Skip to main content
Springer logoLink to Springer
. 2013 Dec 6;73(12):2662. doi: 10.1140/epjc/s10052-013-2662-9

Energy dependence of the transverse momentum distributions of charged particles in pp collisions measured by ALICE

The ALICE Collaboration1, B Abelev 70, J Adam 37, D Adamová 78, A M Adare 125, M M Aggarwal 82, G Aglieri Rinella 34, M Agnello 105,88, A G Agocs 124, A Agostinelli 26, Z Ahammed 120, N Ahmad 17, A Ahmad Masoodi 17, I Ahmed 15, S A Ahn 63, S U Ahn 63, I Aimo 105,88, S Aiola 125, M Ajaz 15, A Akindinov 54, D Aleksandrov 94, B Alessandro 105, D Alexandre 96, A Alici 12,99, A Alkin 4, J Alme 35, T Alt 39, V Altini 31, S Altinpinar 18, I Altsybeev 119, C Alves Garcia Prado 111, C Andrei 73, A Andronic 91, V Anguelov 87, J Anielski 49, T Antičić 92, F Antinori 102, P Antonioli 99, L Aphecetche 106, H Appelshäuser 47, N Arbor 66, S Arcelli 26, N Armesto 16, R Arnaldi 105, T Aronsson 125, I C Arsene 91, M Arslandok 47, A Augustinus 34, R Averbeck 91, T C Awes 79, J Äystö 114, M D Azmi 17,84, M Bach 39, A Badalà 101, Y W Baek 40,65, R Bailhache 47, R Bala 105,85, A Baldisseri 14, F Baltasar Dos Santos Pedrosa 34, J Bán 55, R C Baral 57, R Barbera 27, F Barile 31, G G Barnaföldi 124, L S Barnby 96, V Barret 65, J Bartke 108, M Basile 26, N Bastid 65, S Basu 120, B Bathen 49, G Batigne 106, B Batyunya 62, P C Batzing 21, C Baumann 47, I G Bearden 75, H Beck 47, C Bedda 88, N K Behera 43, I Belikov 50, F Bellini 26, R Bellwied 113, E Belmont-Moreno 60, G Bencedi 124, S Beole 24, I Berceanu 73, A Bercuci 73, Y Berdnikov 80, D Berenyi 124, A A E Bergognon 106, R A Bertens 53, D Berzano 24, L Betev 34, A Bhasin 85, A K Bhati 82, J Bhom 117, L Bianchi 24, N Bianchi 67, C Bianchin 53, J Bielčík 37, J Bielčíková 78, A Bilandzic 75, S Bjelogrlic 53, F Blanco 10, F Blanco 113, D Blau 94, C Blume 47, F Bock 69,87, A Bogdanov 71, H Bøggild 75, M Bogolyubsky 51, L Boldizsár 124, M Bombara 38, J Book 47, H Borel 14, A Borissov 123, J Bornschein 39, M Botje 76, E Botta 24, S Böttger 46, E Braidot 69, P Braun-Munzinger 91, M Bregant 106, T Breitner 46, T A Broker 47, T A Browning 89, M Broz 36, R Brun 34, E Bruna 105, G E Bruno 31, D Budnikov 93, H Buesching 47, S Bufalino 105, P Buncic 34, O Busch 87, Z Buthelezi 61, D Caffarri 28, X Cai 7, H Caines 125, A Caliva 53, E Calvo Villar 97, P Camerini 23, V Canoa Roman 11,34, G Cara Romeo 99, F Carena 34, W Carena 34, F Carminati 34, A Casanova Díaz 67, J Castillo Castellanos 14, E A R Casula 22, V Catanescu 73, C Cavicchioli 34, C Ceballos Sanchez 9, J Cepila 37, P Cerello 105, B Chang 114, S Chapeland 34, J L Charvet 14, S Chattopadhyay 120, S Chattopadhyay 95, M Cherney 81, C Cheshkov 118, B Cheynis 118, V Chibante Barroso 34, D D Chinellato 113, P Chochula 34, M Chojnacki 75, S Choudhury 120, P Christakoglou 76, C H Christensen 75, P Christiansen 32, T Chujo 117, S U Chung 90, C Cicalo 100, L Cifarelli 12,26, F Cindolo 99, J Cleymans 84, F Colamaria 31, D Colella 31, A Collu 22, M Colocci 26, G Conesa Balbastre 66, Z Conesa del Valle 34,45, M E Connors 125, G Contin 23, J G Contreras 11, T M Cormier 123, Y Corrales Morales 24, P Cortese 30, I Cortés Maldonado 3, M R Cosentino 69, F Costa 34, P Crochet 65, R Cruz Albino 11, E Cuautle 59, L Cunqueiro 67, A Dainese 102, R Dang 7, A Danu 58, K Das 95, D Das 95, I Das 45, A Dash 112, S Dash 43, S De 120, H Delagrange 106, A Deloff 72, E Dénes 124, A Deppman 111, G O V de Barros 111, A De Caro 12,29, G de Cataldo 98, J de Cuveland 39, A De Falco 22, D De Gruttola 12,29, N De Marco 105, S De Pasquale 29, R de Rooij 53, M A Diaz Corchero 10, T Dietel 49, R Divià 34, D Di Bari 31, C Di Giglio 31, S Di Liberto 103, A Di Mauro 34, P Di Nezza 67, Ø Djuvsland 18, A Dobrin 123,53, T Dobrowolski 72, B Dönigus 47,91, O Dordic 21, A K Dubey 120, A Dubla 53, L Ducroux 118, P Dupieux 65, A K Dutta Majumdar 95, G D Erasmo 31, D Elia 98, D Emschermann 49, H Engel 46, B Erazmus 106,34, H A Erdal 35, D Eschweiler 39, B Espagnon 45, M Estienne 106, S Esumi 117, D Evans 96, S Evdokimov 51, G Eyyubova 21, D Fabris 102, J Faivre 66, D Falchieri 26, A Fantoni 67, M Fasel 87, D Fehlker 18, L Feldkamp 49, D Felea 58, A Feliciello 105, G Feofilov 119, A Fernández Téllez 3, E G Ferreiro 16, A Ferretti 24, A Festanti 28, J Figiel 108, M A S Figueredo 111, S Filchagin 93, D Finogeev 52, F M Fionda 31, E M Fiore 31, E Floratos 83, M Floris 34, S Foertsch 61, P Foka 91, S Fokin 94, E Fragiacomo 104, A Francescon 28,34, U Frankenfeld 91, U Fuchs 34, C Furget 66, M Fusco Girard 29, J J Gaardhøje 75, M Gagliardi 24, A Gago 97, M Gallio 24, D R Gangadharan 19, P Ganoti 79, C Garabatos 91, E Garcia-Solis 13, C Gargiulo 34, I Garishvili 70, J Gerhard 39, M Germain 106, A Gheata 34, M Gheata 34,58, B Ghidini 31, P Ghosh 120, P Gianotti 67, P Giubellino 34, E Gladysz-Dziadus 108, P Glässel 87, L Goerlich 108, R Gomez 11,110, P González-Zamora 10, S Gorbunov 39, S Gotovac 107, L K Graczykowski 122, R Grajcarek 87, A Grelli 53, C Grigoras 34, A Grigoras 34, V Grigoriev 71, A Grigoryan 2, S Grigoryan 62, B Grinyov 4, N Grion 104, J F Grosse-Oetringhaus 34, J-Y Grossiord 118, R Grosso 34, F Guber 52, R Guernane 66, B Guerzoni 26, M Guilbaud 118, K Gulbrandsen 75, H Gulkanyan 2, T Gunji 116, A Gupta 85, R Gupta 85, K H Khan 15, R Haake 49, Ø Haaland 18, C Hadjidakis 45, M Haiduc 58, H Hamagaki 116, G Hamar 124, L D Hanratty 96, A Hansen 75, J W Harris 125, A Harton 13, D Hatzifotiadou 99, S Hayashi 116, A Hayrapetyan 2,34, S T Heckel 47, M Heide 49, H Helstrup 35, A Herghelegiu 73, G Herrera Corral 11, N Herrmann 87, B A Hess 33, K F Hetland 35, B Hicks 125, B Hippolyte 50, Y Hori 116, P Hristov 34, I Hřivnáčová 45, M Huang 18, T J Humanic 19, D Hutter 39, D S Hwang 20, R Ichou 65, R Ilkaev 93, I Ilkiv 72, M Inaba 117, E Incani 22, G M Innocenti 24, C Ionita 34, M Ippolitov 94, M Irfan 17, V Ivanov 80, M Ivanov 91, O Ivanytskyi 4, A Jachołkowski 27, C Jahnke 111, H J Jang 63, M A Janik 122, P H S Y Jayarathna 113, S Jena 113,43, R T Jimenez Bustamante 59, P G Jones 96, H Jung 40, A Jusko 96, S Kalcher 39, P Kaliňák 55, T Kalliokoski 114, A Kalweit 34, J H Kang 126, V Kaplin 71, S Kar 120, A Karasu Uysal 64, O Karavichev 52, T Karavicheva 52, E Karpechev 52, A Kazantsev 94, U Kebschull 46, R Keidel 127, B Ketzer 47, S A Khan 120, M M Khan 17, P Khan 95, A Khanzadeev 80, Y Kharlov 51, B Kileng 35, S Kim 20, D W Kim 40,63, D J Kim 114, B Kim 126, T Kim 126, M Kim 40, M Kim 126, J S Kim 40, S Kirsch 39, I Kisel 39, S Kiselev 54, A Kisiel 122, G Kiss 124, J L Klay 6, J Klein 87, C Klein-Bösing 49, A Kluge 34, M L Knichel 91, A G Knospe 109, M K Köhler 91, T Kollegger 39, A Kolojvari 119, V Kondratiev 119, N Kondratyeva 71, A Konevskikh 52, V Kovalenko 119, M Kowalski 108, S Kox 66, G Koyithatta Meethaleveedu 43, J Kral 114, I Králik 55, F Kramer 47, A Kravčáková 38, M Krelina 37, M Kretz 39, M Krivda 55,96, F Krizek 37,41,78, M Krus 37, E Kryshen 80, M Krzewicki 91, V Kucera 78, Y Kucheriaev 94, T Kugathasan 34, C Kuhn 50, P G Kuijer 76, I Kulakov 47, J Kumar 43, P Kurashvili 72, A B Kurepin 52, A Kurepin 52, A Kuryakin 93, S Kushpil 78, V Kushpil 78, M J Kweon 87, Y Kwon 126, P Ladrón de Guevara 59, C Lagana Fernandes 111, I Lakomov 45, R Langoy 121, C Lara 46, A Lardeux 106, S L La Pointe 53, P La Rocca 27, R Lea 23, M Lechman 34, S C Lee 40, G R Lee 96, I Legrand 34, J Lehnert 47, R C Lemmon 77, M Lenhardt 91, V Lenti 98, I León Monzón 110, P Lévai 124, S Li 7,65, J Lien 121,18, R Lietava 96, S Lindal 21, V Lindenstruth 39, C Lippmann 91, M A Lisa 19, H M Ljunggren 32, D F Lodato 53, P I Loenne 18, V R Loggins 123, V Loginov 71, D Lohner 87, C Loizides 69, K K Loo 114, X Lopez 65, E López Torres 9, G Løvhøiden 21, X-G Lu 87, P Luettig 47, M Lunardon 28, J Luo 7, G Luparello 53, C Luzzi 34, P M Jacobs 69, R Ma 125, A Maevskaya 52, M Mager 34, D P Mahapatra 57, A Maire 87, M Malaev 80, I Maldonado Cervantes 59, L Malinina 62, D Mal’Kevich 54, P Malzacher 91, A Mamonov 93, L Manceau 105, V Manko 94, F Manso 65, V Manzari 98, M Marchisone 24,65, J Mareš 56, G V Margagliotti 23, A Margotti 99, A Marín 91, C Markert 109,34, M Marquard 47, I Martashvili 115, N A Martin 91, P Martinengo 34, M I Martínez 3, G Martínez García 106, J Martin Blanco 106, Y Martynov 4, A Mas 106, S Masciocchi 91, M Masera 24, A Masoni 100, L Massacrier 106, A Mastroserio 31, A Matyja 108, J Mazer 115, R Mazumder 44, M A Mazzoni 103, F Meddi 25, A Menchaca-Rocha 60, J Mercado Pérez 87, M Meres 36, Y Miake 117, K Mikhaylov 54,62, L Milano 24,34, J Milosevic 21, A Mischke 53, A N Mishra 44, D Miśkowiec 91, C Mitu 58, J Mlynarz 123, B Mohanty 120,74, L Molnar 124,50, L Montaño Zetina 11, M Monteno 105, E Montes 10, T Moon 126, M Morando 28, D A Moreira De Godoy 111, S Moretto 28, A Morreale 114, A Morsch 34, V Muccifora 67, E Mudnic 107, S Muhuri 120, M Mukherjee 120, H Müller 34, M G Munhoz 111, S Murray 61, L Musa 34, B K Nandi 43, R Nania 99, E Nappi 98, C Nattrass 115, T K Nayak 120, S Nazarenko 93, A Nedosekin 54, M Nicassio 31,91, M Niculescu 34,58, B S Nielsen 75, S Nikolaev 94, S Nikulin 94, V Nikulin 80, B S Nilsen 81, M S Nilsson 21, F Noferini 12,99, P Nomokonov 62, G Nooren 53, A Nyanin 94, A Nyatha 43, J Nystrand 18, H Oeschler 48,87, S K Oh 40, S Oh 125, L Olah 124, J Oleniacz 122, A C Oliveira Da Silva 111, J Onderwaater 91, C Oppedisano 105, A Ortiz Velasquez 32, A Oskarsson 32, J Otwinowski 91, K Oyama 87, Y Pachmayer 87, M Pachr 37, P Pagano 29, G Paić 59, F Painke 39, C Pajares 16, S K Pal 120, A Palaha 96, A Palmeri 101, V Papikyan 2, G S Pappalardo 101, W J Park 91, A Passfeld 49, D I Patalakha 51, V Paticchio 98, B Paul 95, T Pawlak 122, T Peitzmann 53, H Pereira Da Costa 14, E Pereira De Oliveira Filho 111, D Peresunko 94, C E Pérez Lara 76, D Perrino 31, W Peryt 122, A Pesci 99, Y Pestov 5, V Petráček 37, M Petran 37, M Petris 73, P Petrov 96, M Petrovici 73, C Petta 27, S Piano 104, M Pikna 36, P Pillot 106, O Pinazza 34,99, L Pinsky 113, N Pitz 47, D B Piyarathna 113, M Planinic 92, M Płoskoń 69, J Pluta 122, S Pochybova 124, P L M Podesta-Lerma 110, M G Poghosyan 34, B Polichtchouk 51, N Poljak 53,92, A Pop 73, S Porteboeuf-Houssais 65, V Pospíšil 37, B Potukuchi 85, S K Prasad 123, R Preghenella 12,99, F Prino 105, C A Pruneau 123, I Pshenichnov 52, G Puddu 22, V Punin 93, J Putschke 123, H Qvigstad 21, A Rachevski 104, A Rademakers 34, J Rak 114, A Rakotozafindrabe 14, L Ramello 30, S Raniwala 86, R Raniwala 86, S S Räsänen 41, B T Rascanu 47, D Rathee 82, W Rauch 34, A W Rauf 15, V Razazi 22, K F Read 115, J S Real 66, K Redlich 72, R J Reed 125, A Rehman 18, P Reichelt 47, M Reicher 53, F Reidt 34,87, R Renfordt 47, A R Reolon 67, A Reshetin 52, F Rettig 39, J-P Revol 34, K Reygers 87, L Riccati 105, R A Ricci 68, T Richert 32, M Richter 21, P Riedler 34, W Riegler 34, F Riggi 27, A Rivetti 105, M Rodríguez Cahuantzi 3, A Rodriguez Manso 76, K Røed 18,21, E Rogochaya 62, S Rohni 85, D Rohr 39, D Röhrich 18, R Romita 77,91, F Ronchetti 67, P Rosnet 65, S Rossegger 34, A Rossi 34, P Roy 95, C Roy 50, A J Rubio Montero 10, R Rui 23, R Russo 24, E Ryabinkin 94, A Rybicki 108, S Sadovsky 51, K Šafařík 34, R Sahoo 44, P K Sahu 57, J Saini 120, H Sakaguchi 42, S Sakai 67,69, D Sakata 117, C A Salgado 16, J Salzwedel 19, S Sambyal 85, V Samsonov 80, X Sanchez Castro 50,59, L Šándor 55, A Sandoval 60, M Sano 117, G Santagati 27, R Santoro 12,34, D Sarkar 120, E Scapparone 99, F Scarlassara 28, R P Scharenberg 89, C Schiaua 73, R Schicker 87, C Schmidt 91, H R Schmidt 33, S Schuchmann 47, J Schukraft 34, M Schulc 37, T Schuster 125, Y Schutz 106,34, K Schwarz 91, K Schweda 91, G Scioli 26, E Scomparin 105, R Scott 115, P A Scott 96, G Segato 28, I Selyuzhenkov 91, J Seo 90, S Serci 22, E Serradilla 60,10, A Sevcenco 58, A Shabetai 106, G Shabratova 62, R Shahoyan 34, S Sharma 85, N Sharma 115, K Shigaki 42, K Shtejer 9, Y Sibiriak 94, S Siddhanta 100, T Siemiarczuk 72, D Silvermyr 79, C Silvestre 66, G Simatovic 92, R Singaraju 120, R Singh 85, S Singha 120, V Singhal 120, B C Sinha 120, T Sinha 95, B Sitar 36, M Sitta 30, T B Skaali 21, K Skjerdal 18, R Smakal 37, N Smirnov 125, R J M Snellings 53, C Søgaard 32, R Soltz 70, M Song 126, J Song 90, C Soos 34, F Soramel 28, M Spacek 37, I Sputowska 108, M Spyropoulou-Stassinaki 83, B K Srivastava 89, J Stachel 87, I Stan 58, G Stefanek 72, M Steinpreis 19, E Stenlund 32, G Steyn 61, J H Stiller 87, D Stocco 106, M Stolpovskiy 51, P Strmen 36, A A P Suaide 111, M A Subieta Vásquez 24, T Sugitate 42, C Suire 45, M Suleymanov 15, R Sultanov 54, M Šumbera 78, T Susa 92, T J M Symons 69, A Szanto de Toledo 111, I Szarka 36, A Szczepankiewicz 34, M Szymański 122, J Takahashi 112, M A Tangaro 31, J D Tapia Takaki 45, A Tarantola Peloni 47, A Tarazona Martinez 34, A Tauro 34, G Tejeda Muñoz 3, A Telesca 34, C Terrevoli 31, A Ter Minasyan 71,94, J Thäder 91, D Thomas 53, R Tieulent 118, A R Timmins 113, A Toia 102,39, H Torii 116, V Trubnikov 4, W H Trzaska 114, T Tsuji 116, A Tumkin 93, R Turrisi 102, T S Tveter 21, J Ulery 47, K Ullaland 18, J Ulrich 46, A Uras 118, G M Urciuoli 103, G L Usai 22, M Vajzer 78, M Vala 55,62, L Valencia Palomo 45, P Vande Vyvre 34, L Vannucci 68, J W Van Hoorne 34, M van Leeuwen 53, A Vargas 3, R Varma 43, M Vasileiou 83, A Vasiliev 94, V Vechernin 119, M Veldhoen 53, M Venaruzzo 23, E Vercellin 24, S Vergara 3, R Vernet 8, M Verweij 123,53, L Vickovic 107, G Viesti 28, J Viinikainen 114, Z Vilakazi 61, O Villalobos Baillie 96, A Vinogradov 94, L Vinogradov 119, Y Vinogradov 93, T Virgili 29, Y P Viyogi 120, A Vodopyanov 62, M A Völkl 87, S Voloshin 123, K Voloshin 54, G Volpe 34, B von Haller 34, I Vorobyev 119, D Vranic 34,91, J Vrláková 38, B Vulpescu 65, A Vyushin 93, B Wagner 18, V Wagner 37, J Wagner 91, Y Wang 87, Y Wang 7, M Wang 7, D Watanabe 117, K Watanabe 117, M Weber 113, J P Wessels 49, U Westerhoff 49, J Wiechula 33, J Wikne 21, M Wilde 49, G Wilk 72, J Wilkinson 87, M C S Williams 99, B Windelband 87, M Winn 87, C Xiang 7, C G Yaldo 123, Y Yamaguchi 116, H Yang 14,53, P Yang 7, S Yang 18, S Yano 42, S Yasnopolskiy 94, J Yi 90, Z Yin 7, I-K Yoo 90, I Yushmanov 94, V Zaccolo 75, C Zach 37, C Zampolli 99, S Zaporozhets 62, A Zarochentsev 119, P Závada 56, N Zaviyalov 93, H Zbroszczyk 122, P Zelnicek 46, I S Zgura 58, M Zhalov 80, F Zhang 7, Y Zhang 7, H Zhang 7, X Zhang 7,65,69, D Zhou 7, Y Zhou 53, F Zhou 7, X Zhu 7, J Zhu 7, J Zhu 7, H Zhu 7, A Zichichi 12,26, M B Zimmermann 34,49, A Zimmermann 87, G Zinovjev 4, Y Zoccarato 118, M Zynovyev 4, M Zyzak 47
PMCID: PMC4371052  PMID: 25814850

Abstract

Differential cross sections of charged particles in inelastic pp collisions as a function of p T have been measured at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s} = 0.9,\ 2.76\ \text{and}\ 7\ \text{TeV}$\end{document} at the LHC. The p T spectra are compared to NLO-pQCD calculations. Though the differential cross section for an individual \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s}$\end{document} cannot be described by NLO-pQCD, the relative increase of cross section with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s}$\end{document} is in agreement with NLO-pQCD. Based on these measurements and observations, procedures are discussed to construct pp reference spectra at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s} = 2.76\ \text{and}\ 5.02~\text{TeV}$\end{document} up to p T=50 GeV/c as required for the calculation of the nuclear modification factor in nucleus–nucleus and proton–nucleus collisions.

Introduction

The measurement of charged particle production in proton–proton collisions at high energy gives insight into the dynamics of soft and hard interactions. Hard parton–parton scattering processes with large momentum transfer are quantitatively described by perturbative Quantum Chromodynamics (pQCD). Measurements at high transverse momenta (p T) at LHC-energies can help to constrain parton distribution and fragmentation functions in current next-to-Leading-Order (NLO) pQCD calculations [1] of charged particle production. As data at various \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s}$\end{document} become available at the LHC, a systematic comparison with current NLO-pQCD calculations over a large span of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s}$\end{document} is now possible. However, most particles are produced at low momentum, where particle production is dominated by soft interactions and only phenomenological approaches can be applied (e.g. PYTHIA [24], PHOJET [5]) to describe the data. A systematic comparison to data at different values of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s}$\end{document} is an essential ingredient to tune these Monte Carlo event generators.

Furthermore, the measurement of charged particle transverse momentum spectra in pp collisions serves as a crucial reference for particle spectra in Pb–Pb collisions. To quantify final state effects due to the creation of a hot and dense deconfined matter, commonly referred to as the Quark–Gluon Plasma (QGP), p T spectra in the two collision systems are compared. The observed suppression [6] in central Pb–Pb collisions at LHC-energies at high p T relative to an independent superposition of pp collisions is generally attributed to energy loss of the partons as they propagate through the hot and dense QCD medium. To enable this comparison a pp reference p T spectrum at the same \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s}$\end{document} with the same p T coverage has to be provided. Similarly, a pp reference spectrum is also needed for p–Pb collisions to investigate possible initial-state effects in the collision.

In this paper we present a measurement of primary charged particle transverse momentum spectra in pp collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s} = 0.9,\ 2.76 \ \mbox{and}\ 7\ \text{TeV}$\end{document}. Primary charged particles are considered here as all charged particles produced in the collision and their decay products, except for particles from weak decays of strange hadrons. The measurement is performed in the pseudorapidity range |η|<0.8 for particles with p T>0.15 GeV/c. Reference spectra for comparison with Pb–Pb spectra at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt {s_{\mathrm{NN}}} = 2.76\ \mbox{TeV}$\end{document} and p–Pb spectra at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s_{\mathrm {NN}}} = 5.02\ \mbox{TeV}$\end{document} in the corresponding p T range up to p T=50 GeV/c are constructed.

Experiment and data analysis

The data were collected by the ALICE apparatus [7] at the CERN-LHC in 2009–2011. The analysis is based on tracking information from the Inner Tracking System (ITS) and the Time Projection Chamber (TPC), both located in the central barrel of the experiment. The minimum-bias interaction trigger was derived using signals from the forward scintillators (VZERO), and the two innermost layers of the ITS, the Silicon Pixel Detector (SPD). Details of the experimental setup used in this analysis are discussed in [8].

The events are selected based on the minimum-bias trigger MBOR requiring at least one hit in the SPD or VZERO detectors, which are required to be in coincidence with two beam bunches crossing in the ALICE interaction region. In addition, an offline event selection is applied to reject beam induced (beam-gas, beam-halo) background. The VZERO counters are used to remove these beam-gas or beam-halo events by requiring their timing signals to be in coincidence with particles produced in the collision. The background events are also removed by exploiting the correlation between the number of the SPD hits and the number of the SPD tracklets (short track segments reconstructed in the SPD and pointing to the interaction vertex). The beam-gas or beam-halo events typically have a large number of hits in the SPD compared to the number of reconstructed tracklets; this is used to reject background events. In total 6.8 M, 65 M and 150 M pp events at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s}=0.9,\ 2.76\ \mbox{and}\ 7\ \text{TeV}$\end{document} fulfill the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\rm {MB_{{OR}}}$\end{document} trigger and offline selection criteria. The typical luminosity for these data taking was about 1029 s−1 cm−2. The average number of interactions per bunch crossing varied from 0.05 to 0.1.

In this analysis the focus is on inelastic (INEL) pp events originating from single-diffractive, double-diffractive and non-diffractive processes. The INEL events are selected with an efficiency \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varepsilon _{\mathrm{MB}_{\mathrm{OR}}}$\end{document} of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$91^{+3.2}_{-1.0}~\%$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$88.1^{+5.9}_{-3.5}~\%$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$85.2^{+6.2}_{-3.0}~\%$\end{document} for the three energies. The trigger efficiencies are determined [9] based on detector simulations with PYTHIA6 [24] and PHOJET [5] event generators.

The primary event vertex is determined based on ITS and TPC information. If no vertex is found using tracks in the ITS and the TPC, it is reconstructed from tracklets in the SPD only. Tracks or tracklets are extrapolated to the experimental collision region utilizing the averaged measured beam intersection profile in the xy plane perpendicular to the beam axis.

An event is accepted if the z-coordinate of the vertex is within ±10 cm of the center of the interaction region along the beam direction. This corresponds to about 1.6 standard deviations from the mean of the reconstructed event vertex distribution for all three energies. In this range, the vertex reconstruction efficiency is independent of z. The event vertex reconstruction is fully efficient for events with at least one track in the pseudorapidity range |η|<1.4 for all three energies.

Only tracks within a pseudorapidity range of |η|<0.8 and transverse momenta p T>0.15 GeV/c are selected. A set of standard cuts based on the number of space points and the quality of the track fit in ITS and TPC is applied to the reconstructed tracks [10].

Efficiency and purity of the primary charged particle selection are estimated using simulations with PYTHIA6 [24] and GEANT3 [11] for particle transport and detector response. The overall p T-dependent efficiency (tracking efficiency × acceptance) is 40–73 %, 36–68 % and 40–73 % at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s}=0.9,\ 2.76\ \mbox{and}\ 7\ \text{TeV}$\end{document}. At \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s}=2.76~\text{TeV}$\end{document} the overall efficiency is lower than at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt {s}=0.9\ \text{and}\ 7\ \text{TeV}$\end{document} due to the smaller number of operational channels in the SPD. Contamination of secondary tracks which passed all selection criteria amounts to 7 % at p T=0.15 GeV/c and decreases to ∼0.6 % for p T>4 GeV/c. In addition, the contribution from secondary tracks originating from weak decays of strange hadrons was scaled up by a factor of 1–1.5 (p T-dependent) to match the contribution in data. The secondary tracks were subtracted bin-by-bin from the p T spectra.

The p T resolution is estimated from the space point residuals of the track fit. It is verified by the width of the invariant mass peaks of Λ, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\overline{\varLambda}$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{K}^{0}_{\mathrm{{s}}}$\end{document}, reconstructed from their decays into two charged particles. The relative p T resolution is 3.5 %, 5.5 % and 9 % at the highest p T of 20, 32 and 50 GeV/c at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s}=0.9,\ 2.76\ \text{and}\ 7~\text{TeV}$\end{document}, respectively. From invariant mass distributions M inv(p T) of Λ and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{K}^{0}_{\mathrm{{s}}}$\end{document}, the relative uncertainty on the p T resolution is estimated to be ≈20 % for all three energies. To account for the finite p T resolution of tracks, correction factors to the spectrum for p T>10 GeV/c are derived using an unfolding procedure. The determination of the correction factors is based on measured tracks without involving simulation. The choice of the unfolding procedure is based on the observation that p T smearing has a small influence on the measured spectrum. As input to the procedure a power-law parametrization of the measured p T spectrum for p T>10 GeV/c is used. This parametrization is folded with the p T resolution obtained for a given p T from the measured track covariance matrix. The p T dependent correction factors are extracted from the ratio of the input to the folded parametrization and are applied (bin-by-bin) to the measured p T spectrum. It was checked that the derived correction factors are the same when replacing the measured with the corrected p T distribution in the unfolding procedure. The correction factors depend on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s}$\end{document} due to the change of the spectral shape and reach 2 %, 4 % and 6.5 % at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s}=0.9,~2.76~\text{and}~7~\text{TeV}$\end{document} for the highest p T. The systematic uncertainty of the momentum scale is |Δ(p T)/p T|<0.01 at p T=50 GeV/c, as determined from the mass difference between Λ and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\overline{\varLambda}$\end{document} and the ratio of positively to negatively charged tracks, assuming charge symmetry at high p T.

A summary of the systematic uncertainties is given in Table 1. The systematic uncertainties on the event selection are determined by changing the lower and upper limits on the z-coordinate of the vertex. Track selection criteria [10] are varied to determine the corresponding systematic uncertainties resulting in a maximal contribution of 4.3–5.5 % for p T<0.6 GeV/c. The systematic uncertainties on the tracking efficiency are estimated from the difference between data and simulation in the TPC-ITS track matching efficiency. The systematic uncertainties related to the p T resolution correction are derived from the unfolding procedure including a relative uncertainty on the p T resolution, and reach maximum values at the highest p T covered. The systematic uncertainties on the material budget (∼11.5 % X 0 [12], where X 0 is the radiation length) are estimated by changing the material density (conservatively) by ±10 % in the simulation, contributing mostly at p T<0.2 GeV/c. To assess the systematic uncertainties on the tracking efficiency related to the primary particle composition the relative abundance of π, K, p was varied by 30 % in the simulation; they contribute mostly at p T<0.5 GeV/c. The Monte Carlo (MC) event generator dependence was studied using PHOJET as a comparison, with the largest contribution at p T<0.2 GeV/c. The yield of secondary particles from decays of strange hadrons has been varied by 30 % to determine the corresponding uncertainty of maximum 0.3 % at p T≈1 GeV/c. The total p T dependent systematic uncertainties for the three energies amount to 6.7–8.2 %, 6.4–8.0 % and 6.6–7.9 % and are shown in the bottom panel of Fig. 1. They are dominated by the systematic uncertainties on the tracking efficiency. There are also comparable contributions related to the track selection (p T<0.6 GeV/c) and p T resolution correction at the highest p T covered. The systematic uncertainties on the normalization are related to the minimum bias nucleon–nucleon cross section (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sigma^{\mathrm {NN}}_{\mathrm{MB}}$\end{document}) determination [9] and amount to +5.1/−4.0 %, ±1.9 % and ±3.6 % for pp at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s}=0.9~\mbox{TeV},\ 2.76~\text{TeV}\ \mbox{and}\ 7~\text{TeV}$\end{document}, respectively.

Table 1.

Contribution to the systematic uncertainties on the p T spectra

\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s}$\end{document} 0.9 TeV 2.76 TeV 7 TeV
Event vertex selection 1.2 % 2.3 % 0.5 %
Track selection 2.5–5.5 % 2.3–5.1 % 1.9–4.3 %
Tracking efficiency 5 % 5 % 5 %
p T resolution correction <1.7 % <1.9 % <2.6 %
Material budget 0.2–1.5 % 0.2–1.5 % 0.2–1.5 %
Particle composition 1–2 % 1–2 % 1–2 %
MC event generator 2.5 % 2–3 % 2–3.5 %
Secondary strange particles <0.3 % <0.3 % <0.3 %
Total p T dependent 6.7–8.2 % 6.4–8.0 % 6.6–7.9 %
Normalization uncertainty +5.1/−4.0 % ±1.9 % ±3.6 %

Fig. 1.

Fig. 1

Top: Differential cross section of charged particles in INEL pp collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s} = 0.9,\ 2.76\ \text{and}\ 7~\text{TeV}$\end{document} as a function of p T compared to a NLO-pQCD calculation [1] at the same energy. Only statistical uncertainties are shown. Bottom: Systematic uncertainties as a function of p T for all three energies. The uncertainty on the normalization (compare Table 1) of the spectra is not included (Color figure online)

The differential cross section d2 σ ch/dη dp T is calculated as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{d}^{2}\sigma_{\mathrm{ch}} / {\mathrm{d}}\eta\,\mathrm {d}p_{\mathrm{T}} = \sigma_{\mathrm{MB}_{\mathrm {OR}}}^{\mathrm{NN}} \times\mathrm{d}^{2} {N}^{\mathrm {MB}_{\mathrm{OR}}}_{\mathrm{{ch}}} / {\mathrm{{d}}} \eta \,{\mathrm{{d}}}p_{\mathrm{T}}$\end{document} with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{{d}}^{2} {{N}}^{\mathrm{{MB_{\mathrm{{OR}}}}}}_{\mathrm {{ch}}} / {\mathrm{{d}}} \eta\,{\mathrm{{d}}}p_{\mathrm{T}}$\end{document} being the per event differential yield of charged particles in minimum bias collisions. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sigma_{\mathrm{MB}_{\mathrm{OR}}}^{\mathrm{{NN}}}$\end{document} is determined based on van-der-Meer scans [9] as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sigma_{\mathrm{MB}_{\mathrm{OR}}}^{\mathrm{NN}} = 55.4 \pm1.0$\end{document} (62.2±2.2) mb at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s}=2.76~(7)~\mbox{TeV}$\end{document}. At \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s}=0.9~\mbox{TeV}$\end{document} van-der-Meer scans were not performed and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sigma_{\mathrm{MB}_{\mathrm{OR}}}^{\mathrm {{NN}}}=47.8^{+2.5}_{-3.0}~\mbox{mb}$\end{document} is obtained based on detector simulations using the INEL cross section \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sigma^{\mathrm{{NN}}}_{\mathrm{{INEL}}}=52.5^{+2}_{-3.3}~\mbox{mb}$\end{document} [9]. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sigma^{\mathrm{{NN}}}_{\mathrm{{INEL}}}$\end{document} includes the UA5 measurement [13] and re-analysis of the extrapolation to low diffractive masses [14].

Results

The differential cross section in INEL pp collisions as a function of p T is shown in Fig. 1 for all three measured collision energies. At high p T a clear evolution of the slope from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt {s}= 0.9\ \mbox{to}\ 7~\text{TeV}$\end{document} can be observed. A NLO-pQCD calculation [1] for p T>3 GeV/c is compared to the spectra. The calculation shows a similar evolution of the high-p T dependence with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s}$\end{document} but overpredicts the data by a factor two [12, 15]. The low systematic uncertainties demonstrate the accuracy of the measurements for all energies over the full p T range.

Though the p T dependence of the cross section for a single \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s}$\end{document} is not well described by NLO-pQCD, the relative dependence on p T of cross sections of two collision energies is described much better. Figure 2 shows the ratio between the differential cross section in INEL pp collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s} = 2.76\ \mbox{to}\ 7~\mbox{TeV},\ 0.9\ \mbox{to}\ 2.76~\mbox{TeV}\ \mbox{and}\ 0.9\ \mbox{to}\ 7~\mbox{TeV}$\end{document} as a function of p T in comparison to the same ratio calculated with NLO-pQCD. The total p T dependent systematic uncertainties on the ratios are evaluated taking into account correlated contributions, and amount to 8.1–9.8 %, 7.8–9.8 % and 7.9–9.9 % for 0.9 TeV/2.76 TeV, 0.9 TeV/7 TeV and 2.76 TeV/7 TeV. The corresponding normalization uncertainties amount to +5.4 %/−4.4 %, +6.2 %/−5.4 % and ±4.1 %, and are calculated assuming that the normalization uncertainties on the p T spectra (Table 1) are uncorrelated. In all three ratios good agreement between data and NLO-pQCD calculations is found, which can be seen in the double ratio of data and NLO-pQCD for the three energy ratios in the lower panel of Fig. 2.

Fig. 2.

Fig. 2

Top: Ratio of differential cross sections of charged particles in INEL pp collisions at different collision energies as a function of p T. Gray boxes denote p T dependent systematic uncertainties. Normalization uncertainties are not shown (see text for details). The histograms show the same ratio determined from NLO calculations. Bottom: Ratio of data and NLO calculations derived from upper panel. A variation of the renormalization and factorization scale of the NLO calculation gives a systematic uncertainty on the double ratio of 0.5–23.6 % for 0.9 TeV/2.76 TeV, 1.0–37.8 % for 0.9 TeV/7 TeV and 2.4–12.3 % for 2.76 TeV/7 TeV (Color figure online)

Construction of a pp reference for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s} = 2.76\ \mbox{TeV}$\end{document}

For the determination of the nuclear modification factor

\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ R_{\mathrm{AA}} (p_{\mathrm{T}}) = \frac{ \mathrm{d}^2 {N} _{\mathrm{ch}}^{\mathrm{AA}}/ {\mathrm{d}} \eta\,{\mathrm {d}}p_{\mathrm{T}}}{ \langle T_{\mathrm{AA}} \rangle\, \mathrm{d}^2 \sigma_{\mathrm {ch}}^{\mathrm{pp}} / {\mathrm{d}} \eta\,{\mathrm{d}}p_{\mathrm{T}}} $$\end{document} 1

in heavy-ion collisions a well described pp reference \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{d}^{2} \sigma_{\mathrm {ch}}^{\mathrm{pp}} / {\mathrm{d}} \eta\,{\mathrm{d}}p_{\mathrm{T}}$\end{document} at the same center-of-mass energy up to high p T is essential. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${N}_{\mathrm{ch}}^{\mathrm{AA}}$\end{document} describes the charged particle yield per event in nucleus–nucleus collisions and 〈T AA〉 is the average nuclear overlap function [6, 10]. The statistics in the measurement of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{d}^{2} \sigma_{\mathrm {ch}}^{\mathrm{pp}} / {\mathrm{d}} \eta\,{\mathrm{d}}p_{\mathrm{T}}$\end{document} for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s} = 2.76\ \mbox{TeV}$\end{document} reported in this paper allows p T=32 GeV/c to be reached. In order to extrapolate to higher p T, the measured cross section needs to be parametrized.

As can be seen in Fig. 1 for p T>10 GeV/c the pp spectrum at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s} = 2.76\ \mbox{TeV}$\end{document} shows a clear power-law dependence on p T. To constrain the parametrization better by including data points at lower p T, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{d}^{2} \sigma_{\mathrm{ch}}^{\mathrm{pp}} / {\mathrm{d}} \eta\,{\mathrm{d}}p_{\mathrm{T}}$\end{document} has been parametrized by a so-called modified Hagedorn function [16]

\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2 \sigma_{\mathrm {ch}}^{\mathrm{pp}}}{\mathrm{d} \eta\,{\mathrm{d}}p_{\mathrm{T}}} = A \frac{p_{\mathrm{T}}}{m_{\mathrm{T}}} \biggl(1+ \frac{p_{\mathrm {T}}}{p_{\mathrm{T,0}}} \biggr)^{-n} $$\end{document} 2

where m T denotes the transverse mass \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$m_{\mathrm{T}} = \sqrt{m_{0}^{2} + p_{\mathrm{T}}^{2}}$\end{document}, with m 0=140 MeV/c assumed for all tracks. For small p T, the term \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(1+ \frac {p_{\mathrm{T}}}{p_{\mathrm{T,0}}} )^{-n}$\end{document} behaves like an exponential function with an inverse slope parameter of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{\mathrm{T,0}}/n$\end{document} while for large p T the Hagedorn function behaves like a power-law function.

To determine the extrapolation to high p T, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm {d}^{2} \sigma_{\mathrm{ch}}^{\mathrm{pp}} / {\mathrm{d}} \eta \,{\mathrm{d}}p_{\mathrm{T}}$\end{document} is parametrized for p T>5 GeV/c. For 5 GeV/c<p T<10 GeV/c the exponential part of the Hagedorn function acts as a correction term to the power-law part in the function.

Figure 3 shows the differential cross section in INEL pp collisions as a function of p T for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s} = 2.76~\mbox{TeV}$\end{document} together with the parametrization for p T>5 GeV/c. The ratio between data and parametrization in the lower panel demonstrates the good agreement of the parametrization with the data. The gray band indicates the total p T dependent systematic uncertainty of the measured spectrum as presented in Table 1.

Fig. 3.

Fig. 3

Top: Differential cross section of charged particles in INEL pp collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s} = 2.76\ \mbox{TeV}$\end{document} as a function of p T together with the parametrization (p T>5 GeV/c) described in the text. Bottom: Ratio of data to parametrization. The gray band indicates the total p T dependent systematic uncertainty of the data, open circles show data points only used for the evaluation of the systematic uncertainty of the parametrization (Color figure online)

To estimate the systematic uncertainty of the parametrization and extrapolation, the lower boundary of the fit range of the Hagedorn parametrization is varied between p T=3 GeV/c and p T=7 GeV/c, while the upper boundary is fixed to the highest data point measured at p T=32 GeV/c. Together with the systematic uncertainties on the measured differential cross section as shown in Table 1 this results in a total systematic uncertainty on the reference at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s} = 2.76\ \mbox{TeV}$\end{document} of 6.4 % for low p T up to 19 % at p T=50 GeV/c.

The final pp reference for the determination of R AA at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s} = 2.76\ \mbox{TeV}$\end{document} is constructed from the measured data points up to p T=5 GeV/c and the parametrization for p T>5 GeV/c. Statistical uncertainties in the extrapolated part of the reference are obtained from the covariance matrix of the parametrization. The systematic uncertainties on the spectrum are propagated to the reference by application of the full extrapolation procedure using the measured data points shifted up and down by the total systematic uncertainty.

This reference is compared to alternative measurements and approaches. Figure 4 shows the ratio between alternative pp references and the reference at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s} = 2.76\ \mbox{TeV}$\end{document} presented in this paper. Above p T=20 GeV/c, all references agree within the systematic uncertainties. Simulations with the PYTHIA8 generator [17] agree with the new reference for p T>15 GeV/c. Below p T=20 GeV/c, the shape of the PYTHIA8 spectrum is similar to the measured reference. A pp reference presented by the CMS collaboration [18] agrees best for p T<6 GeV/c. The overall normalization systematic uncertainties ±1.9 % (±6 %) for ALICE (CMS) are not included in the comparison. A reference based on an interpolation between measured yields at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt {s} = 0.9\ \text{and}\ 7~\text{TeV}$\end{document} as discussed in [6] does not agree with the new reference for p T>6 GeV/c. Finally a scaling of the measured differential cross section in INEL pp collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s} = 7\ \mbox{TeV}$\end{document} with the ratio of pQCD calculations (as shown in Fig. 2)

\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{aligned} {\mathrm{d}}^2 \sigma_{\mathrm{ch}}^{\mathrm{pp}} / {\mathrm{d}} \eta\,{\mathrm{d}}p_{\mathrm{T}} |_{2.76\ \mathrm{TeV}} & = \frac{ \mathrm{d}^2 \sigma_{\mathrm{ch}}^{\mathrm{pp}} / {\mathrm{d}} \eta\,{\mathrm{d}}p_{\mathrm{T}}| _{\mathrm{NLO}, 2.76\ \mathrm{TeV}} }{ \mathrm{d}^2 \sigma_{\mathrm{ch}}^{\mathrm{pp}} / {\mathrm{d}} \eta\,{\mathrm{d}}p_{\mathrm{T}} |_{\mathrm{NLO},\ 7\ \mathrm{TeV}} } \\ &\quad \times \mathrm{d}^2 \sigma_{\mathrm{ch}}^{\mathrm{pp}} / {\mathrm{d}} \eta\,{ \mathrm{d}}p_{\mathrm{T}}|_{7\ \mathrm{TeV}} \end{aligned}$$ \end{document} 3

agrees well in shape and normalization with the measured data over a wide range in p T. The systematic uncertainty of the new reference is indicated in Fig. 4 as a gray band for comparison.

Fig. 4.

Fig. 4

Ratio of alternative references to the new constructed pp reference at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s} = 2.76\ \mbox{TeV}$\end{document} as discussed in the text. The gray band indicates the total p T dependent systematic uncertainty as discussed in the text. The overall normalization systematic uncertainties ±1.9 % (±6 %) for ALICE (CMS) are not shown (Color figure online)

Construction of a pp reference for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s} = 5.02\ \mbox{TeV}$\end{document}

Similar to R AA, a nuclear modification factor R pA in proton-lead collisions has been studied [19] at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s} = 5.02\ \mbox{TeV}$\end{document}. No measured pp reference is available at this collision energy. Due to the asymmetric p–Pb collision system, the η coverage of the detector is shifted with respect to the symmetric pp or Pb–Pb collisions. To obtain a maximum overlap between the pp and p–Pb systems, a pp reference is needed for |η|<0.3. To construct the pp reference at this energy, different methods for three p T-ranges are combined.

0.15<p T<5 GeV/c: As NLO-pQCD becomes unreliable for small p T, the measured differential cross sections for pp collisions of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s} = 2.76\ \mbox{and}\ 7~\text{TeV}$\end{document} are interpolated for a given p T, assuming a power-law behavior of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s}$\end{document} dependence of the cross section. Here the maximum relative systematic uncertainty of the underlying measurements has been assigned as systematic uncertainty.

5<p T<20 GeV/c: The measured differential cross section for pp collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s} = 7\ \mbox{TeV}$\end{document} is scaled to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s} = 5.02\ \mbox{TeV}$\end{document} using the NLO-pQCD calculations (Eq. (3)). Systematic uncertainties are determined by taking into account differences to an interpolated reference as well as to a scaled reference using μ=p T/2 and μ=2p T as alternative choices for the renormalization and factorization scales.

p T>20 GeV/c: The NLO-scaled reference is parametrized in the range 20<p T<50 GeV/c by a power-law function and the parametrization is used.

The constructed pp reference for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s} = 5.02\ \mbox{TeV}$\end{document} is shown in Fig. 5 together with the reference for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s}=2.76~\mbox{TeV}$\end{document} discussed above. For p T>20 GeV/c the data points show the NLO-scaled reference which is parametrized by a power-law function (line) to obtain the final reference at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt {s} = 5.02\ \mbox{TeV}$\end{document}. In the bottom part of the figure a comparison of the NLO-scaled reference and the parametrization is shown.

Fig. 5.

Fig. 5

Top: Constructed pp references for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s} = 2.76\ \text{and} \ \sqrt{s} = 5.02\ \mbox{TeV}$\end{document}. Bottom: Comparison of NLO-scaled reference and parametrization. The parametrization is used for p T>20 GeV/c. The gray band indicates the total p T dependent systematic uncertainty as discussed in the text (Color figure online)

Summary

Differential cross sections of charged particles in inelastic pp collisions as a function of p T have been presented for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s} = 0.9,\ 2.76\ \text{and}\ 7~\text{TeV}$\end{document}. Comparisons of the p T spectra with NLO-pQCD calculations show that the cross section for an individual value of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s}$\end{document} cannot be described by the calculation. The relative increase of cross section with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s}$\end{document} is well described by NLO-pQCD, however. The systematic comparison of the energy dependence can help to tune the model dependent ingredients in the calculation. Utilizing these observations and measurements procedures are discussed to construct pp reference spectra at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s} = 2.76$\end{document} (|η|<0.8) and 5.02 TeV (|η|<0.3) in the corresponding p T range of charged particle p T spectra in Pb–Pb and p–Pb collisions measured by the ALICE experiment. The reference spectra are used for the calculation of the nuclear modification factors R AA [10] and R pA [19]. The systematic uncertainties related to the pp reference were significantly reduced with respect to the previous measurement by using the p T distribution measured in pp collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s}=2.76~\mbox{TeV}$\end{document}.

Acknowledgements

The ALICE collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex.

The ALICE collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector:

State Committee of Science, World Federation of Scientists (WFS) and Swiss Fonds Kidagan, Armenia;

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP);

National Natural Science Foundation of China (NSFC), the Chinese Ministry of Education (CMOE) and the Ministry of Science and Technology of China (MSTC);

Ministry of Education and Youth of the Czech Republic;

Danish Natural Science Research Council, the Carlsberg Foundation and the Danish National Research Foundation;

The European Research Council under the European Community’s Seventh Framework Programme;

Helsinki Institute of Physics and the Academy of Finland;

French CNRS-IN2P3, the ‘Region Pays de Loire’, ‘Region Alsace’, ‘Region Auvergne’ and CEA, France;

German BMBF and the Helmholtz Association;

General Secretariat for Research and Technology, Ministry of Development, Greece;

Hungarian OTKA and National Office for Research and Technology (NKTH);

Department of Atomic Energy and Department of Science and Technology of the Government of India;

Istituto Nazionale di Fisica Nucleare (INFN) and Centro Fermi—Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”, Italy;

MEXT Grant-in-Aid for Specially Promoted Research, Japan;

Joint Institute for Nuclear Research, Dubna;

National Research Foundation of Korea (NRF);

CONACYT, DGAPA, México, ALFA-EC and the EPLANET Program (European Particle Physics Latin American Network);

Stichting voor Fundamenteel Onderzoek der Materie (FOM) and the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands;

Research Council of Norway (NFR);

Polish Ministry of Science and Higher Education;

National Authority for Scientific Research—NASR (Autoritatea Naţională pentru Cercetare Ştiinţifică—ANCS);

Ministry of Education and Science of Russian Federation, Russian Academy of Sciences, Russian Federal Agency of Atomic Energy, Russian Federal Agency for Science and Innovations and The Russian Foundation for Basic Research;

Ministry of Education of Slovakia;

Department of Science and Technology, South Africa;

CIEMAT, EELA, Ministerio de Economía y Competitividad (MINECO) of Spain, Xunta de Galicia (Consellería de Educación), CEADEN, Cubaenergía, Cuba, and IAEA (International Atomic Energy Agency);

Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW);

Ukraine Ministry of Education and Science;

United Kingdom Science and Technology Facilities Council (STFC);

The United States Department of Energy, the United States National Science Foundation, the State of Texas, and the State of Ohio.

Open Access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

  • 1.Sassot R., Zurita P., Stratmann M. Inclusive hadron production in the CERN-LHC era. Phys. Rev. D. 2010;82:074011. doi: 10.1103/PhysRevD.82.074011. [DOI] [Google Scholar]
  • 2.Sjostrand T. High-energy physics event generation with PYTHIA 5.7 and JETSET 7.4. Comput. Phys. Commun. 1994;82:74. doi: 10.1016/0010-4655(94)90132-5. [DOI] [Google Scholar]
  • 3.Sjostrand T., Mrenna S., Skands P.Z. PYTHIA 6.4 physics and manual. J. High Energy Phys. 2006;0605:026. doi: 10.1088/1126-6708/2006/05/026. [DOI] [Google Scholar]
  • 4. P.Z. Skands, The Perugia tunes. arXiv:0905.3418
  • 5.Engel R., Ranft J., Roesler S. Hard diffraction in hadron hadron interactions and in photoproduction. Phys. Rev. D. 1995;52:1459. doi: 10.1103/PhysRevD.52.1459. [DOI] [PubMed] [Google Scholar]
  • 6.Aamodt K., ALICE Collaboration Suppression of charged particle production at large transverse momentum in central Pb–Pb collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s_{\mathrm{NN}}} = 2.76\ \mbox{TeV}$\end{document} Phys. Lett. B. 2011;696:30. doi: 10.1016/j.physletb.2010.12.020. [DOI] [Google Scholar]
  • 7.Aamodt K., ALICE Collaboration et al. The ALICE experiment at the CERN LHC. J. Instrum. 2008;3:S08002. [Google Scholar]
  • 8.Aamodt K., ALICE Collaboration et al. Transverse momentum spectra of charged particles in proton–proton collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s} = 900\ \mbox{GeV}$\end{document} with ALICE at the LHC. Phys. Lett. B. 2010;693:53. doi: 10.1016/j.physletb.2010.08.026. [DOI] [Google Scholar]
  • 9.Abelev B., ALICE Collaboration et al. Measurement of inelastic, single- and double-diffraction cross sections in proton–proton collisions at the LHC with ALICE. Eur. Phys. J. C. 2013;73:2456. doi: 10.1140/epjc/s10052-013-2456-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Abelev B., ALICE Collaboration et al. Centrality dependence of charged particle production at large transverse momentum in Pb–Pb collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s_{\mathrm{NN}}} = 2.76\ \mbox{TeV}$\end{document} Phys. Lett. B. 2013;720:52. doi: 10.1016/j.physletb.2013.01.051. [DOI] [Google Scholar]
  • 11.Brun R., et al. GEANT: Detector Description and Simulation Tool, CERN Program Library Long Writeup W5013. Geneva: CERN; 1994. [Google Scholar]
  • 12.Abelev B., ALICE Collaboration et al. Neutral pion and η meson production in proton–proton collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s}=0.9\ \mbox{TeV}\ \mbox{and}\ \sqrt{s}=7\ \mbox{TeV}$\end{document} Phys. Lett. B. 2012;717:162. doi: 10.1016/j.physletb.2012.09.015. [DOI] [Google Scholar]
  • 13.Ansorge R., UA5 Collaboration et al. Diffraction dissociation at the CERN pulsed collider at cm energies of 900 GeV and 200 GeV. Z. Phys. C. 1986;33:175. doi: 10.1007/BF01411134. [DOI] [Google Scholar]
  • 14. M. Poghosyan, Two remarks about UA5 published data on general characteristics of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p\bar{p}$\end{document} collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s} = 900\ \mbox{GeV}$\end{document}. arXiv:1005.1806
  • 15.Chatrchyan S., CMS Collaboration et al. Charged particle transverse momentum spectra in pp collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s} = 0.9\ \mbox{and}\ 7\ \text{TeV}$\end{document} J. High Energy Phys. 2011;1108:086. doi: 10.1007/JHEP08(2011)086. [DOI] [Google Scholar]
  • 16. R. Hagedorn, Multiplicities, pT distributions and the expected hadron → quark–gluon phase transition. CERN-TH-3684, 1983
  • 17.Sjostrand T., Mrenna S., Skands P.Z. A brief introduction to PYTHIA 8.1. Comput. Phys. Commun. 2008;178:852. doi: 10.1016/j.cpc.2008.01.036. [DOI] [Google Scholar]
  • 18.Chatrchyan S., CMS Collaboration et al. Study of high-pT charged particle suppression in PbPb compared to pp collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s_{\mathrm{NN}}}=2.76\ \mbox{TeV}$\end{document} Eur. Phys. J. C. 2012;72:1945. doi: 10.1140/epjc/s10052-012-1945-x. [DOI] [Google Scholar]
  • 19.Abelev B., ALICE Collaboration et al. Transverse momentum distribution and nuclear modification factor of charged particles in p–Pb collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s_{\mathrm{NN}}}=5.02\ \mbox{TeV}$\end{document} Phys. Rev. Lett. 2013;110:082302. doi: 10.1103/PhysRevLett.110.082302. [DOI] [PubMed] [Google Scholar]

Articles from The European Physical Journal. C, Particles and Fields are provided here courtesy of Springer

RESOURCES