Skip to main content
Springer logoLink to Springer
. 2013 Jun 13;73(6):2462. doi: 10.1140/epjc/s10052-013-2462-2

Measurements of the branching fractions of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B^{+} \to p \bar{p} K^{+}$\end{document} decays

The LHCb Collaboration1, R Aaij 39, C Abellan Beteta 34, A Adametz 12, B Adeva 35, M Adinolfi 44, C Adrover 7, A Affolder 50, Z Ajaltouni 6, J Albrecht 10, F Alessio 36, M Alexander 49, S Ali 39, G Alkhazov 28, P Alvarez Cartelle 35, A A Alves Jr 23,36, S Amato 3, Y Amhis 8, L Anderlini 18, J Anderson 38, R Andreassen 58, R B Appleby 52, O Aquines Gutierrez 11, F Archilli 19, A Artamonov 33, M Artuso 54, E Aslanides 7, G Auriemma 23, S Bachmann 12, J J Back 46, C Baesso 55, V Balagura 29, W Baldini 17, R J Barlow 52, C Barschel 36, S Barsuk 8, W Barter 45, Th Bauer 39, A Bay 37, J Beddow 49, I Bediaga 2, S Belogurov 29, K Belous 33, I Belyaev 29, E Ben-Haim 9, M Benayoun 9, G Bencivenni 19, S Benson 48, J Benton 44, A Berezhnoy 30, R Bernet 38, M-O Bettler 45, M van Beuzekom 39, A Bien 12, S Bifani 13, T Bird 52, A Bizzeti 18, P M Bjørnstad 52, T Blake 36, F Blanc 37, C Blanks 51, J Blouw 12, S Blusk 54, A Bobrov 32, V Bocci 23, A Bondar 32, N Bondar 28, W Bonivento 16, S Borghi 52, A Borgia 54, T J V Bowcock 50, E Bowen 38, C Bozzi 17, T Brambach 10, J van den Brand 40, J Bressieux 37, D Brett 52, M Britsch 11, T Britton 54, N H Brook 44, H Brown 50, I Burducea 27, A Bursche 38, J Buytaert 36, S Cadeddu 16, O Callot 8, M Calvi 21, M Calvo Gomez 34, A Camboni 34, P Campana 19,36, A Carbone 15, G Carboni 22, R Cardinale 20, A Cardini 16, H Carranza-Mejia 48, L Carson 51, K Carvalho Akiba 3, G Casse 50, M Cattaneo 36, Ch Cauet 10, M Charles 53, Ph Charpentier 36, P Chen 4,37, N Chiapolini 38, M Chrzaszcz 24, K Ciba 36, X Cid Vidal 35, G Ciezarek 51, P E L Clarke 48, M Clemencic 36, H V Cliff 45, J Closier 36, C Coca 27, V Coco 39, J Cogan 7, E Cogneras 6, P Collins 36, A Comerma-Montells 34, A Contu 16,53, A Cook 44, M Coombes 44, S Coquereau 9, G Corti 36, B Couturier 36, G A Cowan 37, D Craik 46, S Cunliffe 51, R Currie 48, C D’Ambrosio 36, P David 9, P N Y David 39, I De Bonis 5, K De Bruyn 39, S De Capua 52, M De Cian 38, J M De Miranda 2, L De Paula 3, W De Silva 58, P De Simone 19, D Decamp 5, M Deckenhoff 10, H Degaudenzi 36,37, L Del Buono 9, C Deplano 16, D Derkach 15, O Deschamps 6, F Dettori 40, A Di Canto 12, J Dickens 45, H Dijkstra 36, M Dogaru 27, F Domingo Bonal 34, S Donleavy 50, F Dordei 12, A Dosil Suárez 35, D Dossett 46, A Dovbnya 41, F Dupertuis 37, R Dzhelyadin 33, A Dziurda 24, A Dzyuba 28, S Easo 36,47, U Egede 51, V Egorychev 29, S Eidelman 32, D van Eijk 39, S Eisenhardt 48, U Eitschberger 10, R Ekelhof 10, L Eklund 49, I El Rifai 6, Ch Elsasser 38, D Elsby 43, A Falabella 15, C Färber 12, G Fardell 48, C Farinelli 39, S Farry 13, V Fave 37, D Ferguson 48, V Fernandez Albor 35, F Ferreira Rodrigues 2, M Ferro-Luzzi 36, S Filippov 31, C Fitzpatrick 36, M Fontana 11, F Fontanelli 20, R Forty 36, O Francisco 3, M Frank 36, C Frei 36, M Frosini 18, S Furcas 21, E Furfaro 22, A Gallas Torreira 35, D Galli 15, M Gandelman 3, P Gandini 53, Y Gao 4, J Garofoli 54, P Garosi 52, J Garra Tico 45, L Garrido 34, C Gaspar 36, R Gauld 53, E Gersabeck 12, M Gersabeck 52, T Gershon 36,46, Ph Ghez 5, V Gibson 45, V V Gligorov 36, C Göbel 55, D Golubkov 29, A Golutvin 29,36,51, A Gomes 3, H Gordon 53, M Grabalosa Gándara 6, R Graciani Diaz 34, L A Granado Cardoso 36, E Graugés 34, G Graziani 18, A Grecu 27, E Greening 53, S Gregson 45, O Grünberg 56, B Gui 54, E Gushchin 31, Yu Guz 33, T Gys 36, C Hadjivasiliou 54, G Haefeli 37, C Haen 36, S C Haines 45, S Hall 51, T Hampson 44, S Hansmann-Menzemer 12, N Harnew 53, S T Harnew 44, J Harrison 52, P F Harrison 46, T Hartmann 56, J He 8, V Heijne 39, K Hennessy 50, P Henrard 6, J A Hernando Morata 35, E van Herwijnen 36, E Hicks 50, D Hill 53, M Hoballah 6, C Hombach 52, P Hopchev 5, W Hulsbergen 39, P Hunt 53, T Huse 50, N Hussain 53, D Hutchcroft 50, D Hynds 49, V Iakovenko 42, P Ilten 13, R Jacobsson 36, A Jaeger 12, E Jans 39, F Jansen 39, P Jaton 37, F Jing 4, M John 53, D Johnson 53, C R Jones 45, B Jost 36, M Kaballo 10, S Kandybei 41, M Karacson 36, T M Karbach 36, I R Kenyon 43, U Kerzel 36, T Ketel 40, A Keune 37, B Khanji 21, O Kochebina 8, I Komarov 30,37, R F Koopman 40, P Koppenburg 39, M Korolev 30, A Kozlinskiy 39, L Kravchuk 31, K Kreplin 12, M Kreps 46, G Krocker 12, P Krokovny 32, F Kruse 10, M Kucharczyk 21,24, V Kudryavtsev 32, T Kvaratskheliya 29,36, V N La Thi 37, D Lacarrere 36, G Lafferty 52, A Lai 16, D Lambert 48, R W Lambert 40, E Lanciotti 36, G Lanfranchi 19,36, C Langenbruch 36, T Latham 46, C Lazzeroni 43, R Le Gac 7, J van Leerdam 39, J-P Lees 5, R Lefèvre 6, A Leflat 30,36, J Lefrançois 8, O Leroy 7, Y Li 4, L Li Gioi 6, M Liles 50, R Lindner 36, C Linn 12, B Liu 4, G Liu 36, J von Loeben 21, J H Lopes 3, E Lopez Asamar 34, N Lopez-March 37, H Lu 4, J Luisier 37, H Luo 48, F Machefert 8, I V Machikhiliyan 29,5, F Maciuc 27, O Maev 28,36, S Malde 53, G Manca 16, G Mancinelli 7, N Mangiafave 45, U Marconi 15, R Märki 37, J Marks 12, G Martellotti 23, A Martens 9, L Martin 53, A Martín Sánchez 8, M Martinelli 39, D Martinez Santos 40, D Martins Tostes 3, A Massafferri 2, R Matev 36, Z Mathe 36, C Matteuzzi 21, M Matveev 28, E Maurice 7, A Mazurov 17,31,36, J McCarthy 43, R McNulty 13, B Meadows 53,58, F Meier 10, M Meissner 12, M Merk 39, D A Milanes 9, M-N Minard 5, J Molina Rodriguez 55, S Monteil 6, D Moran 52, P Morawski 24, R Mountain 54, I Mous 39, F Muheim 48, K Müller 38, R Muresan 27, B Muryn 25, B Muster 37, P Naik 44, T Nakada 37, R Nandakumar 47, I Nasteva 2, M Needham 48, N Neufeld 36, A D Nguyen 37, T D Nguyen 37, C Nguyen-Mau 37, M Nicol 8, V Niess 6, R Niet 10, N Nikitin 30, T Nikodem 12, S Nisar 57, A Nomerotski 53, A Novoselov 33, A Oblakowska-Mucha 25, V Obraztsov 33, S Oggero 39, S Ogilvy 49, O Okhrimenko 42, R Oldeman 16,36, M Orlandea 27, J M Otalora Goicochea 3, P Owen 51, B K Pal 54, A Palano 14, M Palutan 19, J Panman 36, A Papanestis 47, M Pappagallo 49, C Parkes 52, C J Parkinson 51, G Passaleva 18, G D Patel 50, M Patel 51, G N Patrick 47, C Patrignani 20, C Pavel-Nicorescu 27, A Pazos Alvarez 35, A Pellegrino 39, G Penso 23, M Pepe Altarelli 36, S Perazzini 15, D L Perego 21, E Perez Trigo 35, A Pérez-Calero Yzquierdo 34, P Perret 6, M Perrin-Terrin 7, G Pessina 21, K Petridis 51, A Petrolini 20, A Phan 54, E Picatoste Olloqui 34, B Pietrzyk 5, T Pilař 46, D Pinci 23, S Playfer 48, M Plo Casasus 35, F Polci 9, G Polok 24, A Poluektov 32,46, E Polycarpo 3, D Popov 11, B Popovici 27, C Potterat 34, A Powell 53, J Prisciandaro 37, V Pugatch 42, A Puig Navarro 37, W Qian 5, J H Rademacker 44, B Rakotomiaramanana 37, M S Rangel 3, I Raniuk 41, N Rauschmayr 36, G Raven 40, S Redford 53, M M Reid 46, A C dos Reis 2, S Ricciardi 47, A Richards 51, K Rinnert 50, V Rives Molina 34, D A Roa Romero 6, P Robbe 8, E Rodrigues 52, P Rodriguez Perez 35, G J Rogers 45, S Roiser 36, V Romanovsky 33, A Romero Vidal 35, J Rouvinet 37, T Ruf 36, H Ruiz 34, G Sabatino 23, J J Saborido Silva 35, N Sagidova 28, P Sail 49, B Saitta 16, C Salzmann 38, B Sanmartin Sedes 35, M Sannino 20, R Santacesaria 23, C Santamarina Rios 35, E Santovetti 22, M Sapunov 7, A Sarti 19, C Satriano 23, A Satta 22, M Savrie 17, D Savrina 29,30, P Schaack 51, M Schiller 40, H Schindler 36, S Schleich 10, M Schlupp 10, M Schmelling 11, B Schmidt 36, O Schneider 37, A Schopper 36, M-H Schune 8, R Schwemmer 36, B Sciascia 19, A Sciubba 19, M Seco 35, A Semennikov 29, K Senderowska 25, I Sepp 51, N Serra 38, J Serrano 7, P Seyfert 12, M Shapkin 33, I Shapoval 36,41, P Shatalov 29, Y Shcheglov 28, T Shears 36,50, L Shekhtman 32, O Shevchenko 41, V Shevchenko 29, A Shires 51, R Silva Coutinho 46, T Skwarnicki 54, N A Smith 50, E Smith 47,53, M Smith 52, K Sobczak 6, M D Sokoloff 58, F J P Soler 49, F Soomro 19,36, D Souza 44, B Souza De Paula 3, B Spaan 10, A Sparkes 48, P Spradlin 49, F Stagni 36, S Stahl 12, O Steinkamp 38, S Stoica 27, S Stone 54, B Storaci 38, M Straticiuc 27, U Straumann 38, V K Subbiah 36, S Swientek 10, V Syropoulos 40, M Szczekowski 26, P Szczypka 36,37, T Szumlak 25, S T’Jampens 5, M Teklishyn 8, E Teodorescu 27, F Teubert 36, C Thomas 53, E Thomas 36, J van Tilburg 12, V Tisserand 5, M Tobin 38, S Tolk 40, D Tonelli 36, S Topp-Joergensen 53, N Torr 53, E Tournefier 5,51, S Tourneur 37, M T Tran 37, M Tresch 38, A Tsaregorodtsev 7, P Tsopelas 39, N Tuning 39, M Ubeda Garcia 36, A Ukleja 26, D Urner 52, U Uwer 12, V Vagnoni 15, G Valenti 15, R Vazquez Gomez 34, P Vazquez Regueiro 35, S Vecchi 17, J J Velthuis 44, M Veltri 18, G Veneziano 37, M Vesterinen 36, B Viaud 8, D Vieira 3, X Vilasis-Cardona 34, A Vollhardt 38, D Volyanskyy 11, D Voong 44, A Vorobyev 28, V Vorobyev 32, C Voß 56, H Voss 11, R Waldi 56, R Wallace 13, S Wandernoth 12, J Wang 54, D R Ward 45, N K Watson 43, A D Webber 52, D Websdale 51, M Whitehead 46, J Wicht 36, J Wiechczynski 24, D Wiedner 12, L Wiggers 39, G Wilkinson 53, M P Williams 46,47, M Williams 51, F F Wilson 47, J Wishahi 10, M Witek 24, S A Wotton 45, S Wright 45, S Wu 4, K Wyllie 36, Y Xie 36,48, F Xing 53, Z Xing 54, Z Yang 4, R Young 48, X Yuan 4, O Yushchenko 33, M Zangoli 15, M Zavertyaev 11, F Zhang 4, L Zhang 54, W C Zhang 13, Y Zhang 4, A Zhelezov 12, L Zhong 4, A Zvyagin 36
PMCID: PMC4370952  PMID: 25814862

Abstract

The branching fractions of the decay \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B^{+} \to p \bar{p} K^{+}$\end{document} for different intermediate states are measured using data, corresponding to an integrated luminosity of 1.0 fb−1, collected by the LHCb experiment. The total branching fraction, its charmless component \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(M_{p\bar{p}}<2.85~\text {GeV}/c^{2})$\end{document} and the branching fractions via the resonant \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$c\bar{c}$\end{document} states η c(1S) and ψ(2S) relative to the decay via a J/ψ intermediate state are

graphic file with name 10052_2013_2462_Equa_HTML.gif

Upper limits on the B + branching fractions into the η c(2S) meson and into the charmonium-like states X(3872) and X(3915) are also obtained.

Introduction

The \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B^{+} \to p \bar{p} K^{+}$\end{document} decay1 offers a clean environment to study \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$c\bar{c}$\end{document} states and charmonium-like mesons that decay to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p\bar{p}$\end{document} and excited \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\bar{ \varLambda }$\end{document} baryons that decay to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\bar{p} K^{+}$\end{document}, and to search for glueballs or exotic states. The presence of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p \bar{p}$\end{document} in the final state allows intermediate states of any quantum numbers to be studied and the existence of the charged kaon in the final state significantly enhances the signal to background ratio in the selection procedure. Measurements of intermediate charmonium-like states, such as the X(3872), are important to clarify their nature [1, 2] and to determine their partial width to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p\bar{p}$\end{document}, which is crucial to predict the production rate of these states in dedicated experiments [3]. BaBar and Belle have previously measured the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B^{+} \to p \bar{p} K^{+}$\end{document} branching fraction, including contributions from the J/ψ and η c(1S) intermediate states [4, 5]. The data sample, corresponding to an integrated luminosity of 1.0 fb−1, collected by LHCb at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s}=7~\text {TeV}$\end{document} allows the study of substructures in the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B^{+}\to p\bar{p} K^{+}$\end{document} decays with a sample ten times larger than those available at previous experiments.

In this paper we report measurements of the ratios of branching fractions

\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{R}({\rm mode}) =\frac{\mathcal{B}(B^{+} \to{\rm mode}\to p\bar{p} K^{+})}{\mathcal{B}(B^{+}\to J/\psi K^{+}\to p\bar{p} K^{+})}, $$\end{document} 1

where “mode” corresponds to the intermediate η c(1S), ψ(2S), η c(2S), χ c0(1P), h c(1P), X(3872) or X(3915) states, together with a kaon.

Detector and software

The LHCb detector [6] is a single-arm forward spectrometer covering the pseudorapidity range 2<η<5, designed for the study of particles containing b or c quarks. The detector includes a high precision tracking system consisting of a silicon-strip vertex detector surrounding the pp interaction region, a large-area silicon-strip detector located upstream of a dipole magnet with a bending power of about \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$4{\rm\,Tm}$\end{document}, and three stations of silicon-strip detectors and straw drift-tubes placed downstream. The combined tracking system has momentum (p) resolution Δp/p that varies from 0.4 % at 5 GeV/c to 0.6 % at 100 GeV/c, and impact parameter resolution of 20 μm for tracks with high transverse momentum (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{\rm T}$\end{document}). Charged hadrons are identified using two ring-imaging Cherenkov (RICH) detectors. Photon, electron and hadron candidates are identified by a calorimeter system consisting of scintillating-pad and pre-shower detectors, an electromagnetic calorimeter and a hadronic calorimeter. Muons are identified by a system composed of alternating layers of iron and multiwire proportional chambers.

The trigger [7] consists of a hardware stage, based on information from the calorimeter and muon systems, followed by a software stage where candidates are fully reconstructed. The hardware trigger selects hadrons with high transverse energy in the calorimeter. The software trigger requires a two-, three- or four-track secondary vertex with a high \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{\rm T}$\end{document} sum of the tracks and a significant displacement from the primary pp interaction vertices (PVs). At least one track should have \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{\rm T}> 1.7~\text{GeV/}c$\end{document} and impact parameter (IP) χ 2 with respect to the primary interaction greater than 16. The IP χ 2 is defined as the difference between the χ 2 of the PV reconstructed with and without the considered track. A multivariate algorithm is used for the identification of secondary vertices consistent with the decay of a b hadron.

Simulated \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B^{+} \to p \bar{p} K^{+}$\end{document} decays, generated uniformly in phase space, are used to optimize the signal selection and to evaluate the ratio of the efficiencies for each considered channel with respect to the J/ψ channel. Separate samples of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B^{+} \to J/\psi K^{+} \to p \bar{p} K^{+}$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B^{+} \to\eta_{c}(1S) K^{+} \to p \bar{p} K^{+}$\end{document} decays, generated with the known angular distributions, are used to check the dependence of the efficiency ratio on the angular distribution. In the simulation, pp collisions are generated using Pythia 6.4 [8] with a specific LHCb configuration [9]. Decays of hadronic particles are described by EvtGen [10] in which final state radiation is generated by Photos [11]. The interaction of the generated particles with the detector and its response are implemented using the Geant4 toolkit [12, 13] as described in Ref. [14].

Candidate selection

Candidate \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B^{+}\to p\bar{p} K^{+}$\end{document} decays are reconstructed from any combination of three charged tracks with total charge of +1. The final state particles are required to have a track fit with a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\chi ^{2}/{\rm ndf} < 3$\end{document} where ndf is the number of degrees of freedom. They must also have p>1500 MeV/c, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{\rm T} > 100~\text {MeV}/c$\end{document}, and IP χ 2>1 with respect to any primary vertex in the event. Particle identification (PID) requirements, based on the RICH detector information, are applied to p and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\bar{p}$\end{document} candidates. The discriminating variables between different particle hypotheses (π, K, p) are the differences between log-likelihood values \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta\ln\mathcal{L}_{\alpha\beta}$\end{document} under particle hypotheses α and β, respectively. The p and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\bar{p}$\end{document} candidates are required to have \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta \ln\mathcal{L}_{p\pi}>-5$\end{document}. The reconstructed B + candidates are required to have an invariant mass in the range 5079–5579 MeV/c 2. The asymmetric invariant mass range around the nominal B + mass is designed to select also \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B^{+} \to p \bar{p} \pi^{+}$\end{document} candidates without any requirement on the PID of the kaon. The PV associated to each B + candidate is defined to be the one for which the B + candidate has the smallest IP χ 2. The B + candidate is required to have a vertex fit with a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\chi^{2}/{\rm ndf}<12$\end{document} and a distance greater than 3 mm, a χ 2 for the flight distance greater than 500, and an IP χ 2<10 with respect to the associated PV. The maximum distance of closest approach between daughter tracks has to be less than 0.2 mm. The angle between the reconstructed momentum of the B + candidate and the B + flight direction (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\theta_{\rm fl}$\end{document}) is required to have \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\cos\theta _{\rm fl}>0.99998$\end{document}.

The reconstructed candidates that meet the above criteria are filtered using a boosted decision tree (BDT) algorithm [15]. The BDT is trained with a sample of simulated \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B^{+} \to p \bar{p} K^{+}$\end{document} signal candidates and a background sample of data candidates taken from the invariant mass sidebands in the ranges 5080–5220 MeV/c 2 and 5340–5480 MeV/c 2. The variables used by the BDT to discriminate between signal and background candidates are: the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{\rm T}$\end{document} of each reconstructed track; the sum of the daughters’ p T; the sum of the IP χ 2 of the three daughter tracks with respect to the primary vertex; the IP of the daughter, with the highest \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{\rm T}$\end{document}, with respect to the primary vertex; the number of daughters with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{\rm T} > 900~\text {GeV}/c$\end{document}; the maximum distance of closest approach between any two of the B + daughter particles; the IP of the B + candidate with respect to the primary vertex; the distance between primary and secondary vertices; the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\theta_{\rm fl}$\end{document} angle; the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\chi^{2}/{\rm ndf}$\end{document} of the secondary vertex; a pointing variable defined as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{P\sin\theta}{P\sin\theta+ \sum_{i} p_{\rm T,i}}$\end{document}, where P is the total momentum of the three-particle final state, θ is the angle between the direction of the sum of the daughter’s momentum and the direction of the flight distance of the B + and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sum_{i} p_{{\rm T},i}$\end{document} is the sum of the transverse momenta of the daughters; and the log likelihood difference for each daughter between the assumed PID hypothesis and the pion hypothesis. The selection criterion on the BDT response (Fig. 1) is chosen in order to have a signal to background ratio of the order of unity. This corresponds to a BDT response value of −0.11. The efficiency of the BDT selection is greater than 92 % with a background rejection greater than 86 %.

Fig. 1.

Fig. 1

Distribution of the BDT algorithm response evaluated for background candidates from the data sidebands (red hatched area), and signal candidates from simulation (blue filled area). The dotted line (black) indicates the chosen BDT response value (Color figure online)

Signal yield determination

The signal yield is determined from an unbinned extended maximum likelihood fit to the invariant mass of selected \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B^{+} \to p \bar{p} K^{+}$\end{document} candidates, shown in Fig. 2(a). The signal component is parametrized as the sum of two Gaussian functions with the same mean and different widths. The background component is parametrized as a linear function. The signal yield of the charmless component is determined by performing the same fit described above to the sample of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B^{+} \to p \bar{p} K^{+}$\end{document} candidates with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$M_{p\bar{p}} < 2.85~\text {GeV}/c^{2}$\end{document}, shown in Fig. 2(b). The B + mass and widths, evaluated with the invariant mass fits to all of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B^{+} \to p \bar{p} K^{+}$\end{document} candidates, are compatible with the values obtained for the charmless component.

Fig. 2.

Fig. 2

Invariant mass distribution of (a) all selected \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B^{+} \to p \bar{p} K^{+}$\end{document} candidates and (b) candidates having \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$M_{p \bar {p}} < 2.85~\text {GeV}/c^{2}$\end{document}. The points with error bars are the data and the solid lines are the result of the fit. The dotted lines represent the two Gaussian functions (red) and the dashed line the linear function (green) used to parametrize the signal and the background, respectively. The vertical lines (black) indicate the signal region. The two plots below the mass distributions show the pulls (Color figure online)

The signal yields for the charmonium contributions, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B^{+}\to(c\bar{c}) K^{+} \to p\bar{p} K^{+}$\end{document}, are determined by fitting the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p\bar{p}$\end{document} invariant mass distribution of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B^{+} \to p\bar{p} K^{+}$\end{document} candidates within the B + mass signal window, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\vert M_{p\bar{p} K^{+}} - M_{B^{+}}\vert< 50~\text {MeV}/c^{2}$\end{document}. Simulations show that no narrow structures are induced in the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p \bar{p}$\end{document} spectrum as kinematic reflections of possible \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B^{+} \to p \bar{\varLambda} \to p \bar{p} K^{+}$\end{document} intermediate states.

An unbinned extended maximum likelihood fit to the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p\bar{p}$\end{document} invariant mass distribution, shown in Fig. 3, is performed over the mass range 2400–4500 MeV/c 2. The signal components of the narrow resonances J/ψ, ψ(2S), h c(1P), and X(3872), whose natural widths are much smaller than the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p\bar{p}$\end{document} invariant mass resolution, are parametrized by Gaussian functions. The signal components for the η c(1S), χ c0(1P), η c(2S), and X(3915) are parametrized by Voigtian functions.2 Since the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p\bar{p}$\end{document} invariant mass resolution is approximately constant in the explored range, the resolution parameters for all resonances, except the ψ(2S), are fixed to the J/ψ value (σ J/ψ=8.9±0.2 MeV/c 2). The background shape is parametrized as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f(M)=e^{c_{1}M+ c_{2}M^{2}}$\end{document} where c 1 and c 2 are fit parameters. The J/ψ and ψ(2S) resolution parameters, the mass values of the η c(1S), J/ψ, and ψ(2S) states, and the η c(1S) natural width are left free in the fit. The masses and widths for the other signal components are fixed to the corresponding world averages [16]. The \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p\bar{p}$\end{document} invariant mass resolution, determined by the fit to the ψ(2S) is σ ψ(2S)=7.9±1.7 MeV/c 2.

Fig. 3.

Fig. 3

Invariant mass distribution of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p \bar{p}$\end{document} system for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B^{+} \to p\bar{p} K^{+}$\end{document} candidates within the B + mass signal window, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\vert M(p\bar{p} K^{+}) - M_{B^{+}}\vert< 50~\text {MeV}/c^{2}$\end{document}. The dotted lines represent the Gaussian and Voigtian functions (red) and the dashed line the smooth function (green) used to parametrize the signal and the background, respectively. The bottom plot shows the pulls (Color figure online)

The fit result is shown in Fig. 3. Figures 4 and 5 show the details of the fit result in the regions around the η c(1S) and J/ψ, η c(2S) and ψ(2S), χ c0(1P) and h c(1P), and X(3872) and X(3915) resonances. Any bias introduced by the inaccurate description of the tails of the η c(1S), J/ψ and ψ(2S) resonances is taken into account in the systematic uncertainty evaluation.

Fig. 4.

Fig. 4

Invariant mass distribution of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p \bar{p}$\end{document} system in the regions around (a) the η c(1S) and J/ψ and (b) the η c(2S) and ψ(2S) states. The dotted lines represent the Gaussian and the Voigtian functions (red) and the dashed line the smooth function (green) used to parametrize the signal and the background, respectively. The two plots below the mass distribution show the pulls (Color figure online)

Fig. 5.

Fig. 5

Invariant mass distribution of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p \bar{p}$\end{document} system in the regions around (a) the χ c0(1P) and h c and (b) the X(3872) and X(3915) states. The dotted lines represent the Gaussian and Voigitian functions (red) and the dashed line the smooth function (green) used to parametrize the signal and the background, respectively. The two plots below the mass distribution show the pulls (Color figure online)

The contribution of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$c\bar{c}\to p\bar{p}$\end{document} from processes other than \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B^{+} \to p \bar{p} K^{+}$\end{document} decays, denoted as “non-signal”, is estimated from a fit to the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p \bar{p}$\end{document} mass in the B + mass sidebands 5130–5180 and 5380–5430 MeV/c 2. Except for the J/ψ mode, no evidence of a non-signal contribution is found. The non-signal contribution to the J/ψ signal yield in the B + mass window is 43±11 candidates and is subtracted from the number of J/ψ signal candidates.

The signal yields, corrected for the non-signal contribution, are reported in Table 1. For the intermediate charmonium states η c(2S), χ c0(1P), h c(1P), X(3872) and X(3915), there is no evidence of signal. The 95 % CL upper limits on the number of candidates are shown in Table 1 and are determined from the likelihood profile integrating over the nuisance parameters. Since for the X(3872) the fitted signal yield is negative, the upper limit has been calculated integrating the likelihood only in the physical region of a signal yield greater than zero.

Table 1.

Signal yields for the different channels and corresponding 95 % CL upper limits for modes with less than 3σ statistical significance. For the J/ψ mode, the non-signal yield is subtracted. Uncertainties are statistical only

B + decay mode Signal yield Upper limit (95 % CL)
\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p\bar{p} K^{+}$\end{document} [total] 6951 ± 176
\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p\bar{p} K^{+}\ [M_{p \bar {p}} < 2.85~\text {GeV}/c^{2}]$\end{document} 3238 ± 122
J/ψK + 1458 ± 42
η c(1S)K + 856 ± 46
ψ(2S)K + 107 ± 16
η c(2S)K + 39 ± 15 <65.4
χ c0(1P)K + 15 ± 13 <38.1
h c(1P)K + 21 ± 11 <40.2
X(3872)K + −9 ± 8 <10.3
X(3915)K + 13 ± 17 <42.1

Efficiency determination

The ratio of branching fractions is calculated using

\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{aligned} \mathcal{R}({\rm mode}) =&\frac{\mathcal{B}(B^{+} \to{\rm mode}\to p\bar{p} K^{+})}{\mathcal{B}(B^{+}\to J/\psi K^{+}\to p\bar{p} K^{+})} \\=& \frac {N_{\rm mode}}{N_{ J/\psi }}\times \frac{\epsilon_{ J/\psi }}{\epsilon_{\rm mode}}, \end{aligned}$$ \end{document} 2

where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N_{\rm mode}$\end{document} and N J/ψ are the signal yields for the given mode and the reference mode, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B^{+}\to J/\psi K^{+}\to p\bar{p} K^{+}$\end{document}, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\epsilon_{\rm mode}/\epsilon_{ J/\psi }$\end{document} is the corresponding ratio of efficiencies. The efficiency is the product of the reconstruction, trigger, and selection efficiencies, and is estimated using simulated data samples.

Since the track multiplicity distribution for simulated events differs from that observed in data, simulated candidates are assigned a weight so that the weighted distribution reproduces the observed multiplicity distribution. The distributions of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta\ln\mathcal{L}_{K\pi}$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta\ln\mathcal{L}_{p\pi}$\end{document} for kaons and protons in data are obtained in bins of momentum, pseudorapidity and number of tracks from control samples of D ∗+D 0(→K π +)π + decays for kaons and Λ decays for protons, which are then used on a track-by-track basis to correct the simulation. The efficiency as a function of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$M_{p \bar{p}}$\end{document} is shown in Fig. 6. A linear fit to the efficiency distribution is performed and the efficiency ratios are determined based on the fit result.

Fig. 6.

Fig. 6

Efficiency as a function of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$M_{p \bar{p}}$\end{document} for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B^{+} \to p \bar{p} K^{+}$\end{document} decays. The solid line represents the linear fit to the efficiency distribution; the dashed line is the point-by-point interpolation used to estimate the systematic uncertainty

Systematic uncertainties

The measurements of the relative branching fractions depend on the ratios of signal yields and efficiencies with respect to the reference mode. Since the final state is the same in all cases, most of the systematic uncertainties cancel. The systematic uncertainty on the efficiency ratio, in each region of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p \bar{p}$\end{document} invariant mass, is determined from the difference between the efficiency ratios calculated using the solid fitted line and the dashed point-by-point interpolation shown in Fig. 6. The uncertainty associated with the evaluation of the B + signal yield has been determined by varying the fit range by ±30 MeV/c 2, using a single Gaussian instead of a double Gaussian function to model the signal PDF, and using an exponential function to model the background. For each charmonium resonance the systematic uncertainty on the signal yield has been investigated by varying the B mass signal window by ±10 MeV/c 2, the signal and background shape parametrization and the subtraction of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$c\bar{c}$\end{document} contribution from the continuum. The systematic uncertainty associated with the parametrization of the signal tails of the J/ψ, η c(1S) and ψ(2S) resonances is taken into account by taking the difference between the number of candidates in the observed distribution and the number of candidates calculated from the integral of the fit function in the range −6σ to −2.5σ. The systematic uncertainty associated with the selection procedure is estimated by changing the value of the BDT selection to −0.03, which retains 85 % of the signal with a 30 % background, and is found to be negligible. The contributions to the systematic uncertainties from the different sources are listed in Table 2. The total systematic uncertainty is determined by adding the individual contributions in quadrature.

Table 2.

Relative systematic uncertainties (in %) on the relative branching fractions from different sources. The total systematic uncertainty is determined by adding the individual contributions in quadrature

Source \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{R}({\rm total})$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{R}(M_{p \bar {p}} < 2.85~\text {GeV}/c^{2}) $\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{R}( \eta _{ c } (1S))$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{R}(\psi(2S))$\end{document}
Efficiency ratio 0.21 0.5 3.3 4.8
B + mass fit range 0.16 0.5
Sig. and Bkg. shape 2.5 3.6 1.8 6.5
B + mass window 0.6 0.6 0.9 3.8
Non-signal component 0.4 5.1
Signal tail param. 1.0 1.0 1.2 4.3
Total 2.8 3.8 4.1 11.3
Source \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{R}(\eta_{c}(2S))$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{R}(\chi_{c0}(1P))$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{R}(h_{c}(1P))$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{R}(X(3872))$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {R}(X(3915))$\end{document}
Efficiency ratio 4.4 2.5 3.4 6.5 7.0
B + mass fit range
Sig. and Bkg. shape 3.9 3.3 14.3 5.6 10.1
B + mass window 11.3 23.6 23.6 17.5 7.5
Non-signal component
Signal tail param. 1.0 1.0 1.0 1.0 1.0
Total 12.8 24.0 27.8 19.5 15.5

Results

The results are summarized in Table 3 and the values of the product of branching fractions derived from our measurement using the world average values \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{B}(B^{+} \to J/\psi K^{+}) =(1.013\pm0.034)\times10^{-3}$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{B}(J/\psi\to p\bar{p}) =(2.17\pm0.07)\times10^{-3}$\end{document} [16] are listed in Table 4. The branching fractions obtained are compatible with the world average values [16]. The upper limit on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{B}(B^{+} \to\chi_{c0}(1P) K^{+} \to p \bar{p} K^{+})$\end{document} is compatible with the world average \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{B}(B^{+} \to\chi _{c0}(1P) K^{+}) \times\mathcal{B}(\chi_{c0}(1P) \to p \bar{p}) = (0.030 \pm0.004) \times 10^{-6}$\end{document} [16]. We combine our upper limit for X(3872) with the known value for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{B} (B^{+} \to X(3872) K^{+} ) \times\mathcal{B} (X(3872) \to J/\psi\pi^{+} \pi^{-})= (8.6 \pm0.8) \times10^{-6}$\end{document} [16] to obtain the limit

\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{\mathcal{B} (X(3872) \to p \bar{p})}{\mathcal{B} (X(3872) \to J/\psi\pi^{+} \pi^{-})}< 2.0\times10^{-3}. $$\end{document}

This limit challenges some of the predictions for the molecular interpretations of the X(3872) state and is approaching the range of predictions for a conventional χ c1(2P) state [17, 18]. Using our result and the η c(2S) branching fraction \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{B} (B^{+} \to\eta_{c}(2S) K^{+})\times \mathcal{B} (\eta_{c}(2S) \to K \bar{K} \pi) = (3.4\, ^{+2.3}_{-1.6}) \times10^{-6}$\end{document} [16], a limit of

\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{\mathcal{B} (\eta_{c}(2S) \to p \bar{p})}{\mathcal{B} (\eta_{c}(2S) \to K \bar{K} \pi)} < 3.1 \times10^{-2} $$\end{document}

is obtained.

Table 3.

Signal yields, efficiency ratios, ratios of branching fractions and corresponding upper limits

\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B^{+}\to({\rm mode})$\end{document}
\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\to p\bar{p} K^{+}$\end{document}
Yield
± stat ± syst
\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\epsilon_{\rm mode}/\epsilon_{ J/\psi }$\end{document}
± syst
\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{R}({\rm mode})$\end{document}
± stat ± syst
Upper Limit 95 % CL
J/ψK + 1458±42±24 1
total 6951±176±171 0.970±0.002 4.91±0.19±0.14
\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${M_{p \bar {p}} < 2.85~\text {GeV}/c^{2}}$\end{document} 3238±122±121 1.097±0.006 2.02±0.10±0.08
η c(1S)K + 856±46±19 1.016±0.034 0.578±0.035±0.026
ψ(2S)K + 107±16±13 0.921±0.044 0.080±0.012±0.009
η c(2S)K + 39±15±5 0.927±0.041 0.029±0.011±0.004 <0.048
χ c0(1P)K + 15±13±4 0.957±0.024 0.011±0.009±0.003 <0.028
h c(1P)K + 21±11±5 0.943±0.032 0.015±0.008±0.004 <0.029
X(3872)K + −9±8±2 0.896±0.058 −0.007±0.006±0.002 <0.008
X(3915)K + 13±17±5 0.890±0.062 0.010±0.013±0.002 <0.032

Table 4.

Branching fractions for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B^{+}\to({\rm mode})\to p\bar{p} K^{+}$\end{document} derived using the world average value of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{B}(B^{+}\to J/\psi K^{+})$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{B}( J/\psi \to p\bar{p})$\end{document} branching fractions [16]. For the charmonium modes we compare our values to the product of the independently measured branching fractions. The first uncertainties are statistical, the second systematic in the present measurement, and the third systematic from the uncertainty on the J/ψ branching fraction

B + decay mode \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{B}(B^{+}\to({\rm mode})\to p\bar{p} K^{+})$\end{document} (×106) UL (95 % CL) (×106) Previous measurements (×106) [4, 5]
total 10.81±0.42±0.30±0.49 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$10.76^{+0.36}_{-0.33} \pm0.70$\end{document}
\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${M_{p \bar {p}} < 2.85~\text {GeV}/c^{2}}$\end{document} 4.46±0.21±0.18±0.20 5.12±0.31
η c(1S)K + 1.27±0.08±0.05±0.06 1.54±0.16
ψ(2S)K + 0.175±0.027±0.020±0.008 0.176±0.012
η c(2S)K + 0.063±0.025±0.009±0.003 <0.106
χ c0(1P)K + 0.024±0.021±0.006±0.001 <0.062 0.030±0.004
h c(1P)K + 0.034±0.018±0.008±0.002 <0.064
X(3872)K + −0.015±0.013±0.003±0.001 <0.017
X(3915)K + 0.022±0.029±0.004±0.001 <0.071

Summary

Based on a sample of 6951±176 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B^{+} \to p \bar{p} K^{+}$\end{document} decays reconstructed in a data sample, corresponding to an integrated luminosity of 1.0 fb−1, collected with the LHCb detector, the following relative branching fractions are measured

graphic file with name 10052_2013_2462_Equd_HTML.gif

An upper limit on the ratio \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{\mathcal{B} (B^{+} \to X(3872) K^{+} \to p \bar{p} K^{+})}{\mathcal{B}(B^{+} \to J/\psi K^{+} \to p \bar{p} K^{+})} < 0.017$\end{document} is obtained, from which a limit of

\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{\mathcal{B} (X(3872) \to p \bar{p})}{\mathcal{B} (X(3872) \to J/\psi\pi^{+} \pi^{-})}< 2.0\times10^{-3} $$\end{document}

is derived.

Acknowledgements

We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); NSFC (China); CNRS/IN2P3 and Region Auvergne (France); BMBF, DFG, HGF and MPG (Germany); SFI (Ireland); INFN (Italy); FOM and NWO (The Netherlands); SCSR (Poland); ANCS/IFA (Romania); MinES, Rosatom, RFBR and NRC “Kurchatov Institute” (Russia); MinECo, XuntaGal and GENCAT (Spain); SNSF and SER (Switzerland); NAS Ukraine (Ukraine); STFC (United Kingdom); NSF (USA). We also acknowledge the support received from the ERC under FP7. The Tier1 computing centres are supported by IN2P3 (France), KIT and BMBF (Germany), INFN (Italy), NWO and SURF (The Netherlands), PIC (Spain), GridPP (United Kingdom). We are thankful for the computing resources put at our disposal by Yandex LLC (Russia), as well as to the communities behind the multiple open source software packages that we depend on.

Open Access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Footnotes

1

The inclusion of charge-conjugate modes is implied throughout the paper.

2

A Voigtian function is the convolution of a Breit-Wigner function with a Gaussian distribution.

References

  • 1.Brambilla N., et al. Heavy quarkonium: progress, puzzles, and opportunities. Eur. Phys. J. C. 2011;71:1534. doi: 10.1140/epjc/s10052-010-1534-9. [DOI] [Google Scholar]
  • 2. R. Aaij et al. (LHCb Collaboration), Determination of the X(3872) meson quantum numbers. arXiv:1302.6269 [DOI] [PubMed]
  • 3.Lange J.S., et al. Prospects for X(3872) detection at Panda. AIP Conf. Proc. 2011;1374:549. doi: 10.1063/1.3647200. [DOI] [Google Scholar]
  • 4.Aubert B., BaBar Collaboration et al. Measurement of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B^{+} \to p \bar{p} K^{+}$\end{document} branching fraction and study of the decay dynamics. Phys. Rev. D. 2005;72:051101. doi: 10.1103/PhysRevD.72.051101. [DOI] [Google Scholar]
  • 5.Wei J., Belle Collaboration et al. Study of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B^{+} \to p \bar{p} K^{+}$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B+ \to p \bar{p} \pi^{+}$\end{document} Phys. Lett. B. 2008;659:80. doi: 10.1016/j.physletb.2007.11.063. [DOI] [Google Scholar]
  • 6.Alves J., Augusto A., LHCb Collaboration et al. The LHCb detector at the LHC. J. Instrum. 2008;3:S08005. doi: 10.1088/1748-0221/3/08/S08005. [DOI] [Google Scholar]
  • 7.Aaij R., et al. The LHCb trigger and its performance. J. Instrum. 2013;8:P04022. doi: 10.1088/1748-0221/8/04/P04022. [DOI] [Google Scholar]
  • 8.Sjöstrand T., Mrenna S., Skands P. PYTHIA 6.4 physics and manual. J. High Energy Phys. 2006;05:026. doi: 10.1088/1126-6708/2006/05/026. [DOI] [Google Scholar]
  • 9.Belyaev I., et al. Nuclear Science Symposium Conference Record (NSS/MIC) New York: IEEE; 2010. Handling of the generation of primary events in Gauss, the LHCb simulation framework; p. 1155. [Google Scholar]
  • 10.Lange D.J. The EvtGen particle decay simulation package. Nucl. Instrum. Methods A. 2001;462:152. doi: 10.1016/S0168-9002(01)00089-4. [DOI] [Google Scholar]
  • 11.Golonka P., Was Z. PHOTOS Monte Carlo: a precision tool for QED corrections in Z and W decays. Eur. Phys. J. C. 2006;45:97. doi: 10.1140/epjc/s2005-02396-4. [DOI] [Google Scholar]
  • 12.Allison J., GEANT4 Collaboration et al. Geant4 developments and applications. IEEE Trans. Nucl. Sci. 2006;53:270. doi: 10.1109/TNS.2006.869826. [DOI] [Google Scholar]
  • 13.Agostinelli S., GEANT4 Collaboration et al. GEANT4: a simulation toolkit. Nucl. Instrum. Methods A. 2003;506:250. doi: 10.1016/S0168-9002(03)01368-8. [DOI] [Google Scholar]
  • 14.Clemencic M., et al. The LHCb simulation application, Gauss: design, evolution and experience. J. Phys. Conf. Ser. 2011;331:032023. doi: 10.1088/1742-6596/331/3/032023. [DOI] [Google Scholar]
  • 15.Breiman L., Friedman J.H., Olshen R.A., Stone C.J. Classification and Regression Trees. Belmont: Wadsworth International Group; 1984. [Google Scholar]
  • 16.Beringer J., Particle Data Group et al. Review of Particle Physics (RPP) Phys. Rev. D. 2012;86:010001. doi: 10.1103/PhysRevD.86.010001. [DOI] [Google Scholar]
  • 17.Chen G., Ma J. Production of X(3872) at PANDA. Phys. Rev. D. 2008;77:097501. doi: 10.1103/PhysRevD.77.097501. [DOI] [Google Scholar]
  • 18.Braaten E. An estimate of the partial width for X(3872) into \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p\bar{p}$\end{document} Phys. Rev. D. 2008;77:034019. doi: 10.1103/PhysRevD.77.034019. [DOI] [Google Scholar]

Articles from The European Physical Journal. C, Particles and Fields are provided here courtesy of Springer

RESOURCES