potential bias in the measurement. The size of this bias is evaluated by removing those jets in the MC@NLO sample that are not matched to a particle level jet from the pp interaction that produces the Inline graphic event. The matching criterion is ΔR<0.3 and the particle jet transverse momentum is allowed to be as low as 7 GeV, to avoid resolution effects in the matching procedure. The gap fraction is recalculated using this truth-matched sample and the difference to the nominal gap fraction is taken as the systematic uncertainty due to jets from additional proton–proton interactions. The relative uncertainty on the gap fraction is less than 1 % in each of the rapidity regions.

Background contamination is treated as a systematic uncertainty. For each background source, the expected events are subtracted from the data and the gap fraction is re-calculated. The relative difference with respect to the nominal result is taken as the systematic uncertainty due to background contamination; the largest effect is observed to be 0.5 % for Q0=25 GeV.

The uncertainty on the efficiency and rejection capability of the b-tagging algorithm impacts upon the measurement if the additional jet is identified as a b-tagged jet instead of one of the b-jets originating from the top-quark decay. The systematic uncertainty due to this effect is estimated by changing the baseline efficiency and rejection corrections, which are applied to the simulation, according to the b-tagging uncertainty (derived in calibration studies using inclusive lepton and multijet final states). The relative uncertainty on the gap fraction is less than 0.8 %.

The uncertainty on the procedure used to correct the data to particle level due to physics modelling is estimated by deriving alternative correction factors using the Powheg samples. The systematic uncertainty in the correction procedure is taken to be the largest difference between the correction factor obtained using the MC@NLO sample and the correction factor obtained using the two Powheg samples. In the case where this difference is smaller than the statistical uncertainty in the MC samples, the statistical uncertainty is taken as the estimate of the systematic uncertainty. The relative uncertainty on the correction factors is less than 2 % at Q0=25 GeV for the region |y|<2.1, decreasing to approximately 0.3 % at Q0=150 GeV. The sensitivity of the corrections to the physics modelling is further assessed by reweighting the additional jet pT spectrum in the MC@NLO sample such that the pT distribution has the maximal change in shape that is consistent with the JES uncertainty bands. The difference in the correction factors was observed to be much smaller than the differences obtained by using different MC generators and is neglected in the final results.

Figure 3 shows the breakdown of the systematic uncertainties on the gap fraction as a function of Q0, for the veto regions |y|<0.8 and |y|<2.1. This figure also shows the total systematic uncertainty, which is calculated by adding in quadrature all the individual systematic uncertainties. The total systematic uncertainty is largest at low Q0 and is dominated by the jet related uncertainties (JES, JER and JVF) and the uncertainty on the correction factors. The measurement is most precise in the central region, where the jet energy scale uncertainty is smallest. The breakdown of uncertainties for the gap fraction as a function of Qsum is similar, but the uncertainties are slightly larger and fall more slowly as a function of Qsum. This is due to low transverse momentum jets, which have the largest systematic uncertainties and therefore affect all values of Qsum.

Results and discussion

The gap fraction is measured for multiple values of Q0 and Qsum in the four rapidity intervals defined in Sect. 1. The step size in Q0 and Qsum was chosen to be commensurate with the jet energy resolution. The results are corrected to the particle level as described in Sect. 6.

The measured gap fraction as a function of Q0 is compared with the predictions from the multi-leg LO and NLO generators in Fig. 4. In general, all these generators are found to give a reasonable description of the data if the veto is applied to jets in the full rapidity interval, |y|<2.1 (Fig. 4(d)). The difference between the MC@NLO and Powheg predictions is similar to the precision achieved in the measurement and as such the measurement is probing the different approaches to NLO plus parton-shower event generation.

Fig. 4.

Fig. 4

The measured gap fraction as a function of Q 0 is compared with the prediction from the NLO and multi-leg LO MC generators in the three rapidity regions, (a) |y|<0.8, (b) 0.8≤|y|<1.5 and (c) 1.5≤|y|<2.1. Also shown, (d), is the gap fraction for the full rapidity range |y|<2.1. The data is represented as closed (black) circles with statistical uncertainties. The yellow band is the total experimental uncertainty on the data (statistical and systematic). The theoretical predictions are shown as solid and dashed coloured lines. The gap fraction is shown until Q 0=300 GeV or until the gap fraction reaches one if that occurs before Q 0=300 GeV (Color figure online)

In the most central rapidity interval, |y|<0.8, the gap fraction predicted by MC@NLO is too large (Fig. 4(a)). The tendency of MC@NLO to produce fewer jets than Alpgen at central rapidity has been discussed in the literature [33] and the measurement presented here is sensitive to this difference. In the most forward rapidity interval, none of the predictions agrees with the data for all values of Q0 (Fig. 4(c)). In particular, although MC@NLO, Powheg, Alpgen and Sherpa produce similar predictions, the gap fraction is too small, implying that too much jet activity is produced by these event generators in the forward rapidity region.

The predictions from the AcerMC generator with the variations of the Pythia parton shower parameters are compared to the data in Fig. 5 and are found to be in poor agreement with the data. The spread of the predicted gap fraction due to the parameter variations is found to be much larger than the experimental uncertainty, indicating that the variations can be significantly reduced in light of the measurement presented in this article.

Fig. 5.

Fig. 5

The measured gap fraction as a function of Q 0 for (a) |y|<0.8 and (b) |y|<2.1 is compared with the prediction from the AcerMC generator, where different settings of the Pythia parton shower parameters are used to produce samples with nominal, increased and decreased initial state radiation (ISR). The data and theory predictions are represented in the same way as in Fig. 4

The measured gap fraction as a function of Qsum is compared with the multi-leg LO and NLO generators in Fig. 6. The gap fraction is lower than for the case of the Q0 variable, demonstrating that the measurement is probing quark and gluon radiation beyond the first emission. As expected, the largest change in the gap fraction occurs when jets are vetoed in the full rapidity interval, |y|<2.1. However, the difference between the data and each theoretical prediction is found to be similar to the Q0 case. This implies that, for this variable, the parton shower approximations used for the subsequent emissions in MC@NLO and Powheg are performing as well as the LO approximations used in Alpgen and Sherpa.

Fig. 6.

Fig. 6

The measured gap fraction as a function of Q sum is compared with the prediction from the NLO and multi-leg LO MC generators in the three rapidity regions, (a) |y|<0.8, (b) 0.8≤|y|<1.5 and (c) 1.5≤|y|<2.1. Also shown, (d), is the gap fraction for the full rapidity range |y|<2.1. The data and theory predictions are represented in the same way as in Fig. 4. The gap fraction is shown until Q sum=420 GeV or until the gap fraction reaches one if that occurs before Q sum=420 GeV

The gap fraction is a ratio of cross sections and all the events are used to evaluate this ratio at each value of Q0 or Qsum. This means that there is a statistical correlation between the measured gap fraction values in each rapidity interval. The correlation matrix is shown in Fig. 7 for the gap fraction at different values of Q0 for the |y|<2.1 rapidity region. Neighbouring Q0 points have a significant correlation, whereas well separated Q0 points are less correlated.

Fig. 7.

Fig. 7

The correlation matrix (statistical) for the gap fraction measurement at different values of Q 0 for |y|<2.1

The measured values of the gap fraction at Q0=25, 75 and 150 GeV are presented in Table 2 for the different rapidity intervals used to veto jet activity. The statistical correlations between these measurements and the predictions from the multi-leg LO and NLO generators are also given. The measured values of the gap fraction at Qsum=55,150 and 300 GeV are presented in Table 3 for the different rapidity intervals used to veto jet activity. The complete set of measurements presented in Figs. 47 have been compiled in tables that can be obtained from HEPDATA.

Table 2.

The measured values of f(Q 0) for Q 0=25, 75 and 150 GeV for the different rapidity intervals used to veto jet activity are presented. The predictions from the NLO and multi-leg LO generators are also presented; the statistical uncertainty due to limited sample size is shown if this uncertainty is larger than 0.1 %. In each rapidity interval, the statistical correlations (Inline graphic) between measurements at Q 0=i and Q 0=j are given

Q 0 [GeV] f(Q 0) (%) Inline graphic
Data ± (stat.) ± (syst.) MC@NLO Powheg
+ Pythia
Powheg
+ Herwig
Sherpa Alpgen
+ Herwig
veto region: |y|<0.8
25 Inline graphic 79.5±0.1 75.0±0.3 74.3±0.3 74.9±0.3 76.7±0.3 Inline graphic
75 92.3±0.7±0.5 94.3 91.8±0.2 92.2±0.2 93.4±0.2 93.4±0.2 Inline graphic
150 Inline graphic 98.4 97.2±0.1 97.6±0.1 97.8±0.1 98.0±0.1 Inline graphic
veto region: 0.8≤|y|<1.5
25 80.4±1.0±1.7 82.0±0.1 79.5±0.2 79.5±0.3 79.8±0.3 81.3±0.3 Inline graphic
75 Inline graphic 94.7 93.5±0.2 93.8±0.2 94.8±0.1 94.7±0.2 Inline graphic
150 Inline graphic 98.4 97.7±0.1 98.0±0.1 98.4±0.1 98.2±0.1 Inline graphic
veto region: 1.5≤|y|<2.1
25 Inline graphic 86.1±0.1 85.4±0.2 85.5±0.2 85.6±0.2 86.4±0.2 Inline graphic
75 97.6±0.4±0.4 95.8 95.9±0.1 96.0±0.1 96.5±0.1 95.9±0.1 Inline graphic
150 Inline graphic 98.8 98.7±0.1 98.8±0.1 98.9±0.1 98.8±0.1 Inline graphic
veto region: |y|<2.1
25 Inline graphic 57.0±0.1 52.7±0.3 52.5±0.3 54.0±0.3 55.2±0.3 Inline graphic
75 84.7±0.9±1.0 85.7±0.1 82.7±0.2 83.6±0.2 86.0±0.2 85.1±0.2 Inline graphic
150 Inline graphic 95.6 93.9±0.1 94.5±0.1 95.3±0.1 95.1±0.1 Inline graphic

Table 3.

The measured values of f(Q sum) for Q sum=55, 150 and 300 GeV for the different rapidity intervals used to veto jet activity are presented, excluding any measurements of f(Q sum)=1.0. The predictions from the Monte Carlo event generators and the statistical correlations (Inline graphic) between measurements are presented in the same way as in Table 2

Q sum [GeV] f(Q sum) (%) Inline graphic
Data ± (stat.) ± (syst.) MC@NLO PowhegPythia PowhegHerwig Sherpa AlpgenHerwig
veto region: |y|<0.8
55 Inline graphic 91.4±0.1 88.0±0.2 88.4±0.2 89.9±0.2 90.1±0.2 Inline graphic
150 Inline graphic 98.4 97.2±0.1 97.6±0.1 97.8±0.1 98.0±0.1 Inline graphic
300 Inline graphic 99.7 99.4 99.6 99.6 99.6 Inline graphic
veto region: 0.8≤|y|<1.5
55 89.3±0.8±0.9 92.0 90.6±0.2 91.1±0.2 92.2±0.2 92.0±0.2 Inline graphic
150 97.3±0.4±0.3 98.4 97.7±0.1 98.0±0.1 98.4±0.1 98.2±0.1 Inline graphic
300 Inline graphic 99.8 99.6 99.6 99.7 99.6 Inline graphic
veto region: 1.5≤|y|<2.1
55 Inline graphic 93.8 93.6±0.2 93.9±0.2 94.6±0.2 94.1±0.2 Inline graphic
150 Inline graphic 98.8 98.7±0.1 98.8±0.1 98.9±0.1 98.8±0.1
veto region: |y|<2.1
55 Inline graphic 79.0±0.1 75.3±0.3 76.5±0.3 79.6±0.3 78.6±0.3 Inline graphic
150 92.1±0.7±0.8 95.6 93.9±0.1 94.5±0.1 95.3±0.1 95.1±0.1 Inline graphic
300 Inline graphic 99.4 98.8±0.1 99.1±0.1 99.2±0.1 99.1±0.1 Inline graphic

The precision of the data, coupled with the large spread of theory predictions, implies that higher-order theory predictions may be needed to describe the data in all regions of phase space. For example, the NLO plus parton shower predictions provided by MC@NLO and Powheg have LO accuracy in the first parton emission and leading logarithmic (LL) accuracy for subsequent emissions. Similarly, the ME plus parton shower predictions provided by Sherpa and Alpgen are accurate to LO for the first three emissions and LL thereafter. Possible improvements on this accuracy include NLO calculations that account for the decay products of the top quarks [47, 48] and calculations of Inline graphic at NLO [4954].

Conclusions

Precision measurements of the jet activity in Inline graphic events were performed using proton–proton collisions recorded by the ATLAS detector at the LHC. The Inline graphic events were selected in the dilepton decay channel with two identified b-jets. Events were subsequently vetoed if they contained an additional jet with transverse momentum above a threshold, Q0, in a central rapidity interval. The fraction of Inline graphic events that survive the jet veto was presented as a function of Q0 for four different central rapidity interval definitions. An alternate measurement was also performed, in which the Inline graphic events were vetoed if the scalar transverse momentum sum of the additional jets in each rapidity interval was above a defined threshold, Qsum.

The data were fully corrected for detector effects and compared to the predictions from state-of-the-art MC event generators. MC@NLO, Powheg, Alpgen and Sherpa are observed to give a reasonable description of the data, when the additional jets are vetoed in the rapidity interval |y|<2.1. However, all four generators predict too much jet activity in the most forward rapidity interval, 1.5≤|y|<2.1. Furthermore, MC@NLO produces too little activity in the central region |y|<0.8.

The data were compared to the predictions obtained after increasing (or decreasing) the amount of initial state radiation produced by the Pythia parton shower when applied to AcerMC events. These initial state parton shower variations have been used to determine modelling uncertainties in previous ATLAS top quark measurements. Although the data are within the band of these predictions, the size of the band is a factor of two or more larger than the experimental precision. The results presented here can be used to constrain model-dependent uncertainties in future measurements.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET and ERC, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Footnotes

1

ATLAS uses a right-handed coordinate system with the z-axis along the beam line. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle. Pseudorapidity is defined in terms of the polar angle θ as η=−ln[tan(θ/2)]. Rapidity is defined as y=0.5ln[(E+pz)/(Epz)] where E denotes the energy and pz is the component of the momentum along the beam direction. Transverse momentum and energy are defined as pT=psinθ and ET=Esinθ, respectively.

2

The default ISR parameters in AMBT1 are PARP(67) = 4.0 and PARP(64) = 1.0. To decrease ISR, the parameters are set to 0.5 and 4.0, respectively. To increase ISR, they are set to 6.0 and 0.25, respectively.

3

Changing the muon selection criteria to match the electron fiducial region (pT>25 GeV and |η|<2.47) was observed to have a negligible impact on the gap fraction.

References

  • 1.ATLAS Collaboration Phys. Lett. B. 2012;707:459. doi: 10.1016/j.physletb.2011.12.055. [DOI] [Google Scholar]
  • 2.ATLAS Collaboration Phys. Lett. B. 2012;711:244. doi: 10.1016/j.physletb.2012.03.083. [DOI] [Google Scholar]
  • 3.ATLAS Collaboration J. High Energy Phys. 2012;1205 [Google Scholar]
  • 4.CMS Collaboration J. High Energy Phys. 2011;1107 [Google Scholar]
  • 5.ATLAS Collaboration Phys. Rev. Lett. 2012;108 doi: 10.1103/PhysRevLett.108.212001. [DOI] [Google Scholar]
  • 6. ATLAS Collaboration, Eur. Phys. J. C (2012). arXiv:1203.4211
  • 7.CMS Collaboration Phys. Lett. B. 2012;709:28. doi: 10.1016/j.physletb.2012.01.078. [DOI] [Google Scholar]
  • 8.Frixione S., Webber B.R. J. High Energy Phys. 2002;06 doi: 10.1088/1126-6708/2002/06/029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Frixione S., Nason P., Webber B.R. J. High Energy Phys. 2003;08 doi: 10.1088/1126-6708/2003/08/007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Abazov V.M., D0 Collaboration et al. Phys. Rev. D. 2011;84 doi: 10.1103/PhysRevD.84.112005. [DOI] [Google Scholar]
  • 11.ATLAS Collaboration J. High Energy Phys. 2011;1109 [Google Scholar]
  • 12.Barger V.D., et al. Phys. Rev. D. 1990;42:3052. doi: 10.1103/PhysRevD.42.3052. [DOI] [PubMed] [Google Scholar]
  • 13.Barger V.D., et al. Phys. Rev. D. 1991;44:2701. doi: 10.1103/PhysRevD.44.2701. [DOI] [PubMed] [Google Scholar]
  • 14.Barger V.D., et al. Phys. Lett. B. 1995;346:106. doi: 10.1016/0370-2693(95)00008-9. [DOI] [Google Scholar]
  • 15.Cox B.E., Forshaw J.R., Pilkington A.D. Phys. Lett. B. 2011;696:87. doi: 10.1016/j.physletb.2010.12.011. [DOI] [Google Scholar]
  • 16.Sung I. Phys. Rev. D. 2009;80 doi: 10.1103/PhysRevD.80.094020. [DOI] [Google Scholar]
  • 17.Ask S., et al. J. High Energy Phys. 2012;1201 doi: 10.1007/JHEP01(2012)018. [DOI] [Google Scholar]
  • 18.ATLAS Collaboration J. Instrum. 2008;3 doi: 10.1088/1748-0221/3/08/S08003. [DOI] [Google Scholar]
  • 19.ATLAS Collaboration Eur. Phys. J. C. 2011;71:1630. doi: 10.1140/epjc/s10052-011-1630-5. [DOI] [Google Scholar]
  • 20. ATLAS Collaboration, ATLAS-CONF-2011-116. https://cdsweb.cern.ch/record/1376384
  • 21.Nason P. J. High Energy Phys. 2004;11 doi: 10.1088/1126-6708/2004/11/040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Frixione S., Nason P., Oleari C. J. High Energy Phys. 2007;0711 doi: 10.1088/1126-6708/2007/11/070. [DOI] [Google Scholar]
  • 23.Mangano M.L., et al. J. High Energy Phys. 2003;07 doi: 10.1088/1126-6708/2003/07/001. [DOI] [Google Scholar]
  • 24.Gleisberg T., et al. J. High Energy Phys. 2009;0902 doi: 10.1088/1126-6708/2009/02/007. [DOI] [Google Scholar]
  • 25. B. Kersevan, E. Richter-Wa̧s, arXiv:hep-ph/0405247
  • 26.Stelzer T., Long W.F. Comput. Phys. Commun. 1994;81:357. doi: 10.1016/0010-4655(94)90084-1. [DOI] [Google Scholar]
  • 27.Corcella G., et al. J. High Energy Phys. 2001;0101 doi: 10.1088/1126-6708/2001/01/010. [DOI] [Google Scholar]
  • 28.Butterworth J.M., et al. Z. Phys. C. 1996;72:637. doi: 10.1007/s002880050286. [DOI] [Google Scholar]
  • 29.Pumplin J., et al. J. High Energy Phys. 2002;07 doi: 10.1088/1126-6708/2002/07/012. [DOI] [Google Scholar]
  • 30. ATLAS Collaboration, ATL-PHYS-PUB-2010-014. https://cdsweb.cern.ch/record/1303025
  • 31.Sjöstrand T., et al. J. High Energy Phys. 2006;05 doi: 10.1088/1126-6708/2006/05/026. [DOI] [Google Scholar]
  • 32. ATLAS Collaboration, ATLAS-CONF-2010-031. https://cdsweb.cern.ch/record/1277665
  • 33.Mangano M.L., et al. J. High Energy Phys. 2007;0701 doi: 10.1088/1126-6708/2007/01/013. [DOI] [Google Scholar]
  • 34.Catani S., et al. J. High Energy Phys. 2001;0111 doi: 10.1088/1126-6708/2001/11/063. [DOI] [Google Scholar]
  • 35.Sherstnev A., Thorne R.S. Eur. Phys. J. C. 2008;55:553. doi: 10.1140/epjc/s10052-008-0610-x. [DOI] [Google Scholar]
  • 36.Agostinelli S., et al. Nucl. Instrum. Methods A. 2003;506:250. doi: 10.1016/S0168-9002(03)01368-8. [DOI] [Google Scholar]
  • 37.ATLAS Collaboration Eur. Phys. J. C. 2010;70:823. doi: 10.1140/epjc/s10052-010-1429-9. [DOI] [Google Scholar]
  • 38.Frixione S., et al. J. High Energy Phys. 2008;07 doi: 10.1088/1126-6708/2008/07/029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.ATLAS Collaboration Eur. Phys. J. C. 2012;72:1909. doi: 10.1140/epjc/s10052-012-1909-1. [DOI] [Google Scholar]
  • 40.Cacciari M., Salam G.P., Soyez G. J. High Energy Phys. 2008;04 doi: 10.1088/1126-6708/2008/04/063. [DOI] [Google Scholar]
  • 41.Cacciari M., Salam G.P. Phys. Lett. B. 2006;641(1):57. doi: 10.1016/j.physletb.2006.08.037. [DOI] [Google Scholar]
  • 42. ATLAS Collaboration, Eur. Phys. J. C (2011), submitted. arXiv:1112.6426
  • 43. ATLAS Collaboration, ATLAS-CONF-2011-102. https://cdsweb.cern.ch/record/1369219
  • 44.Moch S., Uwer P. Phys. Rev. D. 2008;78 doi: 10.1103/PhysRevD.78.034003. [DOI] [Google Scholar]
  • 45. U. Langenfeld, S. Moch, P. Uwer, arXiv:0907.2527
  • 46.Beneke M., et al. Phys. Lett. B. 2010;690:483. doi: 10.1016/j.physletb.2010.05.038. [DOI] [Google Scholar]
  • 47.Denner A., et al. Phys. Rev. Lett. 2011;106 doi: 10.1103/PhysRevLett.106.052001. [DOI] [PubMed] [Google Scholar]
  • 48.Bevilacqua G., et al. J. High Energy Phys. 2011;1102 doi: 10.1007/JHEP02(2011)083. [DOI] [Google Scholar]
  • 49.Dittmaier S., Uwer P., Weinzierl S. Phys. Rev. Lett. 2007;98 doi: 10.1103/PhysRevLett.98.262002. [DOI] [PubMed] [Google Scholar]
  • 50.Dittmaier S., Uwer P., Weinzierl S. Eur. Phys. J. C. 2009;59:625. doi: 10.1140/epjc/s10052-008-0816-y. [DOI] [Google Scholar]
  • 51.Melnikov K., Schulze M. Nucl. Phys. B. 2010;840:129. doi: 10.1016/j.nuclphysb.2010.07.003. [DOI] [Google Scholar]
  • 52.Bevilacqua G., et al. Phys. Rev. Lett. 2010;104 doi: 10.1103/PhysRevLett.104.162002. [DOI] [PubMed] [Google Scholar]
  • 53.Bevilacqua G., et al. Phys. Rev. D. 2011;84 doi: 10.1103/PhysRevD.84.114017. [DOI] [Google Scholar]
  • 54.Melnikov K., Scharf A., Schulze M. Phys. Rev. D. 2012;85 doi: 10.1103/PhysRevD.85.054002. [DOI] [Google Scholar]

Articles from The European Physical Journal. C, Particles and Fields are provided here courtesy of Springer

RESOURCES