Skip to main content
Springer logoLink to Springer
. 2013 Dec 11;73(12):2674. doi: 10.1140/epjc/s10052-013-2674-5

Jet and underlying event properties as a function of charged-particle multiplicity in proton–proton collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt {s}= 7\ \text{TeV}$\end{document}

The CMS Collaboration1, S Chatrchyan 2, V Khachatryan 2, A M Sirunyan 2, A Tumasyan 2, W Adam 3, T Bergauer 3, M Dragicevic 3, J Erö 3, C Fabjan 3, M Friedl 3, R Frühwirth 3, V M Ghete 3, N Hörmann 3, J Hrubec 3, M Jeitler 3, W Kiesenhofer 3, V Knünz 3, M Krammer 3, I Krätschmer 3, D Liko 3, I Mikulec 3, D Rabady 3, B Rahbaran 3, C Rohringer 3, H Rohringer 3, R Schöfbeck 3, J Strauss 3, A Taurok 3, W Treberer-Treberspurg 3, W Waltenberger 3, C-E Wulz 3, V Mossolov 4, N Shumeiko 4, J Suarez Gonzalez 4, S Alderweireldt 5, M Bansal 5, S Bansal 5, T Cornelis 5, E A De Wolf 5, X Janssen 5, A Knutsson 5, S Luyckx 5, L Mucibello 5, S Ochesanu 5, B Roland 5, R Rougny 5, Z Staykova 5, H Van Haevermaet 5, P Van Mechelen 5, N Van Remortel 5, A Van Spilbeeck 5, F Blekman 6, S Blyweert 6, J D’Hondt 6, A Kalogeropoulos 6, J Keaveney 6, S Lowette 6, M Maes 6, A Olbrechts 6, S Tavernier 6, W Van Doninck 6, P Van Mulders 6, G P Van Onsem 6, I Villella 6, C Caillol 7, B Clerbaux 7, G De Lentdecker 7, L Favart 7, A P R Gay 7, T Hreus 7, A Léonard 7, P E Marage 7, A Mohammadi 7, L Perniè 7, T Reis 7, T Seva 7, L Thomas 7, C Vander Velde 7, P Vanlaer 7, J Wang 7, V Adler 8, K Beernaert 8, L Benucci 8, A Cimmino 8, S Costantini 8, S Dildick 8, G Garcia 8, B Klein 8, J Lellouch 8, A Marinov 8, J Mccartin 8, A A Ocampo Rios 8, D Ryckbosch 8, M Sigamani 8, N Strobbe 8, F Thyssen 8, M Tytgat 8, S Walsh 8, E Yazgan 8, N Zaganidis 8, S Basegmez 9, C Beluffi 9, G Bruno 9, R Castello 9, A Caudron 9, L Ceard 9, G G Da Silveira 9, C Delaere 9, T du Pree 9, D Favart 9, L Forthomme 9, A Giammanco 9, J Hollar 9, P Jez 9, V Lemaitre 9, J Liao 9, O Militaru 9, C Nuttens 9, D Pagano 9, A Pin 9, K Piotrzkowski 9, A Popov 9, M Selvaggi 9, M Vidal Marono 9, J M Vizan Garcia 9, N Beliy 10, T Caebergs 10, E Daubie 10, G H Hammad 10, G A Alves 11, M Correa Martins Junior 11, T Martins 11, M E Pol 11, M H G Souza 11, W L Aldá Júnior 12, W Carvalho 12, J Chinellato 12, A Custódio 12, E M Da Costa 12, D De Jesus Damiao 12, C De Oliveira Martins 12, S Fonseca De Souza 12, H Malbouisson 12, M Malek 12, D Matos Figueiredo 12, L Mundim 12, H Nogima 12, W L Prado Da Silva 12, A Santoro 12, A Sznajder 12, E J Tonelli Manganote 12, A Vilela Pereira 12, C A Bernardes 14, F A Dias 13, T R Fernandez Perez Tomei 13, E M Gregores 14, C Lagana 13, P G Mercadante 14, S F Novaes 13, Sandra S Padula 13, V Genchev 15, P Iaydjiev 15, S Piperov 15, M Rodozov 15, G Sultanov 15, M Vutova 15, A Dimitrov 16, R Hadjiiska 16, V Kozhuharov 16, L Litov 16, B Pavlov 16, P Petkov 16, J G Bian 17, G M Chen 17, H S Chen 17, C H Jiang 17, D Liang 17, S Liang 17, X Meng 17, J Tao 17, X Wang 17, Z Wang 17, C Asawatangtrakuldee 18, Y Ban 18, Y Guo 18, Q Li 18, W Li 18, S Liu 18, Y Mao 18, S J Qian 18, D Wang 18, L Zhang 18, W Zou 18, C Avila 19, C A Carrillo Montoya 19, L F Chaparro Sierra 19, J P Gomez 19, B Gomez Moreno 19, J C Sanabria 19, N Godinovic 20, D Lelas 20, R Plestina 20, D Polic 20, I Puljak 20, Z Antunovic 21, M Kovac 21, V Brigljevic 22, K Kadija 22, J Luetic 22, D Mekterovic 22, S Morovic 22, L Tikvica 22, A Attikis 23, G Mavromanolakis 23, J Mousa 23, C Nicolaou 23, F Ptochos 23, P A Razis 23, M Finger 24, M Finger Jr 24, A A Abdelalim 25, Y Assran 25, S Elgammal 25, A Ellithi Kamel 25, M A Mahmoud 25, A Radi 25, M Kadastik 26, M Müntel 26, M Murumaa 26, M Raidal 26, L Rebane 26, A Tiko 26, P Eerola 27, G Fedi 27, M Voutilainen 27, J Härkönen 28, V Karimäki 28, R Kinnunen 28, M J Kortelainen 28, T Lampén 28, K Lassila-Perini 28, S Lehti 28, T Lindén 28, P Luukka 28, T Mäenpää 28, T Peltola 28, E Tuominen 28, J Tuominiemi 28, E Tuovinen 28, L Wendland 28, T Tuuva 29, M Besancon 30, F Couderc 30, M Dejardin 30, D Denegri 30, B Fabbro 30, J L Faure 30, F Ferri 30, S Ganjour 30, A Givernaud 30, P Gras 30, G Hamel de Monchenault 30, P Jarry 30, E Locci 30, J Malcles 30, L Millischer 30, A Nayak 30, J Rander 30, A Rosowsky 30, M Titov 30, S Baffioni 31, F Beaudette 31, L Benhabib 31, M Bluj 31, P Busson 31, C Charlot 31, N Daci 31, T Dahms 31, M Dalchenko 31, L Dobrzynski 31, A Florent 31, R Granier de Cassagnac 31, M Haguenauer 31, P Miné 31, C Mironov 31, I N Naranjo 31, M Nguyen 31, C Ochando 31, P Paganini 31, D Sabes 31, R Salerno 31, Y Sirois 31, C Veelken 31, A Zabi 31, J-L Agram 32, J Andrea 32, D Bloch 32, J-M Brom 32, E C Chabert 32, C Collard 32, E Conte 32, F Drouhin 32, J-C Fontaine 32, D Gelé 32, U Goerlach 32, C Goetzmann 32, P Juillot 32, A-C Le Bihan 32, P Van Hove 32, S Gadrat 33, S Beauceron 34, N Beaupere 34, G Boudoul 34, S Brochet 34, J Chasserat 34, R Chierici 34, D Contardo 34, P Depasse 34, H El Mamouni 34, J Fan 34, J Fay 34, S Gascon 34, M Gouzevitch 34, B Ille 34, T Kurca 34, M Lethuillier 34, L Mirabito 34, S Perries 34, L Sgandurra 34, V Sordini 34, M Vander Donckt 34, P Verdier 34, S Viret 34, H Xiao 34, Z Tsamalaidze 35, C Autermann 36, S Beranek 36, M Bontenackels 36, B Calpas 36, M Edelhoff 36, L Feld 36, N Heracleous 36, O Hindrichs 36, K Klein 36, A Ostapchuk 36, A Perieanu 36, F Raupach 36, J Sammet 36, S Schael 36, D Sprenger 36, H Weber 36, B Wittmer 36, V Zhukov 36, M Ata 37, J Caudron 37, E Dietz-Laursonn 37, D Duchardt 37, M Erdmann 37, R Fischer 37, A Güth 37, T Hebbeker 37, C Heidemann 37, K Hoepfner 37, D Klingebiel 37, S Knutzen 37, P Kreuzer 37, M Merschmeyer 37, A Meyer 37, M Olschewski 37, K Padeken 37, P Papacz 37, H Pieta 37, H Reithler 37, S A Schmitz 37, L Sonnenschein 37, J Steggemann 37, D Teyssier 37, S Thüer 37, M Weber 37, V Cherepanov 38, Y Erdogan 38, G Flügge 38, H Geenen 38, M Geisler 38, W Haj Ahmad 38, F Hoehle 38, B Kargoll 38, T Kress 38, Y Kuessel 38, J Lingemann 38, A Nowack 38, I M Nugent 38, L Perchalla 38, O Pooth 38, A Stahl 38, I Asin 39, N Bartosik 39, J Behr 39, W Behrenhoff 39, U Behrens 39, A J Bell 39, M Bergholz 39, A Bethani 39, K Borras 39, A Burgmeier 39, A Cakir 39, L Calligaris 39, A Campbell 39, S Choudhury 39, F Costanza 39, C Diez Pardos 39, S Dooling 39, T Dorland 39, G Eckerlin 39, D Eckstein 39, G Flucke 39, A Geiser 39, I Glushkov 39, A Grebenyuk 39, P Gunnellini 39, S Habib 39, J Hauk 39, G Hellwig 39, D Horton 39, H Jung 39, M Kasemann 39, P Katsas 39, C Kleinwort 39, H Kluge 39, M Krämer 39, D Krücker 39, E Kuznetsova 39, W Lange 39, J Leonard 39, K Lipka 39, W Lohmann 39, B Lutz 39, R Mankel 39, I Marfin 39, I-A Melzer-Pellmann 39, A B Meyer 39, J Mnich 39, A Mussgiller 39, S Naumann-Emme 39, O Novgorodova 39, F Nowak 39, J Olzem 39, H Perrey 39, A Petrukhin 39, D Pitzl 39, R Placakyte 39, A Raspereza 39, P M Ribeiro Cipriano 39, C Riedl 39, E Ron 39, M Ö Sahin 39, J Salfeld-Nebgen 39, R Schmidt 39, T Schoerner-Sadenius 39, N Sen 39, M Stein 39, R Walsh 39, C Wissing 39, M Aldaya Martin 40, V Blobel 40, H Enderle 40, J Erfle 40, E Garutti 40, U Gebbert 40, M Görner 40, M Gosselink 40, J Haller 40, K Heine 40, R S Höing 40, G Kaussen 40, H Kirschenmann 40, R Klanner 40, R Kogler 40, J Lange 40, I Marchesini 40, T Peiffer 40, N Pietsch 40, D Rathjens 40, C Sander 40, H Schettler 40, P Schleper 40, E Schlieckau 40, A Schmidt 40, M Schröder 40, T Schum 40, M Seidel 40, J Sibille 40, V Sola 40, H Stadie 40, G Steinbrück 40, J Thomsen 40, D Troendle 40, E Usai 40, L Vanelderen 40, C Barth 41, C Baus 41, J Berger 41, C Böser 41, E Butz 41, T Chwalek 41, W De Boer 41, A Descroix 41, A Dierlamm 41, M Feindt 41, M Guthoff 41, F Hartmann 41, T Hauth 41, H Held 41, K H Hoffmann 41, U Husemann 41, I Katkov 41, J R Komaragiri 41, A Kornmayer 41, P Lobelle Pardo 41, D Martschei 41, M U Mozer 41, Th Müller 41, M Niegel 41, A Nürnberg 41, O Oberst 41, J Ott 41, G Quast 41, K Rabbertz 41, F Ratnikov 41, S Röcker 41, F-P Schilling 41, G Schott 41, H J Simonis 41, F M Stober 41, R Ulrich 41, J Wagner-Kuhr 41, S Wayand 41, T Weiler 41, M Zeise 41, G Anagnostou 42, G Daskalakis 42, T Geralis 42, S Kesisoglou 42, A Kyriakis 42, D Loukas 42, A Markou 42, C Markou 42, E Ntomari 42, I Topsis-giotis 42, L Gouskos 43, A Panagiotou 43, N Saoulidou 43, E Stiliaris 43, X Aslanoglou 44, I Evangelou 44, G Flouris 44, C Foudas 44, P Kokkas 44, N Manthos 44, I Papadopoulos 44, E Paradas 44, G Bencze 45, C Hajdu 45, P Hidas 45, D Horvath 45, F Sikler 45, V Veszpremi 45, G Vesztergombi 45, A J Zsigmond 45, N Beni 46, S Czellar 46, J Molnar 46, J Palinkas 46, Z Szillasi 46, J Karancsi 47, P Raics 47, Z L Trocsanyi 47, B Ujvari 47, S K Swain 48, S B Beri 49, V Bhatnagar 49, N Dhingra 49, R Gupta 49, M Kaur 49, M Z Mehta 49, M Mittal 49, N Nishu 49, A Sharma 49, J B Singh 49, Ashok Kumar 50, Arun Kumar 50, S Ahuja 50, A Bhardwaj 50, B C Choudhary 50, A Kumar 50, S Malhotra 50, M Naimuddin 50, K Ranjan 50, P Saxena 50, V Sharma 50, R K Shivpuri 50, S Banerjee 51, S Bhattacharya 51, K Chatterjee 51, S Dutta 51, B Gomber 51, Sa Jain 51, Sh Jain 51, R Khurana 51, A Modak 51, S Mukherjee 51, D Roy 51, S Sarkar 51, M Sharan 51, A P Singh 51, A Abdulsalam 52, D Dutta 52, S Kailas 52, V Kumar 52, A K Mohanty 52, L M Pant 52, P Shukla 52, A Topkar 52, T Aziz 53, R M Chatterjee 53, S Ganguly 53, S Ghosh 53, M Guchait 53, A Gurtu 53, G Kole 53, S Kumar 53, M Maity 53, G Majumder 53, K Mazumdar 53, G B Mohanty 53, B Parida 53, K Sudhakar 53, N Wickramage 53, S Banerjee 54, S Dugad 54, H Arfaei 55, H Bakhshiansohi 55, S M Etesami 55, A Fahim 55, A Jafari 55, M Khakzad 55, M Mohammadi Najafabadi 55, S Paktinat Mehdiabadi 55, B Safarzadeh 55, M Zeinali 55, M Grunewald 56, M Abbrescia 57,58, L Barbone 57,58, C Calabria 57,58, S S Chhibra 57,58, A Colaleo 57, D Creanza 57,59, N De Filippis 57,59, M De Palma 57,58, L Fiore 57, G Iaselli 57,59, G Maggi 57,59, M Maggi 57, B Marangelli 57,58, S My 57,59, S Nuzzo 57,58, N Pacifico 57, A Pompili 57,58, G Pugliese 57,59, G Selvaggi 57,58, L Silvestris 57, G Singh 57,58, R Venditti 57,58, P Verwilligen 57, G Zito 57, G Abbiendi 60, A C Benvenuti 60, D Bonacorsi 60,61, S Braibant-Giacomelli 60,61, L Brigliadori 60,61, R Campanini 60,61, P Capiluppi 60,61, A Castro 60,61, F R Cavallo 60, G Codispoti 60,61, M Cuffiani 60,61, G M Dallavalle 60, F Fabbri 60, A Fanfani 60,61, D Fasanella 60,61, P Giacomelli 60, C Grandi 60, L Guiducci 60,61, S Marcellini 60, G Masetti 60, M Meneghelli 60,61, A Montanari 60, F L Navarria 60,61, F Odorici 60, A Perrotta 60, F Primavera 60,61, A M Rossi 60,61, T Rovelli 60,61, G P Siroli 60,61, N Tosi 60,61, R Travaglini 60,61, S Albergo 62,63, M Chiorboli 62,63, S Costa 62,63, F Giordano 62, R Potenza 62,63, A Tricomi 62,63, C Tuve 62,63, G Barbagli 64, V Ciulli 64,65, C Civinini 64, R D’Alessandro 64,65, E Focardi 64,65, S Frosali 64,65, E Gallo 64, S Gonzi 64,65, V Gori 64,65, P Lenzi 64,65, M Meschini 64, S Paoletti 64, G Sguazzoni 64, A Tropiano 64,65, L Benussi 66, S Bianco 66, F Fabbri 66, D Piccolo 66, P Fabbricatore 67, R Ferretti 67,68, F Ferro 67, M Lo Vetere 67,68, R Musenich 67, E Robutti 67, S Tosi 67,68, A Benaglia 69, M E Dinardo 69,70, S Fiorendi 69,70, S Gennai 69, A Ghezzi 69,70, P Govoni 69,70, M T Lucchini 69,70, S Malvezzi 69, R A Manzoni 69,70, A Martelli 69,70, D Menasce 69, L Moroni 69, M Paganoni 69,70, D Pedrini 69, S Ragazzi 69,70, N Redaelli 69, T Tabarelli de Fatis 69,70, S Buontempo 71, N Cavallo 71,73, A De Cosa 71,72, F Fabozzi 71,73, A O M Iorio 71,72, L Lista 71, S Meola 71,74, M Merola 71, P Paolucci 71, P Azzi 75, N Bacchetta 75, M Bellato 75, D Bisello 75,76, A Branca 75,76, R Carlin 75,76, P Checchia 75, T Dorigo 75, F Fanzago 75, M Galanti 75,76, F Gasparini 75,76, U Gasparini 75,76, P Giubilato 75,76, A Gozzelino 75, K Kanishchev 75,77, S Lacaprara 75, I Lazzizzera 75,77, M Margoni 75,76, A T Meneguzzo 75,76, M Passaseo 75, J Pazzini 75,76, M Pegoraro 75, N Pozzobon 75,76, P Ronchese 75,76, F Simonetto 75,76, E Torassa 75, M Tosi 75,76, S Vanini 75,76, P Zotto 75,76, A Zucchetta 75,76, G Zumerle 75,76, M Gabusi 78,79, S P Ratti 78,79, C Riccardi 78,79, P Vitulo 78,79, M Biasini 80,81, G M Bilei 80, L Fanò 80,81, P Lariccia 80,81, G Mantovani 80,81, M Menichelli 80, A Nappi 80,81, F Romeo 80,81, A Saha 80, A Santocchia 80,81, A Spiezia 80,81, K Androsov 82, P Azzurri 82, G Bagliesi 82, J Bernardini 82, T Boccali 82, G Broccolo 82,84, R Castaldi 82, M A Ciocci 82, R T D’Agnolo 82,84, R Dell’Orso 82, F Fiori 82,84, L Foà 82,84, A Giassi 82, M T Grippo 82, A Kraan 82, F Ligabue 82,84, T Lomtadze 82, L Martini 82, A Messineo 82,83, C S Moon 82, F Palla 82, A Rizzi 82,83, A Savoy-Navarro 82, A T Serban 82, P Spagnolo 82, P Squillacioti 82, R Tenchini 82, G Tonelli 82,83, A Venturi 82, P G Verdini 82, C Vernieri 82,84, L Barone 85,86, F Cavallari 85, D Del Re 85,86, M Diemoz 85, M Grassi 85,86, E Longo 85,86, F Margaroli 85,86, P Meridiani 85, F Micheli 85,86, S Nourbakhsh 85,86, G Organtini 85,86, R Paramatti 85, S Rahatlou 85,86, C Rovelli 85, L Soffi 85,86, N Amapane 87,88, R Arcidiacono 87,89, S Argiro 87,88, M Arneodo 87,89, R Bellan 87,88, C Biino 87, N Cartiglia 87, S Casasso 87,88, M Costa 87,88, A Degano 87,88, N Demaria 87, C Mariotti 87, S Maselli 87, E Migliore 87,88, V Monaco 87,88, M Musich 87, M M Obertino 87,89, N Pastrone 87, M Pelliccioni 87, A Potenza 87,88, A Romero 87,88, M Ruspa 87,89, R Sacchi 87,88, A Solano 87,88, A Staiano 87, U Tamponi 87, S Belforte 90, V Candelise 90,91, M Casarsa 90, F Cossutti 90, G Della Ricca 90,91, B Gobbo 90, C La Licata 90,91, M Marone 90,91, D Montanino 90,91, A Penzo 90, A Schizzi 90,91, A Zanetti 90, S Chang 92, T Y Kim 92, S K Nam 92, D H Kim 93, G N Kim 93, J E Kim 93, D J Kong 93, S Lee 93, Y D Oh 93, H Park 93, D C Son 93, J Y Kim 94, Zero J Kim 94, S Song 94, S Choi 95, D Gyun 95, B Hong 95, M Jo 95, H Kim 95, T J Kim 95, K S Lee 95, S K Park 95, Y Roh 95, M Choi 96, J H Kim 96, C Park 96, I C Park 96, S Park 96, G Ryu 96, Y Choi 97, Y K Choi 97, J Goh 97, M S Kim 97, E Kwon 97, B Lee 97, J Lee 97, S Lee 97, H Seo 97, I Yu 97, I Grigelionis 98, A Juodagalvis 98, H Castilla-Valdez 99, E De La Cruz-Burelo 99, I Heredia-de La Cruz 99, R Lopez-Fernandez 99, J Martínez-Ortega 99, A Sanchez-Hernandez 99, L M Villasenor-Cendejas 99, S Carrillo Moreno 100, F Vazquez Valencia 100, H A Salazar Ibarguen 101, E Casimiro Linares 102, A Morelos Pineda 102, M A Reyes-Santos 102, D Krofcheck 103, P H Butler 104, R Doesburg 104, S Reucroft 104, H Silverwood 104, M Ahmad 105, M I Asghar 105, J Butt 105, H R Hoorani 105, S Khalid 105, W A Khan 105, T Khurshid 105, S Qazi 105, M A Shah 105, M Shoaib 105, H Bialkowska 106, B Boimska 106, T Frueboes 106, M Górski 106, M Kazana 106, K Nawrocki 106, K Romanowska-Rybinska 106, M Szleper 106, G Wrochna 106, P Zalewski 106, G Brona 107, K Bunkowski 107, M Cwiok 107, W Dominik 107, K Doroba 107, A Kalinowski 107, M Konecki 107, J Krolikowski 107, M Misiura 107, W Wolszczak 107, N Almeida 108, P Bargassa 108, C Beirão Da Cruz E Silva 108, P Faccioli 108, P G Ferreira Parracho 108, M Gallinaro 108, F Nguyen 108, J Rodrigues Antunes 108, J Seixas 108, J Varela 108, P Vischia 108, S Afanasiev 109, P Bunin 109, M Gavrilenko 109, I Golutvin 109, I Gorbunov 109, A Kamenev 109, V Karjavin 109, V Konoplyanikov 109, A Lanev 109, A Malakhov 109, V Matveev 109, P Moisenz 109, V Palichik 109, V Perelygin 109, S Shmatov 109, N Skatchkov 109, V Smirnov 109, A Zarubin 109, S Evstyukhin 110, V Golovtsov 110, Y Ivanov 110, V Kim 110, P Levchenko 110, V Murzin 110, V Oreshkin 110, I Smirnov 110, V Sulimov 110, L Uvarov 110, S Vavilov 110, A Vorobyev 110, An Vorobyev 110, Yu Andreev 111, A Dermenev 111, S Gninenko 111, N Golubev 111, M Kirsanov 111, N Krasnikov 111, A Pashenkov 111, D Tlisov 111, A Toropin 111, V Epshteyn 112, M Erofeeva 112, V Gavrilov 112, N Lychkovskaya 112, V Popov 112, G Safronov 112, S Semenov 112, A Spiridonov 112, V Stolin 112, E Vlasov 112, A Zhokin 112, V Andreev 113, M Azarkin 113, I Dremin 113, M Kirakosyan 113, A Leonidov 113, G Mesyats 113, S V Rusakov 113, A Vinogradov 113, A Belyaev 114, E Boos 114, L Dudko 114, A Gribushin 114, L Khein 114, V Klyukhin 114, O Kodolova 114, I Lokhtin 114, A Markina 114, S Obraztsov 114, S Petrushanko 114, A Proskuryakov 114, V Savrin 114, A Snigirev 114, I Azhgirey 115, I Bayshev 115, S Bitioukov 115, V Kachanov 115, A Kalinin 115, D Konstantinov 115, V Krychkine 115, V Petrov 115, R Ryutin 115, A Sobol 115, L Tourtchanovitch 115, S Troshin 115, N Tyurin 115, A Uzunian 115, A Volkov 115, P Adzic 116, M Djordjevic 116, M Ekmedzic 116, D Krpic 116, J Milosevic 116, M Aguilar-Benitez 117, J Alcaraz Maestre 117, C Battilana 117, E Calvo 117, M Cerrada 117, M Chamizo Llatas 117, N Colino 117, B De La Cruz 117, A Delgado Peris 117, D Domínguez Vázquez 117, C Fernandez Bedoya 117, J P Fernández Ramos 117, A Ferrando 117, J Flix 117, M C Fouz 117, P Garcia-Abia 117, O Gonzalez Lopez 117, S Goy Lopez 117, J M Hernandez 117, M I Josa 117, G Merino 117, E Navarro De Martino 117, J Puerta Pelayo 117, A Quintario Olmeda 117, I Redondo 117, L Romero 117, J Santaolalla 117, M S Soares 117, C Willmott 117, C Albajar 118, J F de Trocóniz 118, H Brun 119, J Cuevas 119, J Fernandez Menendez 119, S Folgueras 119, I Gonzalez Caballero 119, L Lloret Iglesias 119, J Piedra Gomez 119, J A Brochero Cifuentes 120, I J Cabrillo 120, A Calderon 120, S H Chuang 120, J Duarte Campderros 120, M Fernandez 120, G Gomez 120, J Gonzalez Sanchez 120, A Graziano 120, C Jorda 120, A Lopez Virto 120, J Marco 120, R Marco 120, C Martinez Rivero 120, F Matorras 120, F J Munoz Sanchez 120, T Rodrigo 120, A Y Rodríguez-Marrero 120, A Ruiz-Jimeno 120, L Scodellaro 120, I Vila 120, R Vilar Cortabitarte 120, D Abbaneo 121, E Auffray 121, G Auzinger 121, M Bachtis 121, P Baillon 121, A H Ball 121, D Barney 121, J Bendavid 121, J F Benitez 121, C Bernet 121, G Bianchi 121, P Bloch 121, A Bocci 121, A Bonato 121, O Bondu 121, C Botta 121, H Breuker 121, T Camporesi 121, G Cerminara 121, T Christiansen 121, J A Coarasa Perez 121, S Colafranceschi 121, M D’Alfonso 121, D d’Enterria 121, A Dabrowski 121, A David 121, F De Guio 121, A De Roeck 121, S De Visscher 121, S Di Guida 121, M Dobson 121, N Dupont-Sagorin 121, A Elliott-Peisert 121, J Eugster 121, G Franzoni 121, W Funk 121, G Georgiou 121, M Giffels 121, D Gigi 121, K Gill 121, D Giordano 121, M Girone 121, M Giunta 121, F Glege 121, R Gomez-Reino Garrido 121, S Gowdy 121, R Guida 121, J Hammer 121, M Hansen 121, P Harris 121, C Hartl 121, A Hinzmann 121, V Innocente 121, P Janot 121, E Karavakis 121, K Kousouris 121, K Krajczar 121, P Lecoq 121, Y-J Lee 121, C Lourenço 121, N Magini 121, L Malgeri 121, M Mannelli 121, L Masetti 121, F Meijers 121, S Mersi 121, E Meschi 121, R Moser 121, M Mulders 121, P Musella 121, E Nesvold 121, L Orsini 121, E Palencia Cortezon 121, E Perez 121, L Perrozzi 121, A Petrilli 121, A Pfeiffer 121, M Pierini 121, M Pimiä 121, D Piparo 121, M Plagge 121, L Quertenmont 121, A Racz 121, W Reece 121, G Rolandi 121, M Rovere 121, H Sakulin 121, F Santanastasio 121, C Schäfer 121, C Schwick 121, S Sekmen 121, A Sharma 121, P Siegrist 121, P Silva 121, M Simon 121, P Sphicas 121, D Spiga 121, M Stoye 121, A Tsirou 121, G I Veres 121, J R Vlimant 121, H K Wöhri 121, S D Worm 121, W D Zeuner 121, W Bertl 122, K Deiters 122, W Erdmann 122, K Gabathuler 122, R Horisberger 122, Q Ingram 122, H C Kaestli 122, S König 122, D Kotlinski 122, U Langenegger 122, D Renker 122, T Rohe 122, F Bachmair 123, L Bäni 123, L Bianchini 123, P Bortignon 123, M A Buchmann 123, B Casal 123, N Chanon 123, A Deisher 123, G Dissertori 123, M Dittmar 123, M Donegà 123, M Dünser 123, P Eller 123, K Freudenreich 123, C Grab 123, D Hits 123, P Lecomte 123, W Lustermann 123, B Mangano 123, A C Marini 123, P Martinez Ruiz del Arbol 123, D Meister 123, N Mohr 123, F Moortgat 123, C Nägeli 123, P Nef 123, F Nessi-Tedaldi 123, F Pandolfi 123, L Pape 123, F Pauss 123, M Peruzzi 123, M Quittnat 123, F J Ronga 123, M Rossini 123, L Sala 123, A K Sanchez 123, A Starodumov 123, B Stieger 123, M Takahashi 123, L Tauscher 123, A Thea 123, K Theofilatos 123, D Treille 123, C Urscheler 123, R Wallny 123, H A Weber 123, C Amsler 124, V Chiochia 124, C Favaro 124, M Ivova Rikova 124, B Kilminster 124, B Millan Mejias 124, P Robmann 124, H Snoek 124, S Taroni 124, M Verzetti 124, Y Yang 124, M Cardaci 125, K H Chen 125, C Ferro 125, C M Kuo 125, S W Li 125, W Lin 125, Y J Lu 125, R Volpe 125, S S Yu 125, P Bartalini 126, P Chang 126, Y H Chang 126, Y W Chang 126, Y Chao 126, K F Chen 126, C Dietz 126, U Grundler 126, W-S Hou 126, Y Hsiung 126, K Y Kao 126, Y J Lei 126, R-S Lu 126, D Majumder 126, E Petrakou 126, X Shi 126, J G Shiu 126, Y M Tzeng 126, M Wang 126, B Asavapibhop 127, N Suwonjandee 127, A Adiguzel 128, M N Bakirci 128, S Cerci 128, C Dozen 128, I Dumanoglu 128, E Eskut 128, S Girgis 128, G Gokbulut 128, E Gurpinar 128, I Hos 128, E E Kangal 128, A Kayis Topaksu 128, G Onengut 128, K Ozdemir 128, S Ozturk 128, A Polatoz 128, K Sogut 128, D Sunar Cerci 128, B Tali 128, H Topakli 128, M Vergili 128, I V Akin 129, T Aliev 129, B Bilin 129, S Bilmis 129, M Deniz 129, H Gamsizkan 129, A M Guler 129, G Karapinar 129, K Ocalan 129, A Ozpineci 129, M Serin 129, R Sever 129, U E Surat 129, M Yalvac 129, M Zeyrek 129, E Gülmez 130, B Isildak 130, M Kaya 130, O Kaya 130, S Ozkorucuklu 130, N Sonmez 130, H Bahtiyar 131, E Barlas 131, K Cankocak 131, Y O Günaydin 131, F I Vardarlı 131, M Yücel 131, L Levchuk 132, P Sorokin 132, J J Brooke 133, E Clement 133, D Cussans 133, H Flacher 133, R Frazier 133, J Goldstein 133, M Grimes 133, G P Heath 133, H F Heath 133, L Kreczko 133, C Lucas 133, Z Meng 133, S Metson 133, D M Newbold 133, K Nirunpong 133, S Paramesvaran 133, A Poll 133, S Senkin 133, V J Smith 133, T Williams 133, K W Bell 134, A Belyaev 134, C Brew 134, R M Brown 134, D J A Cockerill 134, J A Coughlan 134, K Harder 134, S Harper 134, J Ilic 134, E Olaiya 134, D Petyt 134, B C Radburn-Smith 134, C H Shepherd-Themistocleous 134, I R Tomalin 134, W J Womersley 134, R Bainbridge 135, O Buchmuller 135, D Burton 135, D Colling 135, N Cripps 135, M Cutajar 135, P Dauncey 135, G Davies 135, M Della Negra 135, W Ferguson 135, J Fulcher 135, D Futyan 135, A Gilbert 135, A Guneratne Bryer 135, G Hall 135, Z Hatherell 135, J Hays 135, G Iles 135, M Jarvis 135, G Karapostoli 135, M Kenzie 135, R Lane 135, R Lucas 135, L Lyons 135, A-M Magnan 135, J Marrouche 135, B Mathias 135, R Nandi 135, J Nash 135, A Nikitenko 135, J Pela 135, M Pesaresi 135, K Petridis 135, M Pioppi 135, D M Raymond 135, S Rogerson 135, A Rose 135, C Seez 135, P Sharp 135, A Sparrow 135, A Tapper 135, M Vazquez Acosta 135, T Virdee 135, S Wakefield 135, N Wardle 135, M Chadwick 136, J E Cole 136, P R Hobson 136, A Khan 136, P Kyberd 136, D Leggat 136, D Leslie 136, W Martin 136, I D Reid 136, P Symonds 136, L Teodorescu 136, M Turner 136, J Dittmann 137, K Hatakeyama 137, A Kasmi 137, H Liu 137, T Scarborough 137, O Charaf 138, S I Cooper 138, C Henderson 138, P Rumerio 138, A Avetisyan 139, T Bose 139, C Fantasia 139, A Heister 139, P Lawson 139, D Lazic 139, J Rohlf 139, D Sperka 139, J St John 139, L Sulak 139, J Alimena 140, S Bhattacharya 140, G Christopher 140, D Cutts 140, Z Demiragli 140, A Ferapontov 140, A Garabedian 140, U Heintz 140, S Jabeen 140, G Kukartsev 140, E Laird 140, G Landsberg 140, M Luk 140, M Narain 140, M Segala 140, T Sinthuprasith 140, T Speer 140, R Breedon 141, G Breto 141, M Calderon De La Barca Sanchez 141, S Chauhan 141, M Chertok 141, J Conway 141, R Conway 141, P T Cox 141, R Erbacher 141, M Gardner 141, R Houtz 141, W Ko 141, A Kopecky 141, R Lander 141, T Miceli 141, D Pellett 141, J Pilot 141, F Ricci-Tam 141, B Rutherford 141, M Searle 141, J Smith 141, M Squires 141, M Tripathi 141, S Wilbur 141, R Yohay 141, V Andreev 142, D Cline 142, R Cousins 142, S Erhan 142, P Everaerts 142, C Farrell 142, M Felcini 142, J Hauser 142, M Ignatenko 142, C Jarvis 142, G Rakness 142, P Schlein 142, E Takasugi 142, P Traczyk 142, V Valuev 142, M Weber 142, J Babb 143, R Clare 143, J Ellison 143, J W Gary 143, G Hanson 143, J Heilman 143, P Jandir 143, H Liu 143, O R Long 143, A Luthra 143, M Malberti 143, H Nguyen 143, A Shrinivas 143, J Sturdy 143, S Sumowidagdo 143, R Wilken 143, S Wimpenny 143, W Andrews 144, J G Branson 144, G B Cerati 144, S Cittolin 144, D Evans 144, A Holzner 144, R Kelley 144, M Lebourgeois 144, J Letts 144, I Macneill 144, S Padhi 144, C Palmer 144, G Petrucciani 144, M Pieri 144, M Sani 144, V Sharma 144, S Simon 144, E Sudano 144, M Tadel 144, Y Tu 144, A Vartak 144, S Wasserbaech 144, F Würthwein 144, A Yagil 144, J Yoo 144, D Barge 145, C Campagnari 145, T Danielson 145, K Flowers 145, P Geffert 145, C George 145, F Golf 145, J Incandela 145, C Justus 145, D Kovalskyi 145, V Krutelyov 145, R Magaña Villalba 145, N Mccoll 145, V Pavlunin 145, J Richman 145, R Rossin 145, D Stuart 145, W To 145, C West 145, A Apresyan 146, A Bornheim 146, J Bunn 146, Y Chen 146, E Di Marco 146, J Duarte 146, D Kcira 146, Y Ma 146, A Mott 146, H B Newman 146, C Pena 146, C Rogan 146, M Spiropulu 146, V Timciuc 146, J Veverka 146, R Wilkinson 146, S Xie 146, R Y Zhu 146, V Azzolini 147, A Calamba 147, R Carroll 147, T Ferguson 147, Y Iiyama 147, D W Jang 147, Y F Liu 147, M Paulini 147, J Russ 147, H Vogel 147, I Vorobiev 147, J P Cumalat 148, B R Drell 148, W T Ford 148, A Gaz 148, E Luiggi Lopez 148, U Nauenberg 148, J G Smith 148, K Stenson 148, K A Ulmer 148, S R Wagner 148, J Alexander 149, A Chatterjee 149, N Eggert 149, L K Gibbons 149, W Hopkins 149, A Khukhunaishvili 149, B Kreis 149, N Mirman 149, G Nicolas Kaufman 149, J R Patterson 149, A Ryd 149, E Salvati 149, W Sun 149, W D Teo 149, J Thom 149, J Thompson 149, J Tucker 149, Y Weng 149, L Winstrom 149, P Wittich 149, D Winn 150, S Abdullin 151, M Albrow 151, J Anderson 151, G Apollinari 151, L A T Bauerdick 151, A Beretvas 151, J Berryhill 151, P C Bhat 151, K Burkett 151, J N Butler 151, V Chetluru 151, H W K Cheung 151, F Chlebana 151, S Cihangir 151, V D Elvira 151, I Fisk 151, J Freeman 151, Y Gao 151, E Gottschalk 151, L Gray 151, D Green 151, O Gutsche 151, D Hare 151, R M Harris 151, J Hirschauer 151, B Hooberman 151, S Jindariani 151, M Johnson 151, U Joshi 151, K Kaadze 151, B Klima 151, S Kunori 151, S Kwan 151, J Linacre 151, D Lincoln 151, R Lipton 151, J Lykken 151, K Maeshima 151, J M Marraffino 151, V I Martinez Outschoorn 151, S Maruyama 151, D Mason 151, P McBride 151, K Mishra 151, S Mrenna 151, Y Musienko 151, C Newman-Holmes 151, V O’Dell 151, O Prokofyev 151, N Ratnikova 151, E Sexton-Kennedy 151, S Sharma 151, W J Spalding 151, L Spiegel 151, L Taylor 151, S Tkaczyk 151, N V Tran 151, L Uplegger 151, E W Vaandering 151, R Vidal 151, J Whitmore 151, W Wu 151, F Yang 151, J C Yun 151, D Acosta 152, P Avery 152, D Bourilkov 152, M Chen 152, T Cheng 152, S Das 152, M De Gruttola 152, G P Di Giovanni 152, D Dobur 152, A Drozdetskiy 152, R D Field 152, M Fisher 152, Y Fu 152, I K Furic 152, J Hugon 152, B Kim 152, J Konigsberg 152, A Korytov 152, A Kropivnitskaya 152, T Kypreos 152, J F Low 152, K Matchev 152, P Milenovic 152, G Mitselmakher 152, L Muniz 152, R Remington 152, A Rinkevicius 152, N Skhirtladze 152, M Snowball 152, J Yelton 152, M Zakaria 152, V Gaultney 153, S Hewamanage 153, S Linn 153, P Markowitz 153, G Martinez 153, J L Rodriguez 153, T Adams 154, A Askew 154, J Bochenek 154, J Chen 154, B Diamond 154, J Haas 154, S Hagopian 154, V Hagopian 154, K F Johnson 154, H Prosper 154, V Veeraraghavan 154, M Weinberg 154, M M Baarmand 155, B Dorney 155, M Hohlmann 155, H Kalakhety 155, F Yumiceva 155, M R Adams 156, L Apanasevich 156, V E Bazterra 156, R R Betts 156, I Bucinskaite 156, J Callner 156, R Cavanaugh 156, O Evdokimov 156, L Gauthier 156, C E Gerber 156, D J Hofman 156, S Khalatyan 156, P Kurt 156, F Lacroix 156, D H Moon 156, C O’Brien 156, C Silkworth 156, D Strom 156, P Turner 156, N Varelas 156, U Akgun 157, E A Albayrak 157, B Bilki 157, W Clarida 157, K Dilsiz 157, F Duru 157, S Griffiths 157, J-P Merlo 157, H Mermerkaya 157, A Mestvirishvili 157, A Moeller 157, J Nachtman 157, C R Newsom 157, H Ogul 157, Y Onel 157, F Ozok 157, S Sen 157, P Tan 157, E Tiras 157, J Wetzel 157, T Yetkin 157, K Yi 157, B A Barnett 158, B Blumenfeld 158, S Bolognesi 158, G Giurgiu 158, A V Gritsan 158, G Hu 158, P Maksimovic 158, C Martin 158, M Swartz 158, A Whitbeck 158, P Baringer 159, A Bean 159, G Benelli 159, R P Kenny III 159, M Murray 159, D Noonan 159, S Sanders 159, R Stringer 159, J S Wood 159, A F Barfuss 160, I Chakaberia 160, A Ivanov 160, S Khalil 160, M Makouski 160, Y Maravin 160, L K Saini 160, S Shrestha 160, I Svintradze 160, J Gronberg 161, D Lange 161, F Rebassoo 161, D Wright 161, A Baden 162, B Calvert 162, S C Eno 162, J A Gomez 162, N J Hadley 162, R G Kellogg 162, T Kolberg 162, Y Lu 162, M Marionneau 162, A C Mignerey 162, K Pedro 162, A Peterman 162, A Skuja 162, J Temple 162, M B Tonjes 162, S C Tonwar 162, A Apyan 163, G Bauer 163, W Busza 163, I A Cali 163, M Chan 163, L Di Matteo 163, V Dutta 163, G Gomez Ceballos 163, M Goncharov 163, D Gulhan 163, Y Kim 163, M Klute 163, Y S Lai 163, A Levin 163, P D Luckey 163, T Ma 163, S Nahn 163, C Paus 163, D Ralph 163, C Roland 163, G Roland 163, G S F Stephans 163, F Stöckli 163, K Sumorok 163, D Velicanu 163, R Wolf 163, B Wyslouch 163, M Yang 163, Y Yilmaz 163, A S Yoon 163, M Zanetti 163, V Zhukova 163, B Dahmes 164, A De Benedetti 164, A Gude 164, J Haupt 164, S C Kao 164, K Klapoetke 164, Y Kubota 164, J Mans 164, N Pastika 164, R Rusack 164, M Sasseville 164, A Singovsky 164, N Tambe 164, J Turkewitz 164, J G Acosta 165, L M Cremaldi 165, R Kroeger 165, S Oliveros 165, L Perera 165, R Rahmat 165, D A Sanders 165, D Summers 165, E Avdeeva 166, K Bloom 166, S Bose 166, D R Claes 166, A Dominguez 166, M Eads 166, R Gonzalez Suarez 166, J Keller 166, I Kravchenko 166, J Lazo-Flores 166, S Malik 166, F Meier 166, G R Snow 166, J Dolen 167, A Godshalk 167, I Iashvili 167, S Jain 167, A Kharchilava 167, A Kumar 167, S Rappoccio 167, Z Wan 167, G Alverson 168, E Barberis 168, D Baumgartel 168, M Chasco 168, J Haley 168, A Massironi 168, D Nash 168, T Orimoto 168, D Trocino 168, D Wood 168, J Zhang 168, A Anastassov 169, K A Hahn 169, A Kubik 169, L Lusito 169, N Mucia 169, N Odell 169, B Pollack 169, A Pozdnyakov 169, M Schmitt 169, S Stoynev 169, K Sung 169, M Velasco 169, S Won 169, D Berry 170, A Brinkerhoff 170, K M Chan 170, M Hildreth 170, C Jessop 170, D J Karmgard 170, J Kolb 170, K Lannon 170, W Luo 170, S Lynch 170, N Marinelli 170, D M Morse 170, T Pearson 170, M Planer 170, R Ruchti 170, J Slaunwhite 170, N Valls 170, M Wayne 170, M Wolf 170, L Antonelli 171, B Bylsma 171, L S Durkin 171, C Hill 171, R Hughes 171, K Kotov 171, T Y Ling 171, D Puigh 171, M Rodenburg 171, G Smith 171, C Vuosalo 171, B L Winer 171, H Wolfe 171, E Berry 172, P Elmer 172, V Halyo 172, P Hebda 172, J Hegeman 172, A Hunt 172, P Jindal 172, S A Koay 172, P Lujan 172, D Marlow 172, T Medvedeva 172, M Mooney 172, J Olsen 172, P Piroué 172, X Quan 172, A Raval 172, H Saka 172, D Stickland 172, C Tully 172, J S Werner 172, S C Zenz 172, A Zuranski 172, E Brownson 173, A Lopez 173, H Mendez 173, J E Ramirez Vargas 173, E Alagoz 174, D Benedetti 174, G Bolla 174, D Bortoletto 174, M De Mattia 174, A Everett 174, Z Hu 174, M Jones 174, K Jung 174, O Koybasi 174, M Kress 174, N Leonardo 174, D Lopes Pegna 174, V Maroussov 174, P Merkel 174, D H Miller 174, N Neumeister 174, I Shipsey 174, D Silvers 174, A Svyatkovskiy 174, F Wang 174, W Xie 174, L Xu 174, H D Yoo 174, J Zablocki 174, Y Zheng 174, N Parashar 175, A Adair 176, B Akgun 176, K M Ecklund 176, F J M Geurts 176, W Li 176, B Michlin 176, B P Padley 176, R Redjimi 176, J Roberts 176, J Zabel 176, B Betchart 177, A Bodek 177, R Covarelli 177, P de Barbaro 177, R Demina 177, Y Eshaq 177, T Ferbel 177, A Garcia-Bellido 177, P Goldenzweig 177, J Han 177, A Harel 177, D C Miner 177, G Petrillo 177, D Vishnevskiy 177, M Zielinski 177, A Bhatti 178, R Ciesielski 178, L Demortier 178, K Goulianos 178, G Lungu 178, S Malik 178, C Mesropian 178, S Arora 179, A Barker 179, J P Chou 179, C Contreras-Campana 179, E Contreras-Campana 179, D Duggan 179, D Ferencek 179, Y Gershtein 179, R Gray 179, E Halkiadakis 179, D Hidas 179, A Lath 179, S Panwalkar 179, M Park 179, R Patel 179, V Rekovic 179, J Robles 179, S Salur 179, S Schnetzer 179, C Seitz 179, S Somalwar 179, R Stone 179, S Thomas 179, P Thomassen 179, M Walker 179, G Cerizza 180, M Hollingsworth 180, K Rose 180, S Spanier 180, Z C Yang 180, A York 180, O Bouhali 181, R Eusebi 181, W Flanagan 181, J Gilmore 181, T Kamon 181, V Khotilovich 181, R Montalvo 181, I Osipenkov 181, Y Pakhotin 181, A Perloff 181, J Roe 181, A Safonov 181, T Sakuma 181, I Suarez 181, A Tatarinov 181, D Toback 181, N Akchurin 182, C Cowden 182, J Damgov 182, C Dragoiu 182, P R Dudero 182, K Kovitanggoon 182, S W Lee 182, T Libeiro 182, I Volobouev 182, E Appelt 183, A G Delannoy 183, S Greene 183, A Gurrola 183, W Johns 183, C Maguire 183, Y Mao 183, A Melo 183, M Sharma 183, P Sheldon 183, B Snook 183, S Tuo 183, J Velkovska 183, M W Arenton 184, S Boutle 184, B Cox 184, B Francis 184, J Goodell 184, R Hirosky 184, A Ledovskoy 184, C Lin 184, C Neu 184, J Wood 184, S Gollapinni 185, R Harr 185, P E Karchin 185, C Kottachchi Kankanamge Don 185, P Lamichhane 185, A Sakharov 185, D A Belknap 186, L Borrello 186, D Carlsmith 186, M Cepeda 186, S Dasu 186, S Duric 186, E Friis 186, M Grothe 186, R Hall-Wilton 186, M Herndon 186, A Hervé 186, P Klabbers 186, J Klukas 186, A Lanaro 186, R Loveless 186, A Mohapatra 186, I Ojalvo 186, T Perry 186, G A Pierro 186, G Polese 186, I Ross 186, T Sarangi 186, A Savin 186, W H Smith 186, J Swanson 186
PMCID: PMC4371079  PMID: 25814851

Abstract

Characteristics of multi-particle production in proton-proton collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s}=7\ \mbox{TeV}$\end{document} are studied as a function of the charged-particle multiplicity, N ch. The produced particles are separated into two classes: those belonging to jets and those belonging to the underlying event. Charged particles are measured with pseudorapidity |η|<2.4 and transverse momentum p T>0.25 GeV/c. Jets are reconstructed from charged-particles only and required to have p T>5 GeV/c. The distributions of jet p T, average p T of charged particles belonging to the underlying event or to jets, jet rates, and jet shapes are presented as functions of N ch and compared to the predictions of the pythia and herwig event generators. Predictions without multi-parton interactions fail completely to describe the N ch-dependence observed in the data. For increasing N ch, pythia systematically predicts higher jet rates and harder p T spectra than seen in the data, whereas herwig shows the opposite trends. At the highest multiplicity, the data–model agreement is worse for most observables, indicating the need for further tuning and/or new model ingredients.

Introduction

Achieving a complete understanding of the details of multi-particle production in hadronic collisions remains an open problem in high-energy particle physics. In proton-proton (pp) collisions at the energies of the Large Hadron Collider (LHC), most of the inelastic particle production is described in a picture in which an event is a combination of hadronic jets, originating from hard parton-parton interactions with exchanged momenta above several GeV/c, and of an underlying event consisting of softer parton-parton interactions, and of proton remnants.

The production of high-transverse-momentum jets, defined as collimated bunches of hadrons, results from parton cascades generated by the scattered quarks and gluons, described by perturbative quantum chromodynamics (QCD), followed by non-perturbative hadronization described either via color fields (“strings”) stretching between final partons, or by the formation of colorless clusters of hadrons [1]. The underlying event (UE) is commonly defined as the set of all final-state particles that are not associated with the initial hard-parton scattering. This component is presumably dominated by perturbative (mini)jets with relatively small transverse momenta of a few GeV/c, produced in softer multi-parton interactions (MPI) [28], as well as by soft hadronic strings from the high-rapidity remnants. The description of the UE is more phenomenological than that of the jets arising from the primary hard-parton scatter, whose final hadron multiplicity can be in principle computed in QCD [1]. In this two-component approach, rare high-multiplicity events can be explained as due to a large number of MPI taking place in the pp collisions at small impact parameters. Different variants of such a physical picture are realized in state-of-the-art Monte Carlo (MC) event generators such as pythia [9, 10] and herwig [11, 12]. The properties of multi-particle production are very sensitive to the assumptions made about the combination of MPI and hard scatterings, the modeling of the multi-parton interactions (in particular the transverse structure of the proton) [3], and non-perturbative final-state effects such as color reconnections, hadronization mechanisms, and possible collective-flow phenomena, among others.

Experimental data on multi-particle production in pp collisions at LHC energies provide a clear indication that our understanding of the different components contributing to the total inelastic cross section is incomplete. This arises from difficulties in describing multiplicity distributions, and especially the high-multiplicity tails [13], or in reproducing a new structure of the azimuthal angular correlations at 7 TeV for high-multiplicity events, the so-called “ridge” [14]. Interesting disagreements between data and MC simulation were also recently reported in transverse sphericity analyses and for global event shapes [1517]. Together with similar findings in nucleus-nucleus collisions, these disagreements point to the intriguing possibility of some mechanisms at high multiplicities which are not properly accounted for in event generator models. Therefore, although the standard mixture of (semi)hard and non-perturbative physics considered by pythia and herwig is often sufficient for reproducing the bulk properties of inelastic events, it fails to provide a more detailed description of the data and in particular of the properties of events binned in particle multiplicity.

The average transverse momentum of the charged particles produced in pp and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{p}\bar{\mathrm{p}}$\end{document} collisions has been measured as a function of the event multiplicity at various center-of-mass energies [13, 1822]. The work presented here is the first one that carries out the study also for the UE and jets separately and includes other observables (jet p T spectra, rates and shapes) not analyzed before as a function of particle multiplicity with such a level of detail.

The paper is organized as follows. The general procedure of the analysis is described in Sect. 2, a short description of the Compact Muon Solenoid (CMS) detector is given in Sect. 3, and the event generator models used are presented in Sect. 4. Sections 5 to 7 describe trigger and event selection, track and jet reconstruction, the data correction procedure, and the systematic uncertainties. Results and discussions are presented in Sect. 8, and summarized in Sect. 9.

Analysis strategy

The main goal of this analysis is to study the characteristic features and relative importance of different mechanisms of multi-particle production in pp collisions at a center-of-mass energy of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s}=7\ \mbox{TeV}$\end{document} in different charged-particle multiplicity bins, corresponding to different levels of hadronic activity resulting from larger or smaller transverse overlap of the colliding protons. Guided by the two-component physical picture described in the introduction, we separate the particle content of each inelastic event into two subsets. We identify the jet-induced contribution and treat the rest as the underlying event originating from unresolved perturbative sources such as semihard MPI and other softer mechanisms. Our approach to this problem uses the following procedure, applied at the stable (lifetime >10 mm) particle-level:

  • Similarly to the centrality classification of events in high-energy nuclear collisions [23], events are sorted according to their charged-particle multiplicity (Table 1). Hereafter, for simplicity, multiplicity should always be understood as charged-particle multiplicity.

  • For each event, jets are built with charged particles only using the anti-k T algorithm [24, 25] with a distance parameter 0.5, optimized as described below, and are required to have a p T>5 GeV/c. Charged particles falling within a jet cone are labeled as “intrajet particles”.

  • After removing all intrajet particles from the event, the remaining charged particles are defined as belonging to the underlying event. Events without jets above p T=5 GeV/c are considered to consist of particles from the UE only.

Table 1.

Charged-particle multiplicity bins, mean charged-particle multiplicity in bins, and corresponding number of events. The multiplicity N ch is defined as the total number of stable charged-particles in the events, corrected for inefficiencies, with transverse momentum p T>0.25 GeV/c and pseudorapidity |η|<2.4

Multiplicity range Mean multiplicity 〈N ch Number of events
10<N ch≤30 18.9 2 795 688
30<N ch≤50 38.8 1 271 987
50<N ch≤80 61.4 627 731
80<N ch≤110 90.6 105 660
110<N ch≤140 120 11 599

In order to achieve a better separation of the contributions due to jets and underlying event, the resolution parameter of the anti-k T algorithm is increased until the UE charged-particle p T-spectrum starts to saturate, indicating that the jet component has been effectively removed. This way of fixing the jet cone radius minimizes contamination of the underlying event by jet contributions or vice versa. A resolution parameter of value 0.5 is found to be optimal. Of course, it is not possible to completely avoid mixing between jets and underlying event. To clarify the picture and minimize the mixing of the two components, we measure not only the p T spectrum of the charged particles inside jet cones, but also the spectrum of the leading (the highest-p T) charged particle in each cone.

The CMS detector

A detailed description of the CMS detector can be found in Ref. [26]. A right-handed coordinate system with the origin at the nominal interaction point (IP) is used, with the x axis pointing to the center of the LHC ring, the y axis pointing up, and the z axis oriented along the anticlockwise-beam direction. The central feature of the CMS detector is a superconducting solenoid of 6 m internal diameter providing an axial magnetic field with a nominal strength of 3.8 T. Immersed in the magnetic field are the pixel tracker, the silicon-strip tracker, the lead tungstate electromagnetic calorimeter, the brass/scintillator hadron calorimeter, and the muon detection system. In addition to the barrel and endcap calorimeters, the steel/quartz-fibre forward calorimeter covers the pseudorapidity region 2.9<|η|<5.2, where η=−log[tan(θ/2)], and θ is the polar angle measured at the center of the CMS detector with respect to the z axis. The tracking detector consists of 1440 silicon-pixel and 15 148 silicon-strip detector modules. The barrel part consists of 3 (10) layers of pixel (strip) modules around the IP at distances ranging from 4.4 cm to 1.1 m. Five out of the ten strip layers are double-sided and provide additional z coordinate measurements. The two endcaps consist of 2 (12) disks of pixel (strip) modules that extend the pseudorapidity acceptance to |η|=2.5. The tracker provides an impact parameter resolution of about 100 μm and a p T resolution of about 0.7 % for 1 GeV/c charged particles at normal incidence. Two of the CMS subdetectors acting as LHC beam monitors, the Beam Scintillation Counters (BSC) and the Beam Pick-up Timing for the eXperiments (BPTX) devices, are used to trigger the detector readout. The BSC are located along the beam line on each side of the IP at a distance of 10.86 m and cover the range 3.23<|η|<4.65. The two BPTX devices, which are located inside the beam pipe and ±175 m from the IP, are designed to provide precise information on the structure and timing of the LHC beams with a time resolution of 0.2 ns.

Event generator models

The best available general-purpose event generators and their tunes are used for comparison with the data. They are the pythia 6 (version 6.424 [9], tune Z2*), pythia 8 (version 8.145 [10], tune 4C [27]), and herwig++ 2.5 (tune UE-EE-3M) [12] event generators. These event generators and tunes differ in the treatment of initial and final state radiation, hadronization, and in the choice of underlying event parameters, color reconnections, and cutoff values for the MPI mechanism. Values of these parameters were chosen to provide a reasonable description of existing LHC pp differential data measured in minimum-bias and hard QCD processes. Initial and final state radiation is essential for the correct description of jet production and of the UE [28]. For the MPI modeling, pythia incorporates interleaved evolution between the different scatterings [27, 29], whereas herwig concentrates more hard scatterings at the center of the pp collision while allowing for more (disconnected) soft-parton scatterings at the periphery. A detailed review of the implementation of all these mechanisms in modern MC event generators is given in [30]. The most recent pythia 6 Z2* tune is derived from the Z1 tune [31], which uses the CTEQ5L parton distribution set, whereas Z2* adopts CTEQ6L [32]. The Z2* tune is the result of retuning the pythia parameters PARP(82) and PARP(90) by means of the automated Professor tool [33], yielding PARP(82)=1.921 and PARP(90)=0.227 GeV/c. The results of this study are also compared to predictions obtained with pythia 8, tune 4C, with multi-parton interactions switched off. Hadronization in pythia is based on the Lund string model [2] while that in herwig is based on the cluster fragmentation picture in which perturbative evolution forms preconfined clusters that subsequently decay into final hadrons. The version of herwig++ 2.5 UE-EE-3M used in this paper includes important final-state effects due to color reconnections and is based on the MRST2008 parton distribution set [34].

Event selection and reconstruction

The present analysis uses the low-pileup data recorded during the first period of 2010 data taking, corresponding to an integrated luminosity of (3.18±0.14) pb−1. The data are collected using a minimum-bias trigger requiring a signal from both BPTX detectors coincident with a signal from both BSC detectors.

For this analysis, the position of the reconstructed primary vertex is constrained to be within ±10 cm with respect to the nominal IP along the beam direction and within ±2 cm in the transverse direction, thereby substantially rejecting non-collision events [35]. The fraction of background events after these selections is found to be negligible (<0.1 %).

The fraction of events in the data sample with pileup (two or more pp collisions per bunch crossing) varies in the range (0.4–7.8) % depending on the instantaneous luminosity per bunch. This small fraction of pileup events is kept, but the analysis is only carried out for the tracks connected with the primary (highest multiplicity) vertex. The fraction of events where two event vertices are reconstructed as one, or where two event vertices share associated tracks, ranges between (0.04–0.2) %.

Track reconstruction and selection

The track reconstruction procedure uses information from both pixel and strip detectors and is based on an iterative combinatorial track finder [36]. Tracks are selected for analysis if they have transverse momenta p T>0.25 GeV/c and pseudorapidities lying within the tracker acceptance |η|<2.4. Such p T cut provides robust measurements, keeping the event selection minimally biased by hard processes. In addition, tracks must be associated with the event vertex with the highest multiplicity in the bunch crossing. The requirement removes tracks coming from secondary interactions with detector materials, decays of long-lived neutral hadrons, and pileup. Residual contamination from such tracks is at the level of 0.2 %.

Charged-particle jet reconstruction

This analysis is based on jets that are reconstructed using tracks only, in order to avoid the reconstructed jet energy uncertainty due to mismeasurements of low-p T neutral particles. Jets are reconstructed by clustering the tracks with the collinear- and infrared-safe anti-k T algorithm with a distance parameter of 0.5, that results in cone-shaped jets. Jets are retained if their axes lie within the fiducial region |η jet axis|<1.9, so that for a jet with an effective radius of 0.5 all jet constituent tracks fall within the tracker acceptance (|η|<2.4).

Data correction

Event selection efficiency

In the MC simulations, events are selected at the stable-particle level (lifetime >10 mm) if at least one charged particle is produced on each side of the interaction point within 3.32<|η|<4.65, mimicking the BSC trigger requirement, and, in addition, if at least five charged particles with p T>0.25 GeV/c and |η|<2.4 are present, which ensures a high vertex finding efficiency in the offline selection of data.

The trigger efficiency is measured using data collected with a zero-bias trigger, constructed from a coincidence of the BPTX counters, which effectively requires only the presence of colliding beams at the interaction point. The offline selection efficiency is determined from MC simulations. The combined trigger and offline selection efficiency is obtained as a function of the number of reconstructed tracks and is very high: above 87 % for events with more than 10 reconstructed tracks and close to 100 % for events with more than 30 reconstructed tracks. Results are corrected by applying a weight inversely proportional to the efficiency for each observed event.

Corrections related to the track reconstruction

The track-based quantities (N ch, average p T of tracks, jet p T density in ring zones) are corrected in a two-stage correction procedure. First, each observed track is given a weight to account for track reconstruction inefficiencies and misreconstructed (fake) track rates, as obtained from the detector simulation. The weights are based on two-dimensional matrices ϵ(η,p T) and f(η,p T), for reconstruction efficiency and fake track rates, respectively, computed in bins in η, p T, and is given by

\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ N^\text{true}_\text{ch}(\eta, p_{\mathrm{T}})=N^{\text {reco}}_\text{ch}( \eta, p_{\mathrm{T}})\frac{{1-f(\eta, p_{\mathrm{T}})}}{\epsilon(\eta, p_{\mathrm{T}})}. $$\end{document} 1

The corrections for reconstruction efficiencies and fake rates depend on track multiplicity. Therefore, four different sets of matrices ϵ(η,p T) and f(η,p T) for different track multiplicity classes are used, the first three track multiplicity classes corresponding to the first three charged-particle multiplicity bins of Table 1 and the fourth one corresponding to the fourth and fifth charged-particle multiplicity bins. The average track reconstruction efficiency and fake rate vary between 79–80 % and 3–4 %, respectively, depending on the multiplicity bin considered.

Table 1 shows the corrected charged-particle multiplicity classes used in this analysis and the number of events and mean multiplicities in each multiplicity bin after applying all event selection criteria.

Figure 1 shows multiplicity distributions that have been corrected for tracking efficiency and fake rate. The simulations fail to describe all the measured N ch distributions, as discussed in Ref. [13]. As we are considering event properties as a function of multiplicity, such a data–MC disagreement might introduce a bias due to the different N ch distribution within the wide multiplicity intervals. Reweighting the multiplicity distributions in MC simulations to bring them in agreement with the ones observed in data results in less than 1–2 % corrections for all results. In the following, corrected results are compared to the predictions obtained from the unweighted MC models.

Fig. 1.

Fig. 1

Charged-particle multiplicity distributions, corrected for tracking efficiency and fake rate, for the five multiplicity bins defined in this analysis compared to four different MC predictions. The normalization is done for each multiplicity bin separately. pythia 8 with MPI switched off completely fails to produce events at large multiplicity and therefore no points are shown in the two highest multiplicity domains

All the measured quantities hereafter are further corrected to stable-particle level using a bin-by-bin factor obtained from Monte Carlo simulations. This correction factor accounts for event migration between adjacent multiplicity bins, for differences in the tracking performance in the dense environment inside jets, and for mixing between charged particles belonging to charged-particle jets and the UE due to jets that are misidentified at the detector level. The magnitude of this correction factor is typically less than 1 %, except for the jet p T density in the core of the jet where it reaches up to 8 %.

Correction of the track-jet pT distributions

Track-jet distributions have to be corrected for inefficiencies in reconstruction, for misidentified jets, and for bin migrations due to the finite energy resolution. On average, a reconstructed track-jet has 95 % of the energy of the original charged-particle jet. The energy resolution of such jets is about 13 %. The reconstructed jet spectrum is related to the “true” jet spectrum as follows:

\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ M\bigl(p_{\mathrm{T}}^\text{measured}\bigr) = \int C \bigl(p_{\mathrm{T}}^\text {measured},p_{\mathrm{T}}^\text {true}\bigr)T\bigl(p_{\mathrm{T}}^\text{true}\bigr)\, \mathrm{d}p_{\mathrm {T}}^\text{true}, $$\end{document} 2

where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$M(p_{\mathrm{T}}^{\text{measured}})$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T(p_{\mathrm {T}}^{\text{true}})$\end{document} are the measured and the true p T spectra, respectively, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$C(p_{\mathrm{T}}^{\text{measured}},p_{\mathrm{T}}^{\text{true}})$\end{document} is a response function obtained from the MC simulation. The problem of inverting the response relation of Eq. (2) is well known and has been extensively studied in literature. In our analysis, an iterative unfolding technique [37] is applied. Since the detector response changes with multiplicity, individual response matrices are used for each multiplicity bin.

Systematic uncertainties

The following sources of systematic uncertainties are considered:

Association of tracks with the primary vertex (track selection)

Tracks that are coming from a non-primary interaction result in an incorrect multiplicity classification of the event and bias the event properties at a given multiplicity. These tracks originate from secondary interactions with detector material, decays of long-lived neutral hadrons, and pileup. Moreover, these tracks can bias the p T spectrum of primary tracks. As it is not possible to completely avoid contamination by such tracks, the stability of the results has been estimated by tightening and loosening the association criteria. Removing contamination inevitably leads to rejection of some valid primary tracks, so for each set of the association criteria a special efficiency and fake-rate correction must be used.

Tracking performance

A correct description of the tracking performance in the MC simulation of the detector is essential. A conservative estimate of the uncertainty of this efficiency of 2.3 % is taken from Ref. [38].

Model dependence of the correction procedures

Different MC models can give slightly different detector and reconstruction responses. Two models, pythia 6 tune Z2* and pythia 8 tune 4C, are used to compute tracking and jet performance and correction factors. herwig++ 2.5 was found to deviate too much from the data and was not used for the estimate of the systematic uncertainty. Corrections based on the pythia 6 tune Z2* model, which provides better agreement with data, are used to get the central values of different physics quantities. The differences between these two methods are assigned as a systematic uncertainty.

Unfolding the jet pT spectrum

The unfolding procedure used to correct for bin migrations in the jet p T spectra is based on an iterative unfolding technique [37] for which we find that 4–5 iterations are optimal. By varying the number of iterations (±1 with respect to the optimal value) and the reconstructed-to-generated jet matching parameter (0.15<ΔR<0.25) we obtain a systematic uncertainty of (0.5–2.0) %. This leads to a systematic uncertainty <0.2 % in the average p T of the jet spectrum, and <2 % for charged-particle jet rates.

Although this analysis uses a low-pileup data sample, rare high-multiplicity events might occur due to overlapping pp collisions in the same bunch crossing. The effect of pileup is estimated by comparing results at different instantaneous luminosities. The dataset is divided into subsets according to the instantaneous luminosity and the differences found between these subsets are of the order of the statistical uncertainties of the sample. In addition, it was checked that the instantaneous luminosity for events with small and large N ch does not differ, confirming that the large-multiplicity bins are not biased by a possibly increased contribution from pileup events. Therefore, we conclude that high-multiplicity events are not affected by pileup.

Tables 2 and 3 summarize the systematic and statistical uncertainties of the measured quantities. The total uncertainties are the sum in quadrature of the individual systematic and statistical uncertainties. The total error of jet p T density as a function of jet radius rises with R and N ch. The total uncertainties in the jet p T spectra are of the order of 4–8 % for jet p T up to about 25 GeV/c. For jets with p T>25 GeV/c the statistical uncertainties dominate.

Table 2.

Summary of systematic and statistical uncertainties for various averaged inclusive and UE-related quantities. The variables \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\langle p_{\mathrm{T}}^{\text{ch. particle}} \rangle$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\langle p_{\mathrm{T}}^{\mathrm{UE}} \rangle$\end{document}, 〈PT ij〉, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\langle p_{\mathrm{T}}^{\mathrm{ijl}} \rangle$\end{document} are defined in Sect. 8.1, ρ(R) is defined in Sect. 8.2.3

\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\langle p_{\mathrm{T}}^{\text{ch. particle}} \rangle$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\langle p_{\mathrm{T}}^{\mathrm{UE}} \rangle$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\langle p_{\mathrm{T}}^{\mathrm{ij}} \rangle$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\langle p_{\mathrm {T}}^{\mathrm{ijl}} \rangle$\end{document} ρ(R)
Track selection <0.2 % <0.2 % <0.2 % <0.4 % <1 %
Tracking performance <0.3 % <0.3 % <0.4 % <0.4 % <4 %
Model dependence <0.5 % <0.4 % <0.5 % <0.5 % <5 %
Statistical <0.1 % <0.1 % <0.2 % <0.4 % 2–8 %
Total 0.5–0.7 % 0.5–0.6 % 0.5–0.7 % <0.9 % 4–9 %

Table 3.

Summary of systematic and statistical uncertainties for various charged-jet related quantities

ch. jet
p T spectrum
ch. jet rate
(p T>5 GeV/c)
ch. jet rate
(p T>30 GeV/c)
\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\langle p_{\mathrm{T}}^{\text{ch. jet}}\rangle$\end{document}
Track selection <1 % <2 % <4 % <0.1 %
Tracking performance <3 % 2 % <5 % <0.5 %
Model dependence <3 % 2 % <6 % <0.4 %
Unfolding 3 % <2 % <3 % <0.2 %
Statistical

1–8 %

\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(p_{\mathrm{T}}^{\text{ch. jet}}<25~\text{GeV/}c)$\end{document}

10–40 %

\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(p_{\mathrm{T}}^{\text{ch. jet}}>25~\text{GeV/}c)$\end{document}

<1 % <9 % <0.4 %
Total

4–10 %

\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(p_{\mathrm{T}}^{\text{ch. jet}}<25~\text{GeV/}c)$\end{document}

10–40 %

\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(p_{\mathrm{T}}^{\text{ch. jet}}>25~\text{GeV/}c)$\end{document}

<5 % <12 % 0.8 %

Results

General properties of charged particles from jets and from the UE

We start with discussing the general jet and UE properties in the five N ch bins defined. Tables 45 list the average transverse momentum for the various types of charged particles measured, as well as the predictions from pythia 8 tune 4C, pythia 8 MPI-off, pythia 6 tune Z2*, and herwig++ 2.5. For each multiplicity bin, we show the fully corrected results for the mean transverse momenta of all charged particles \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\langle p_{\mathrm {T}}^{\text{ch. particle}} \rangle$\end{document}, UE charged particles \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\langle p_{\mathrm{T}}^{\mathrm{UE}} \rangle$\end{document}, intrajet charged particles \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\langle p_{\mathrm{T}}^{\mathrm{ij}} \rangle$\end{document}, intrajet leading charged particles \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\langle p_{\mathrm{T}} ^{\mathrm{ijl}} \rangle$\end{document}, the mean transverse momentum of charged-particle jets \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\langle p_{\mathrm{T}}^{\text{ch. jet}} \rangle$\end{document}, and the average number of jets per event \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\langle\frac{\#\text{jets}}{\text{event}} \rangle$\end{document}.

Table 4.

Average transverse momenta for different types of charged particles (inclusive, underlying event, intrajet, leading intrajet). The quantities are compared with the MC predictions. Uncertainties smaller than the last significant digit are omitted

\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\langle p_{\mathrm{T}}^{\text{ch. particle}} \rangle,~\text{GeV/}c$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\langle p_{\mathrm{T}}^{\mathrm{UE}} \rangle,~\text{GeV/}c$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\langle p_{\mathrm{T}}^{\mathrm{ij}} \rangle,~\text{GeV/}c$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\langle p_{\mathrm{T}}^{\mathrm{ijl}} \rangle,~\text{GeV/}c$\end{document}
10<N ch≤30
Data 0.68±0.01 0.65±0.01 1.90±0.02 3.65±0.05
pythia 8 4C 0.67 0.64 1.83 3.48±0.01
pythia 8 MPI-off 0.72 0.66 1.93 3.73
pythia 6 Z2* 0.67 0.65 1.86 3.59
herwig++ 2.5 0.68 0.65 1.81 3.41
30<N ch≤50
Data 0.75±0.01 0.71±0.01 1.64±0.02 3.37±0.04
pythia 8 4C 0.77 0.72 1.62 3.25±0.01
pythia 8 MPI-off 1.06 0.75 1.99 4.28±0.02
pythia 6 Z2* 0.74 0.70 1.62 3.33
herwig++ 2.5 0.72 0.68 1.62 3.26
50<N ch≤80
Data 0.80±0.01 0.74 ± 0.01 1.45±0.01 3.15±0.03
pythia 8 4C 0.84 0.76 1.49 3.10
pythia 8 MPI-off 1.47 0.80 2.22 5.17±0.09
pythia 6 Z2* 0.80 0.74 1.44 3.10
herwig++ 2.5 0.74 0.68 1.43 3.08
80<N ch≤110
Data 0.85±0.01 0.76±0.01 1.32±0.01 2.96±0.03
pythia 8 4C 0.90 0.78 1.41 3.04±0.01
pythia 6 Z2* 0.85 0.76 1.33 2.97
herwig++ 2.5 0.74 0.66 1.28 2.94
110<N ch≤140
Data 0.88±0.01 0.77±0.01 1.24±0.01 2.86±0.03
pythia 8 4C 0.95 0.79 1.36 3.05
pythia 6 Z2* 0.90 0.77 1.29 3.05±0.01
herwig++ 2.5 0.70 0.62 1.16 2.82±0.01

Table 5.

Average transverse momentum of charged-particle jets and charged-particle jet rates for two thresholds, p T>5 GeV/c and p T> 30 GeV/c. The quantities are compared with the MC predictions. Uncertainties smaller than the last significant digit are omitted

\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\langle p_{\mathrm{T}}^{\text{ch. jet}}\rangle,~\text{GeV/}c$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\langle\frac{\#\text{ch. jets}}{\text{event}} \rangle$\end{document} (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{\mathrm{T}} ^{\text{ch. jet}}>5~\text{GeV/}c$\end{document}) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\langle\frac{\#\text{ch. jets}}{\text{event}} \rangle$\end{document} (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{\mathrm{T}} ^{\text{ch. jet}}>30~\text{GeV/}c$\end{document})
10<N ch≤30
Data 6.85±0.06 0.054±0.004 (3.2±0.5)10−5
pythia 8 4C 7.08±0.01 0.075 (3.9±0.6)10−5
pythia 8 MPI-off 7.96±0.01 0.152 (2.03±0.02)10−4
pythia 6 Z2* 7.01±0.01 0.067 (2.7±0.3)10−5
herwig++ 2.5 6.92±0.01 0.095 (3.8±0.5)10−5
30<N ch≤50
Data 7.04 ± 0.09 0.287±0.014 (3.4±0.4)10−4
pythia 8 4C 7.26±0.01 0.386 (4.4±0.5)10−4
pythia 8 MPI-off 10.8 1.38 ± 0.02 (2.9±0.1)10−2
pythia 6 Z2* 7.20±0.01 0.304 (3.5±0.2)10−4
herwig++ 2.5 7.02±0.01 0.375 (3.1±0.3)10−4
50<N ch≤80
Data 7.18±0.09 0.84±0.03 (1.5±0.1)10−3
pythia 8 4C 7.41±0.01 1.09 (1.8±0.1)10−3
pythia 8 MPI-off 16.3±0.4 3.1±0.3 (3.7±0.1)10−1
pythia 6 Z2* 7.30±0.01 0.87 (1.4±0.1)10−3
herwig++ 2.5 7.10±0.01 0.88 (5.9±0.5)10−4
80<N ch≤110
Data 7.46±0.11 2.13±0.09 (4.3±0.4)10−3
pythia 8 4C 7.77±0.02 2.54 (7.1±0.6)10−3
pythia 6 Z2* 7.64±0.01 2.12 (5.7±0.2)10−3
herwig++ 2.5 7.25±0.01 1.66 (1.2±0.1)10−3
110<N ch≤140
Data 7.81±0.10 3.68±0.15 (1.0±0.1)10−2
pythia 8 4C 8.31±0.03 4.46 (2.5±0.1)10−2
pythia 6 Z2* 8.15±0.02 3.95 (2.1±0.1)10−2
herwig++ 2.5 7.37 ± 0.01 2.41 (1.9±0.2)10−3

The mean transverse momenta of all charged particles, UE charged-particles, and intrajet charged-particles, are plotted as a function of N ch in Figs. 24. From Figs. 2 and 3, we see that mean transverse momentum of inclusive and UE charged-particles increases with N ch. Such a behavior is expected as the higher multiplicity events have an increased fraction of (semi)hard scatterings contributing to final hadron production. The (logarithmic-like) N ch-dependence of the average transverse momentum of inclusive and UE charged-particles is well described by both pythia 6 tune Z2* and pythia 8 tune 4C (especially by the former), and is less well described by herwig++ 2.5, which does not predict a monotonically rising dependence but a “turn down” beyond N ch≈ 60. On the other hand, pythia 8 without MPI fails to describe the data altogether, predicting much harder charged-particle spectra for increasing final multiplicity. This follows from the fact that pythia 8 without MPI can only produce high-multiplicity events through very hard jets with large intrajet multiplicity, instead of producing a larger number of semi-hard jets in the event.

Fig. 2.

Fig. 2

Mean transverse momentum of inclusive charged-particles with p T>0.25 GeV/c versus charged-particle multiplicity (N ch within |η|< 2.4) measured in the data (solid line and marker) compared to various MC predictions (non-solid curves and markers). Systematic uncertainties are indicated by error bars which are, most of the time, smaller than the marker size

Fig. 4.

Fig. 4

Mean transverse momentum of intrajet charged-particles with p T>0.25 GeV/c versus charged-particle multiplicity (N ch within |η|<2.4) measured in the data (solid line and marker) compared to various MC predictions (non-solid curves and markers). Systematic uncertainties are indicated by error bars which are, most of the time, smaller than the marker size

Fig. 3.

Fig. 3

Mean transverse momentum of UE charged-particles with p T>0.25 GeV/c versus charged-particle multiplicity (N ch within |η|< 2.4) measured in the data (solid line and marker) compared to various MC predictions (non-solid curves and markers). Systematic uncertainties are indicated by error bars which are, most of the time, smaller than the marker size

From Figs. 45 it is clear that the N ch-dependence of the average p T of intrajet constituents and leading charged-particle of the jets shows the opposite behavior compared to that from the global and underlying events (Figs. 23) and decreases logarithmically with increasing multiplicities. Events with increasing multiplicities are naturally “biased” towards final-states resulting mostly from (mini)jets which fragment into a (increasingly) large number of hadrons. Since the produced hadrons share the energy of the parent parton, a larger amount of them results in overall softer intrajet- and leading-hadron p T spectra. Part of the decrease of the intrajet mean p T with multiplicity could be also due to extra soft UE contribution falling within the jet cones, which increases from about 5 % for N ch≈20, to about 20 % for N ch≈120, according to pythia 6 tune Z2*. In terms of data-MC comparisons, we see that pythia 6 tune Z2* and herwig++ 2.5 describe relatively well the N ch-dependence of the intrajet and leading-particle average p T, whereas pythia 8 tune 4C produces harder mean charged-particle spectra at high multiplicities. The pythia 8 predictions without MPI increase dramatically with N ch, and fail to describe the data. This can be explained by the fact that pythia MPI-off enriches the increasing multiplicity range with events with hard partons only, whereas the other MC models include additional semi-hard parton interactions that soften the final hadron p T spectra.

Fig. 5.

Fig. 5

Mean transverse momentum of leading intrajet charged-particles with p T>0.25 GeV/c versus charged-particle multiplicity (N ch within |η|<2.4) measured in the data (solid line and marker) compared to various MC predictions (non-solid curves and markers). Systematic uncertainties are indicated by error bars which are, most of the time, smaller than the marker size

Charged-particle jet properties

In the previous section, the jet substructure was investigated via the averaged properties of intrajet and leading particles. Now we turn to the description of the multiplicity-dependent properties of the jets themselves. In general, properties of inclusive jet production, when integrated over all multiplicities, are dominated by events with moderately low multiplicities, and are described quite well by QCD MC models [17, 3941]. Here, we concentrate on the N ch-dependence of a subset of jet properties, such as the number of jets per event, the mean transverse momenta of jets, differential jet p T spectra, and jet widths.

Our study is complementary to others based on global event shapes, e.g. from the ALICE experiment [15], which observed an increasing event transverse sphericity as a function of multiplicity in contradiction with the MC predictions. However, the corresponding multiplicities are much lower in the ALICE study than in this analysis because of their smaller rapidity coverage (|η|<0.8). Similar observations have been also recently seen by ATLAS [16], even though earlier CMS and ATLAS results show no serious disagreement with MC event generators [17, 40] as the events were not sorted according to their multiplicity. We show here that the higher sphericity of high-multiplicity events, relative to the pythia predictions, is due to an apparent reduction and softening of the jet yields at high-N ch.

Charged-particle jet production rates

The N ch-dependence of the number of jets per event, with jet transverse momentum \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{\mathrm{T}}^{\text{ch. jet}}>5~\text{GeV/}c$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{\mathrm {T}}^{\text{ch. jet}}>30~\text{GeV/}c$\end{document}, is shown in Figs. 6 and 7, respectively.

Fig. 6.

Fig. 6

Number of charged-particle jets per event for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{\mathrm {T}}^{\text{ch. jet}}>5~\text{GeV/}c$\end{document} and jet axes lying within |η|<1.9 versus charged-particle multiplicity (N ch within |η|<2.4) measured in the data (solid line and marker) compared to various MC predictions (non-solid curves and markers). Systematic uncertainties are indicated by error bars which are, most of the time, smaller than the marker size

Fig. 7.

Fig. 7

Number of charged-particle jets per event for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{\mathrm {T}}^{\text{ch. jet}}> 30~\text{GeV/}c$\end{document} and jet axes lying within |η|<1.9 versus charged-particle multiplicity (N ch within |η|<2.4) measured in the data (solid line and marker) compared to various MC predictions (non-solid curves and markers). Error bars denote the total uncertainties

For the small cutoff of 5 GeV/c the data show an increase from an average of 0.05 jets/event to about 4 jets/event going from the lowest to the highest charged-particle multiplicities. Such results, which confirm the importance of multiple (mini)jet production to explain the high-N ch events, are very well described by pythia 6 tune Z2*, while predictions of pythia 8 tune 4C overestimate the rates at all N ch and herwig++ 2.5 underestimates them for increasing N ch. For the higher 30 GeV/c cutoff, a large disagreement with the data is found in the higher-multiplicity bins (Fig. 7), where both versions of pythia predict a factor of two more jets per event than seen in the data. On the contrary, herwig++ 2.5 predicts a factor of 5 fewer jets per event than experimentally measured. The prediction of pythia 8 without MPI contributions is completely off-scale by factors of 3.5–6 above the data and is not shown in the plots.

The analysis of the N ch-dependence of the mean transverse momentum of charged-particle jets \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\langle p_{\mathrm{T}}^{\text{ch. jet}} \rangle$\end{document} is shown in Fig. 8. The average \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\langle p_{\mathrm{T}}^{\text{ch. jet}} \rangle$\end{document} rises slowly with N ch from about 7.0 to 7.7 GeV/c, indicating a rising contribution from harder scatterings for increasingly “central” pp events. The predictions of pythia 8 tune 4C, pythia 6 tune Z2*, and herwig++ 2.5 are in good agreement with the data at low and intermediate multiplicities. However, the pythia models display an increasingly higher value of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\langle p_{\mathrm{T}}^{\text{ch. jet}} \rangle$\end{document}, i.e. a harder jet contribution, up to 8.4 GeV/c in the highest-multiplicity events.

Fig. 8.

Fig. 8

Mean transverse momentum of charged-particle jets with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{\mathrm{T}} ^{\text{ch. jet}}>5~\text{GeV/}c$\end{document} and jet axes within |η|<1.9) versus charged-particle multiplicity (N ch within |η|<2.4) measured in the data (solid line and marker) compared to various MC predictions (non-solid curves and markers). Error bars denote the total uncertainties

Charged-particle jet spectra

A more detailed picture of the properties of jet spectra both in data and MC simulations is provided by directly comparing the p T-differential distributions in each of the five multiplicity bins shown in Figs. 9, 10, 11, 12, 13. In the first three N ch bins the measured jet p T spectra are reasonably well reproduced by the MC predictions. However, in the two highest-multiplicity bins, 80<N ch≤110 (Fig. 12) and 110<N ch≤140 (Fig. 13), we observe much softer jet spectra for transverse momenta p T>20 GeV/c , where data are lower by a factor of ∼2 with respect to pythia predictions. At the same time, herwig++ 2.5 shows the opposite trend, and predicts softer charged-particle jets than measured in data in all multiplicity bins. The relative “softening” of the measured jet spectra compared to pythia at high-N ch, explains also the higher sphericity of high-multiplicity events observed in Ref. [15].

Fig. 9.

Fig. 9

Inclusive charged-particle jet p T spectrum for events with 10<N ch(|η|<2.4)≤30 measured in the data (solid dots) compared to various MC predictions (empty markers). Error bars denote the total uncertainties

Fig. 10.

Fig. 10

Inclusive charged-particle jet p T spectrum for events with 30<N ch(|η|<2.4)≤50 measured in the data (solid dots) compared to various MC predictions (empty markers). Error bars denote the total uncertainties

Fig. 11.

Fig. 11

Inclusive charged-particle jet p T spectrum for events with 50<N ch(|η|<2.4)≤80 measured in the data (solid dots) compared to various MC predictions (empty markers). Error bars denote the total uncertainties

Fig. 12.

Fig. 12

Inclusive charged-particle jet p T spectrum for events with 80<N ch(|η|<2.4)≤110 measured in the data (solid dots) compared to various MC predictions (empty markers). Error bars denote the total uncertainties

Fig. 13.

Fig. 13

Inclusive charged-particle jet p T spectrum for events with 110<N ch(|η|<2.4)≤140 measured in the data (solid dots) compared to various MC predictions (empty markers). Error bars denote the total uncertainties

Charged-particle jet widths

The jet width provides important information for characterizing the internal jet radiation dynamics. In this analysis, we quantitatively study the jet width through the p T charged-particle density in ring zones with respect to the jet center, defined as:

\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \rho= \biggl\langle \frac{1}{p_{\mathrm{T}}^\text{ch. jet}} \frac {\delta p_{\mathrm{T}} ^\text{ch. particles}}{\delta R} \biggr\rangle _\text{ch. jets}, $$\end{document} 3

where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R = \sqrt{(\phi-\phi_{\text{jet}})^{2}+(\eta-\eta_{\text{jet}})^{2}}$\end{document} is the distance of each charged particle from the jet axis. Larger values of ρ(R) denote a larger transverse momentum fraction in a particular annulus. Jets with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{\mathrm{T}}^{\text{ch. jet}}\geq5~\text{GeV/}c$\end{document} are selected for the study. Data are compared with MC predictions in five multiplicity intervals as shown in Figs. 1418. The dependencies shown in Figs. 1418 indicate that the jet width increases with N ch, which can be partly explained by the larger contribution of the UE to jets when N ch increases and partly by softer, consequently larger-angle, hadronization, which follows from the intrinsic bias introduced by the requirement of very large values of N ch. In low-multiplicity events, jets are narrower than predicted by pythia and herwig, whereas in high-multiplicity events they are of comparable width as predicted by the MC event generators. For events with 10<N ch≤50, the pythia 8 model with MPI switched-off shows jet widths that are close to the ones predicted by the models that include MPI, but it produces too hard jets, which are very collimated, in the bin 50<N ch≤80. The patterns observed in the data show that the models need to be readjusted to reproduce the activity in the innermost ring zone of the jet as a function of event multiplicity.

Fig. 15.

Fig. 15

Normalized charged-particle jet p T density ρ in ring zones as a function of distance to the jet axis R for events with 30<N ch(|η|<2.4)≤50 measured in the data (solid dots) compared to various MC predictions (empty markers). Error bars denote the total uncertainties

Fig. 16.

Fig. 16

Normalized charged-particle jet p T density ρ in ring zones as a function of distance to the jet axis R for events with 50<N ch(|η|<2.4)≤80 measured in the data (solid dots) compared to various MC predictions (empty markers). Error bars denote the total uncertainties

Fig. 17.

Fig. 17

Normalized charged-particle jet p T density ρ in ring zones as a function of distance to the jet axis R for events with 80<N ch(|η|<2.4)≤110 measured in the data (solid dots) compared to various MC predictions (empty markers). Error bars denote the total uncertainties

Fig. 14.

Fig. 14

Normalized charged-particle jet p T density ρ in ring zones as a function of distance to the jet axis R for events with 10<N ch(|η|<2.4)≤30 measured in the data (solid dots) compared to various MC predictions (empty markers). Error bars denote the total uncertainties

Fig. 18.

Fig. 18

Normalized charged-particle jet p T density ρ in ring zones as a function of distance to the jet axis R for events with 110<N ch(|η|<2.4)≤140 measured in the data (solid dots) compared to various MC predictions (empty markers). Error bars denote the total uncertainties

Conclusions

The characteristics of particle production in pp collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt {s}=7\ \mbox{TeV}$\end{document} have been presented as a function of the event charged-particle multiplicity (N ch) by separating the measured charged particles into those belonging to jets and those belonging to the underlying event. Charged particles are measured within the pseudorapidity range |η|<2.4 for transverse momenta p T>0.25 GeV/c and charged-particle jets are reconstructed with p T >5 GeV/c with charged-particle information only. The distributions of jet p T, average p T of UE charged-particles and jets, jet rates, and jet shapes have been studied as functions of N ch and compared to the predictions of the pythia and herwig event generators.

The average trends observed in the data are described by the QCD event generators but the quantitative agreement, in particular at the highest multiplicity, is not as good. The mean transverse momentum of inclusive and UE charged-particles and charged-jets, as well as the charged-jet rates, all rise with N ch as expected for an increased fraction of (harder) multiple parton scatterings in more central pp collisions resulting in increasingly higher multiplicity. On the other hand, the average p T of the intrajet constituents and the leading charged-particle of the jets decrease (logarithmically) with increasing N ch as a result of a selection bias: final states with a larger number of hadrons result from (mini)jets which fragment into more, and thus softer, hadrons. The characteristics of the highest multiplicity pp events result from two seemingly opposite trends: a large number of parton interactions with increasingly harder (mini)jets, combined with an overall softer distribution of final-state hadrons.

The detailed features of the N ch-dependence of the jet and the UE properties differ from the MC predictions. In general, pythia (and in particular pythia 6 tune Z2*) reproduces the data better than herwig for all observables measured. Of special interest is the large difference between the measured jet p T-differential spectra and the simulation predictions for the highest-multiplicity bins, above N ch=80. In these bins jets are softer, and less abundant than predicted by pythia, which explains the observed larger event sphericity compared to predictions [15]. The MC models also fail to fully describe the intrajet spectra. The deviation of simulation predictions from the data for the spectra of the leading intrajet particle is small in comparison to the variation between different models and their tunes, but systematic. In low-multiplicity events, jets are narrower than predicted by pythia and herwig, whereas in high-multiplicity events their widths are as predicted by the MC event generators. At the same time, the characteristics of the UE are well reproduced by most of the MC event generators in all the multiplicity bins considered.

The results obtained in this study are of importance both for improving the MC description of the data and for getting a firmer grasp on the fundamental mechanisms of multi-particle production in hadronic collisions at LHC energies. Current event generators tuned to reproduce the inelastic LHC data cannot describe within a single approach the dependence of various quantities on event multiplicity. This is especially true in the high-multiplicity range, where pythia produces many particles because of increased high-p T jet contribution and herwig++ seems to contain too many soft-parton scatterings. The results of pythia with MPI switched off, demonstrate that the MPI mechanism is critical for reproducing the measured properties of the jets and UE for moderate and large charged-particle multiplicities. Taken together, the MC predictions globally bracket the data and indicate possible ways for improving the parameter tuning and/or including new model ingredients.

Acknowledgements

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation á la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of Czech Republic; the Council of Science and Industrial Research, India; the Compagnia di San Paolo (Torino); the HOMING PLUS programme of Foundation for Polish Science, cofinanced by EU, Regional Development Fund; and the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF.

Open Access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

  • 1.Dokshitzer Yu.L., Khoze V.A., Mueller A.H., Troyan S.I. Basics of Perturbative QCD. Gif sur Yvette: Editions Frontières; 1991. [Google Scholar]
  • 2.Andersson G., et al. Parton fragmentation and string dynamics. Phys. Rep. 1983;97:31. doi: 10.1016/0370-1573(83)90080-7. [DOI] [Google Scholar]
  • 3.Bartalini P., Fanò L., editors. Proceedings of the First International Workshop on Multiple Partonic Interactions (MPI ’08); 2008. [Google Scholar]
  • 4.Shelest V.P., Snigirev A.M., Zinovjev G.M. Gazing into the multiparton distribution equations in QCD. Phys. Lett. B. 1982;113:325. doi: 10.1016/0370-2693(82)90049-1. [DOI] [Google Scholar]
  • 5.Sjöstrand T., van Zijl M. A multiple-interaction model for the event structure in hadron collisions. Phys. Rev. D. 1987;36:2019. doi: 10.1103/PhysRevD.36.2019. [DOI] [PubMed] [Google Scholar]
  • 6.Dremin I.M., Nechitailo V.A. Soft multiple parton interactions as seen in multiplicity distributions at Tevatron and LHC. Phys. Rev. D. 2011;84:034026. doi: 10.1103/PhysRevD.84.034026. [DOI] [Google Scholar]
  • 7.Diehl M., Ostermeier D. Elements of a theory for mutiparton interactions in QCD. J. High Energy Phys. 2012;03:089. doi: 10.1007/JHEP03(2012)089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Blok B., Dokshitzer Yu., Frankfurt L., Strikman M. pQCD physics of multiparton interactions. Eur. Phys. J. C. 2012;72:1963. doi: 10.1140/epjc/s10052-012-1963-8. [DOI] [Google Scholar]
  • 9.Sjöstrand T., Mrenna S., Skands P. PYTHIA 6.4 physics and manual. J. High Energy Phys. 2006;05:026. doi: 10.1088/1126-6708/2006/05/026. [DOI] [Google Scholar]
  • 10.Sjöstrand T., Mrenna S., Skands P. A brief introduction to PYTHIA 8.1. Comput. Phys. Commun. 2008;178:852. doi: 10.1016/j.cpc.2008.01.036. [DOI] [Google Scholar]
  • 11.Bähr M., et al. Herwig++ physics and manual. Eur. Phys. J. C. 2008;58:639. doi: 10.1140/epjc/s10052-008-0798-9. [DOI] [Google Scholar]
  • 12. S. Gieseke et al., Herwig++ 2.5 release note (2011). arXiv:1102.1672
  • 13.CMS Collaboration Charged particle multiplicities in pp interactions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s} = 0.9,\ 2.36\ \text{and}\ 7\ \text{TeV}$\end{document} J. High Energy Phys. 2011;01:079. [Google Scholar]
  • 14.CMS Collaboration Observation of long-range, near-side angular correlations in proton–proton collisions at the LHC. J. High Energy Phys. 2010;09:091. [Google Scholar]
  • 15.ALICE Collaboration Transverse sphericity of primary charged particles in minimum bias proton–proton collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s}=0.9,\ 2.76\ \text{and}\ 7\ \text{TeV}$\end{document} Eur. Phys. J. C. 2012;72:2124. doi: 10.1140/epjc/s10052-012-2124-9. [DOI] [Google Scholar]
  • 16.ATLAS Collaboration Measurement of charged-particle event shape variables in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s} = 7\ \mbox{TeV}$\end{document} proton–proton interactions with the ATLAS detector. Phys. Rev. D. 2013;88:032004. doi: 10.1103/PhysRevD.88.032004. [DOI] [Google Scholar]
  • 17.CMS Collaboration First measurement of hadronic event shapes in pp collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s}=7\ \mbox{TeV}$\end{document} Phys. Lett. B. 2011;699:48. doi: 10.1016/j.physletb.2011.03.060. [DOI] [Google Scholar]
  • 18.UA1 Collaboration A study of the general characteristics of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{p}\bar{\mathrm{p}}$\end{document} collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s} = 0.2\ \mbox{TeV}\ \text{to}\ 0.9\ \text{TeV}$\end{document} Nucl. Phys. B. 1990;335:261. doi: 10.1016/0550-3213(90)90493-W. [DOI] [Google Scholar]
  • 19.CDF Collaboration Soft and hard interactions in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{p}\bar{\mathrm{p}}$\end{document} collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s}= 1800\ \mbox{GeV} \ \mbox{and}\ 630\ \mbox{GeV}$\end{document} Phys. Rev. D. 2002;65:072005. doi: 10.1103/PhysRevD.65.072005. [DOI] [Google Scholar]
  • 20.CDF Collaboration Measurement of particle production and inclusive differential cross sections in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{p}\bar{\mathrm{p}}$\end{document} collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s} = 1.96\ \mbox{TeV}$\end{document} Phys. Rev. D. 2009;79:112005. doi: 10.1103/PhysRevD.79.112005. [DOI] [Google Scholar]
  • 21.ATLAS Collaboration Charged-particle multiplicities in pp interactions measured with the ATLAS detector at the LHC. New J. Phys. 2011;13:053033. doi: 10.1088/1367-2630/13/5/053033. [DOI] [Google Scholar]
  • 22.ALICE Collaboration Transverse momentum spectra of charged particles in proton-proton collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s} = 900~\mbox{GeV}$\end{document} with ALICE at the LHC. Phys. Lett. B. 2010;693:53. doi: 10.1016/j.physletb.2010.08.026. [DOI] [Google Scholar]
  • 23.CMS Collaboration Dependence on pseudorapidity and on centrality of charged hadron production in PbPb collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s_{\mathrm{NN}}}= 2.76\ \mbox{TeV}$\end{document} J. High Energy Phys. 2011;08:141. [Google Scholar]
  • 24.Cacciari M., Salam G.P., Soyez G. The anti-kt jet clustering algorithm. J. High Energy Phys. 2008;04:063. doi: 10.1088/1126-6708/2008/04/063. [DOI] [Google Scholar]
  • 25.Cacciari M., Salam G.P., Soyez G. FastJet user manual. Eur. Phys. J. C. 2012;72:1896. doi: 10.1140/epjc/s10052-012-1896-2. [DOI] [Google Scholar]
  • 26.CMS Collaboration The CMS experiment at the CERN LHC. J. Instrum. 2008;3:S08004. [Google Scholar]
  • 27.Corke R., Sjöstrand T. Interleaved parton showers and tuning prospects. J. High Energy Phys. 2011;03:032. doi: 10.1007/JHEP03(2011)032. [DOI] [Google Scholar]
  • 28. A. Leonidov, On transverse energy production in hadron collisions (2000). arXiv:hep-ph/0005010
  • 29.Skands P.Z., Wicke D. Non-perturbative QCD effects and the top mass at the Tevatron. Eur. Phys. J. C. 2007;52:133. doi: 10.1140/epjc/s10052-007-0352-1. [DOI] [Google Scholar]
  • 30.Buckley A., et al. General-purpose event generators for LHC physics. Phys. Rep. 2011;504:145. doi: 10.1016/j.physrep.2011.03.005. [DOI] [Google Scholar]
  • 31.Field R. Early LHC underlying event data—findings and surprises; Hadron Collider Physics Symposium 2010 (HCP2010); 2010. [Google Scholar]
  • 32.Pumplin J., et al. New generation of parton distributions with uncertainties from global QCD analysis. J. High Energy Phys. 2002;07:012. doi: 10.1088/1126-6708/2002/07/012. [DOI] [Google Scholar]
  • 33.Buckley A., et al. Systematic event generator tuning for the LHC. Eur. Phys. J. C. 2010;65:331. doi: 10.1140/epjc/s10052-009-1196-7. [DOI] [Google Scholar]
  • 34. R.S. Thorne et al., Status of MRST/MSTW PDF sets (2009). arXiv:0907.2387
  • 35.CMS Collaboration CMS tracking performance results from early LHC operation. Eur. Phys. J. C. 2010;70:1165. doi: 10.1140/epjc/s10052-010-1491-3. [DOI] [Google Scholar]
  • 36.CMS Collaboration Track and vertex reconstruction in CMS. Nucl. Instrum. Methods A. 2007;582:781. doi: 10.1016/j.nima.2007.07.091. [DOI] [Google Scholar]
  • 37.D’Agostini G. A multidimensional unfolding method based on Bayes’ theorem. Nucl. Instrum. Methods A. 1995;362:487. doi: 10.1016/0168-9002(95)00274-X. [DOI] [Google Scholar]
  • 38.CMS Collaboration Transverse-momentum and pseudorapidity distributions of charged hadrons in pp collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s}=0.9\ \mbox{and}\ 2.36\ \mbox{TeV}$\end{document} J. High Energy Phys. 2010;02:041. doi: 10.1103/PhysRevLett.105.022002. [DOI] [PubMed] [Google Scholar]
  • 39.CMS Collaboration Shape, transverse size, and charged hadron multiplicity of jets in pp collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s}= 7\ \mbox{TeV}$\end{document} J. High Energy Phys. 2012;06:160. [Google Scholar]
  • 40.ATLAS Collaboration Measurement of event shapes at large momentum transfer with the ATLAS detector in pp collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s}=7 \ \mbox{TeV}$\end{document} Eur. Phys. J. C. 2012;72:2211. doi: 10.1140/epjc/s10052-012-2211-y. [DOI] [Google Scholar]
  • 41.ATLAS Collaboration Study of jet shapes in inclusive jet production in pp collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s}=7~\mbox{TeV}$\end{document} using the ATLAS detector. Phys. Rev. D. 2011;83:052003. doi: 10.1103/PhysRevD.83.052003. [DOI] [Google Scholar]

Articles from The European Physical Journal. C, Particles and Fields are provided here courtesy of Springer

RESOURCES