Skip to main content
Springer logoLink to Springer
. 2013 Mar 2;73(3):2306. doi: 10.1140/epjc/s10052-013-2306-0

Jet energy resolution in proton-proton collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{\mathrm{s}}=7\mbox{ TeV}$\end{document} recorded in 2010 with the ATLAS detector

The ATLAS Collaboration1, G Aad 67, T Abajyan 30, B Abbott 137, J Abdallah 16, S Abdel Khalek 141, A A Abdelalim 68, O Abdinov 15, R Aben 131, B Abi 138, M Abolins 112, O S AbouZeid 197, H Abramowicz 192, H Abreu 172, E Acerbi 113,114, B S Acharya 204,205, L Adamczyk 57, D L Adams 37, T N Addy 77, J Adelman 218, S Adomeit 123, P Adragna 99, T Adye 158, S Aefsky 32, J A Aguilar-Saavedra 153, M Agustoni 22, M Aharrouche 105, S P Ahlen 31, F Ahles 67, A Ahmad 187, M Ahsan 60, G Aielli 163,164, T Akdogan 24, T P A Åkesson 103, G Akimoto 194, A V Akimov 119, M S Alam 2, M A Alam 100, J Albert 211, S Albrand 76, M Aleksa 44, I N Aleksandrov 87, F Alessandria 113, C Alexa 38, G Alexander 192, G Alexandre 68, T Alexopoulos 14, M Alhroob 204,206, M Aliev 21, G Alimonti 113, J Alison 147, B M M Allbrooke 23, P P Allport 97, S E Allwood-Spiers 74, J Almond 106, A Aloisio 127,128, R Alon 214, A Alonso 103, F Alonso 93, B Alvarez Gonzalez 112, M G Alviggi 127,128, K Amako 88, C Amelung 32, V V Ammosov 157, A Amorim 152, N Amram 192, C Anastopoulos 44, L S Ancu 22, N Andari 141, T Andeen 53, C F Anders 80, G Anders 79, K J Anderson 45, A Andreazza 113,114, V Andrei 79, X S Anduaga 93, P Anger 63, A Angerami 53, F Anghinolfi 44, A Anisenkov 133, N Anjos 152, A Annovi 66, A Antonaki 13, M Antonelli 66, A Antonov 121, J Antos 181, F Anulli 161, M Aoki 126, S Aoun 107, L Aperio Bella 9, R Apolle 144, G Arabidze 112, I Aracena 179, Y Arai 88, A T H Arce 64, S Arfaoui 187, J-F Arguin 20, E Arik 24, M Arik 24, A J Armbruster 111, O Arnaez 105, V Arnal 104, C Arnault 141, A Artamonov 120, G Artoni 161,162, D Arutinov 30, S Asai 194, R Asfandiyarov 215, S Ask 42, B Åsman 184,185, L Asquith 10, K Assamagan 37, A Astbury 211, M Atkinson 207, B Aubert 9, E Auge 141, K Augsten 156, M Aurousseau 182, G Avolio 203, R Avramidou 14, D Axen 210, G Azuelos 118, Y Azuma 194, M A Baak 44, G Baccaglioni 113, C Bacci 165,166, A M Bach 20, H Bachacou 172, K Bachas 44, M Backes 68, M Backhaus 30, E Badescu 38, P Bagnaia 161,162, S Bahinipati 3, Y Bai 48, D C Bailey 197, T Bain 197, J T Baines 158, O K Baker 218, M D Baker 37, S Baker 101, E Banas 58, P Banerjee 118, Sw Banerjee 215, D Banfi 44, A Bangert 189, V Bansal 211, H S Bansil 23, L Barak 214, S P Baranov 119, A Barbaro Galtieri 20, T Barber 67, E L Barberio 110, D Barberis 69,70, M Barbero 30, D Y Bardin 87, T Barillari 124, M Barisonzi 217, T Barklow 179, N Barlow 42, B M Barnett 158, R M Barnett 20, A Baroncelli 165, G Barone 68, A J Barr 144, F Barreiro 104, J Barreiro Guimarães da Costa 78, P Barrillon 141, R Bartoldus 179, A E Barton 94, V Bartsch 188, R L Bates 74, L Batkova 180, J R Batley 42, A Battaglia 22, M Battistin 44, F Bauer 172, H S Bawa 179, S Beale 123, T Beau 102, P H Beauchemin 201, R Beccherle 69, P Bechtle 30, H P Beck 22, A K Becker 217, S Becker 123, M Beckingham 174, K H Becks 217, A J Beddall 26, A Beddall 26, S Bedikian 218, V A Bednyakov 87, C P Bee 107, L J Beemster 131, M Begel 37, S Behar Harpaz 191, M Beimforde 124, C Belanger-Champagne 109, P J Bell 68, W H Bell 68, G Bella 192, L Bellagamba 28, F Bellina 44, M Bellomo 44, A Belloni 78, O Beloborodova 133, K Belotskiy 121, O Beltramello 44, O Benary 192, D Benchekroun 167, K Bendtz 184,185, N Benekos 207, Y Benhammou 192, E Benhar Noccioli 68, J A Benitez Garcia 199, D P Benjamin 64, M Benoit 141, J R Bensinger 32, K Benslama 159, S Bentvelsen 131, D Berge 44, E Bergeaas Kuutmann 61, N Berger 9, F Berghaus 211, E Berglund 131, J Beringer 20, P Bernat 101, R Bernhard 67, C Bernius 37, T Berry 100, C Bertella 107, A Bertin 28,29, F Bertolucci 149,150, M I Besana 113,114, G J Besjes 130, N Besson 172, S Bethke 124, W Bhimji 65, R M Bianchi 44, M Bianco 95,96, O Biebel 123, S P Bieniek 101, K Bierwagen 75, J Biesiada 20, M Biglietti 165, H Bilokon 66, M Bindi 28,29, S Binet 141, A Bingul 26, C Bini 161,162, C Biscarat 220, U Bitenc 67, K M Black 31, R E Blair 10, J-B Blanchard 172, G Blanchot 44, T Blazek 180, C Blocker 32, J Blocki 58, A Blondel 68, W Blum 105, U Blumenschein 75, G J Bobbink 131, V B Bobrovnikov 133, S S Bocchetta 103, A Bocci 64, C R Boddy 144, M Boehler 67, J Boek 217, N Boelaert 54, J A Bogaerts 44, A Bogdanchikov 133, A Bogouch 115, C Bohm 184, J Bohm 154, V Boisvert 100, T Bold 57, V Boldea 38, N M Bolnet 172, M Bomben 102, M Bona 99, M Boonekamp 172, C N Booth 175, S Bordoni 102, C Borer 22, A Borisov 157, G Borissov 94, I Borjanovic 17, M Borri 106, S Borroni 111, V Bortolotto 165,166, K Bos 131, D Boscherini 28, M Bosman 16, H Boterenbrood 131, J Bouchami 118, J Boudreau 151, E V Bouhova-Thacker 94, D Boumediene 52, C Bourdarios 141, N Bousson 107, A Boveia 45, J Boyd 44, I R Boyko 87, I Bozovic-Jelisavcic 18, J Bracinik 23, P Branchini 165, A Brandt 12, G Brandt 144, O Brandt 75, U Bratzler 195, B Brau 108, J E Brau 140, H M Braun 217, S F Brazzale 204,206, B Brelier 197, J Bremer 44, K Brendlinger 147, R Brenner 208, S Bressler 214, D Britton 74, F M Brochu 42, I Brock 30, R Brock 112, F Broggi 113, C Bromberg 112, J Bronner 124, G Brooijmans 53, T Brooks 100, W K Brooks 47, G Brown 106, H Brown 12, P A Bruckman de Renstrom 58, D Bruncko 181, R Bruneliere 67, S Brunet 83, A Bruni 28, G Bruni 28, M Bruschi 28, T Buanes 19, Q Buat 76, F Bucci 68, J Buchanan 144, P Buchholz 177, R M Buckingham 144, A G Buckley 65, S I Buda 38, I A Budagov 87, B Budick 134, V Büscher 105, L Bugge 143, O Bulekov 121, A C Bundock 97, M Bunse 62, T Buran 143, H Burckhart 44, S Burdin 97, T Burgess 19, S Burke 158, E Busato 52, P Bussey 74, C P Buszello 208, B Butler 179, J M Butler 31, C M Buttar 74, J M Butterworth 101, W Buttinger 42, M Byszewski 44, S Cabrera Urbán 209, D Caforio 28,29, O Cakir 4, P Calafiura 20, G Calderini 102, P Calfayan 123, R Calkins 132, L P Caloba 33, R Caloi 161,162, D Calvet 52, S Calvet 52, R Camacho Toro 52, P Camarri 163,164, D Cameron 143, L M Caminada 20, S Campana 44, M Campanelli 101, V Canale 127,128, F Canelli 45, A Canepa 198, J Cantero 104, R Cantrill 100, L Capasso 127,128, M D M Capeans Garrido 44, I Caprini 38, M Caprini 38, D Capriotti 124, M Capua 55,56, R Caputo 105, R Cardarelli 163, T Carli 44, G Carlino 127, L Carminati 113,114, B Caron 109, S Caron 130, E Carquin 47, G D Carrillo Montoya 215, A A Carter 99, J R Carter 42, J Carvalho 152, D Casadei 134, M P Casado 16, M Cascella 149,150, C Caso 69,70, A M Castaneda Hernandez 215, E Castaneda-Miranda 215, V Castillo Gimenez 209, N F Castro 152, G Cataldi 95, P Catastini 78, A Catinaccio 44, J R Catmore 44, A Cattai 44, G Cattani 163,164, S Caughron 112, V Cavaliere 207, P Cavalleri 102, D Cavalli 113, M Cavalli-Sforza 16, V Cavasinni 149,150, F Ceradini 165,166, A S Cerqueira 34, A Cerri 44, L Cerrito 99, F Cerutti 66, S A Cetin 25, A Chafaq 167, D Chakraborty 132, I Chalupkova 155, K Chan 3, B Chapleau 109, J D Chapman 42, J W Chapman 111, E Chareyre 102, D G Charlton 23, V Chavda 106, C A Chavez Barajas 44, S Cheatham 109, S Chekanov 10, S V Chekulaev 198, G A Chelkov 87, M A Chelstowska 130, C Chen 86, H Chen 37, S Chen 50, X Chen 215, Y Chen 53, A Cheplakov 87, R Cherkaoui El Moursli 171, V Chernyatin 37, E Cheu 11, S L Cheung 197, L Chevalier 172, G Chiefari 127,128, L Chikovani 71, J T Childers 44, A Chilingarov 94, G Chiodini 95, A S Chisholm 23, R T Chislett 101, A Chitan 38, M V Chizhov 87, G Choudalakis 45, S Chouridou 173, I A Christidi 101, A Christov 67, D Chromek-Burckhart 44, M L Chu 190, J Chudoba 154, G Ciapetti 161,162, A K Ciftci 4, R Ciftci 4, D Cinca 52, V Cindro 98, C Ciocca 28,29, A Ciocio 20, M Cirilli 111, P Cirkovic 18, M Citterio 113, M Ciubancan 38, A Clark 68, P J Clark 65, R N Clarke 20, W Cleland 151, J C Clemens 107, B Clement 76, C Clement 184,185, Y Coadou 107, M Cobal 204,206, A Coccaro 174, J Cochran 86, J G Cogan 179, J Coggeshall 207, E Cogneras 220, J Colas 9, S Cole 132, A P Colijn 131, N J Collins 23, C Collins-Tooth 74, J Collot 76, T Colombo 145,146, G Colon 108, P Conde Muiño 152, E Coniavitis 144, M C Conidi 16, S M Consonni 113,114, V Consorti 67, S Constantinescu 38, C Conta 145,146, G Conti 78, F Conventi 127, M Cooke 20, B D Cooper 101, A M Cooper-Sarkar 144, K Copic 20, T Cornelissen 217, M Corradi 28, F Corriveau 109, A Cortes-Gonzalez 207, G Cortiana 124, G Costa 113, M J Costa 209, D Costanzo 175, T Costin 45, D Côté 44, L Courneyea 211, G Cowan 100, C Cowden 42, B E Cox 106, K Cranmer 134, F Crescioli 149,150, M Cristinziani 30, G Crosetti 55,56, S Crépé-Renaudin 76, C-M Cuciuc 38, C Cuenca Almenar 218, T Cuhadar Donszelmann 175, M Curatolo 66, C J Curtis 23, C Cuthbert 189, P Cwetanski 83, H Czirr 177, P Czodrowski 63, Z Czyczula 218, S D’Auria 74, M D’Onofrio 97, A D’Orazio 161,162, M J Da Cunha Sargedas De Sousa 152, C Da Via 106, W Dabrowski 57, A Dafinca 144, T Dai 111, C Dallapiccola 108, M Dam 54, M Dameri 69,70, D S Damiani 173, H O Danielsson 44, V Dao 68, G Darbo 69, G L Darlea 39, J A Dassoulas 61, W Davey 30, T Davidek 155, N Davidson 110, R Davidson 94, E Davies 144, M Davies 118, O Davignon 102, A R Davison 101, Y Davygora 79, E Dawe 178, I Dawson 175, R K Daya-Ishmukhametova 32, K De 12, R de Asmundis 127, S De Castro 28,29, S De Cecco 102, J de Graat 123, N De Groot 130, P de Jong 131, C De La Taille 141, H De la Torre 104, F De Lorenzi 86, L de Mora 94, L De Nooij 131, D De Pedis 161, A De Salvo 161, U De Sanctis 204,206, A De Santo 188, J B De Vivie De Regie 141, G De Zorzi 161,162, W J Dearnaley 94, R Debbe 37, C Debenedetti 65, B Dechenaux 76, D V Dedovich 87, J Degenhardt 147, C Del Papa 204,206, J Del Peso 104, T Del Prete 149,150, T Delemontex 76, M Deliyergiyev 98, A Dell’Acqua 44, L Dell’Asta 31, M Della Pietra 127, D della Volpe 127,128, M Delmastro 9, P A Delsart 76, C Deluca 131, S Demers 218, M Demichev 87, B Demirkoz 16, J Deng 203, S P Denisov 157, D Derendarz 58, J E Derkaoui 170, F Derue 102, P Dervan 97, K Desch 30, E Devetak 187, P O Deviveiros 131, A Dewhurst 158, B DeWilde 187, S Dhaliwal 197, R Dhullipudi 37, A Di Ciaccio 163,164, L Di Ciaccio 9, A Di Girolamo 44, B Di Girolamo 44, S Di Luise 165,166, A Di Mattia 215, B Di Micco 44, R Di Nardo 66, A Di Simone 163,164, R Di Sipio 28,29, M A Diaz 46, E B Diehl 111, J Dietrich 61, T A Dietzsch 79, S Diglio 110, K Dindar Yagci 59, J Dingfelder 30, F Dinut 38, C Dionisi 161,162, P Dita 38, S Dita 38, F Dittus 44, F Djama 107, T Djobava 72, M A B do Vale 35, A Do Valle Wemans 152, T K O Doan 9, M Dobbs 109, R Dobinson 44, D Dobos 44, E Dobson 44, J Dodd 53, C Doglioni 68, T Doherty 74, Y Doi 88, J Dolejsi 155, I Dolenc 98, Z Dolezal 155, B A Dolgoshein 121, T Dohmae 194, M Donadelli 36, J Donini 52, J Dopke 44, A Doria 127, A Dos Anjos 215, A Dotti 149,150, M T Dova 93, A D Doxiadis 131, A T Doyle 74, M Dris 14, J Dubbert 124, S Dube 20, E Duchovni 214, G Duckeck 123, A Dudarev 44, F Dudziak 86, M Dührssen 44, I P Duerdoth 106, L Duflot 141, M-A Dufour 109, L Duguid 100, M Dunford 44, H Duran Yildiz 4, R Duxfield 175, M Dwuznik 57, F Dydak 44, M Düren 73, J Ebke 123, S Eckweiler 105, K Edmonds 105, W Edson 2, C A Edwards 100, N C Edwards 74, W Ehrenfeld 61, T Eifert 179, G Eigen 19, K Einsweiler 20, E Eisenhandler 99, T Ekelof 208, M El Kacimi 169, M Ellert 208, S Elles 9, F Ellinghaus 105, K Ellis 99, N Ellis 44, J Elmsheuser 123, M Elsing 44, D Emeliyanov 158, R Engelmann 187, A Engl 123, B Epp 84, J Erdmann 75, A Ereditato 22, D Eriksson 184, J Ernst 2, M Ernst 37, J Ernwein 172, D Errede 207, S Errede 207, E Ertel 105, M Escalier 141, H Esch 62, C Escobar 151, X Espinal Curull 16, B Esposito 66, F Etienne 107, A I Etienvre 172, E Etzion 192, D Evangelakou 75, H Evans 83, L Fabbri 28,29, C Fabre 44, R M Fakhrutdinov 157, S Falciano 161, Y Fang 215, M Fanti 113,114, A Farbin 12, A Farilla 165, J Farley 187, T Farooque 197, S Farrell 203, S M Farrington 212, P Farthouat 44, P Fassnacht 44, D Fassouliotis 13, B Fatholahzadeh 197, A Favareto 113,114, L Fayard 141, S Fazio 55,56, R Febbraro 52, P Federic 180, O L Fedin 148, W Fedorko 112, M Fehling-Kaschek 67, L Feligioni 107, D Fellmann 10, C Feng 51, E J Feng 10, A B Fenyuk 157, J Ferencei 181, W Fernando 10, S Ferrag 74, J Ferrando 74, V Ferrara 61, A Ferrari 208, P Ferrari 131, R Ferrari 145, D E Ferreira de Lima 74, A Ferrer 209, D Ferrere 68, C Ferretti 111, A Ferretto Parodi 69,70, M Fiascaris 45, F Fiedler 105, A Filipčič 98, F Filthaut 130, M Fincke-Keeler 211, M C N Fiolhais 152, L Fiorini 209, A Firan 59, G Fischer 61, M J Fisher 135, M Flechl 67, I Fleck 177, J Fleckner 105, P Fleischmann 216, S Fleischmann 217, T Flick 217, A Floderus 103, L R Flores Castillo 215, M J Flowerdew 124, T Fonseca Martin 22, A Formica 172, A Forti 106, D Fortin 198, D Fournier 141, H Fox 94, P Francavilla 16, M Franchini 28,29, S Franchino 145,146, D Francis 44, T Frank 214, S Franz 44, M Fraternali 145,146, S Fratina 147, S T French 42, C Friedrich 61, F Friedrich 63, R Froeschl 44, D Froidevaux 44, J A Frost 42, C Fukunaga 195, E Fullana Torregrosa 44, B G Fulsom 179, J Fuster 209, C Gabaldon 44, O Gabizon 214, T Gadfort 37, S Gadomski 68, G Gagliardi 69,70, P Gagnon 83, C Galea 123, E J Gallas 144, V Gallo 22, B J Gallop 158, P Gallus 154, K K Gan 135, Y S Gao 179, A Gaponenko 20, F Garberson 218, M Garcia-Sciveres 20, C García 209, J E García Navarro 209, R W Gardner 45, N Garelli 44, H Garitaonandia 131, V Garonne 44, C Gatti 66, G Gaudio 145, B Gaur 177, L Gauthier 172, P Gauzzi 161,162, I L Gavrilenko 119, C Gay 210, G Gaycken 30, E N Gazis 14, P Ge 51, Z Gecse 210, C N P Gee 158, D A A Geerts 131, Ch Geich-Gimbel 30, K Gellerstedt 184,185, C Gemme 69, A Gemmell 74, M H Genest 76, S Gentile 161,162, M George 75, S George 100, P Gerlach 217, A Gershon 192, C Geweniger 79, H Ghazlane 168, N Ghodbane 52, B Giacobbe 28, S Giagu 161,162, V Giakoumopoulou 13, V Giangiobbe 16, F Gianotti 44, B Gibbard 37, A Gibson 197, S M Gibson 44, D Gillberg 43, A R Gillman 158, D M Gingrich 3, J Ginzburg 192, N Giokaris 13, M P Giordani 206, R Giordano 127,128, F M Giorgi 21, P Giovannini 124, P F Giraud 172, D Giugni 113, M Giunta 118, P Giusti 28, B K Gjelsten 143, L K Gladilin 122, C Glasman 104, J Glatzer 67, A Glazov 61, K W Glitza 217, G L Glonti 87, J R Goddard 99, J Godfrey 178, J Godlewski 44, M Goebel 61, T Göpfert 63, C Goeringer 105, C Gössling 62, S Goldfarb 111, T Golling 218, A Gomes 152, L S Gomez Fajardo 61, R Gonçalo 100, J Goncalves Pinto Firmino Da Costa 61, L Gonella 30, S Gonzalez 215, S González de la Hoz 209, G Gonzalez Parra 16, M L Gonzalez Silva 41, S Gonzalez-Sevilla 68, J J Goodson 187, L Goossens 44, P A Gorbounov 120, H A Gordon 37, I Gorelov 129, G Gorfine 217, B Gorini 44, E Gorini 95,96, A Gorišek 98, E Gornicki 58, B Gosdzik 61, A T Goshaw 10, M Gosselink 131, M I Gostkin 87, I Gough Eschrich 203, M Gouighri 167, D Goujdami 169, M P Goulette 68, A G Goussiou 174, C Goy 9, S Gozpinar 32, I Grabowska-Bold 57, P Grafström 28,29, K-J Grahn 61, F Grancagnolo 95, S Grancagnolo 21, V Grassi 187, V Gratchev 148, N Grau 53, H M Gray 44, J A Gray 187, E Graziani 165, O G Grebenyuk 148, T Greenshaw 97, Z D Greenwood 37, K Gregersen 54, I M Gregor 61, P Grenier 179, J Griffiths 12, N Grigalashvili 87, A A Grillo 173, S Grinstein 16, Y V Grishkevich 122, J-F Grivaz 141, E Gross 214, J Grosse-Knetter 75, J Groth-Jensen 214, K Grybel 177, D Guest 218, C Guicheney 52, S Guindon 75, U Gul 74, H Guler 109, J Gunther 154, B Guo 197, J Guo 53, P Gutierrez 137, N Guttman 192, O Gutzwiller 215, C Guyot 172, C Gwenlan 144, C B Gwilliam 97, A Haas 179, S Haas 44, C Haber 20, H K Hadavand 59, D R Hadley 23, P Haefner 30, F Hahn 44, S Haider 44, Z Hajduk 58, H Hakobyan 219, D Hall 144, J Haller 75, K Hamacher 217, P Hamal 139, M Hamer 75, A Hamilton 183, S Hamilton 201, L Han 49, K Hanagaki 142, K Hanawa 200, M Hance 20, C Handel 105, P Hanke 79, J R Hansen 54, J B Hansen 54, J D Hansen 54, P H Hansen 54, P Hansson 179, K Hara 200, G A Hare 173, T Harenberg 217, S Harkusha 115, D Harper 111, R D Harrington 65, O M Harris 174, J Hartert 67, F Hartjes 131, T Haruyama 88, A Harvey 77, S Hasegawa 126, Y Hasegawa 176, S Hassani 172, S Haug 22, M Hauschild 44, R Hauser 112, M Havranek 30, C M Hawkes 23, R J Hawkings 44, A D Hawkins 103, D Hawkins 203, T Hayakawa 89, T Hayashi 200, D Hayden 100, C P Hays 144, H S Hayward 97, S J Haywood 158, M He 51, S J Head 23, V Hedberg 103, L Heelan 12, S Heim 112, B Heinemann 20, S Heisterkamp 54, L Helary 31, C Heller 123, M Heller 44, S Hellman 184,185, D Hellmich 30, C Helsens 16, R C W Henderson 94, M Henke 79, A Henrichs 75, A M Henriques Correia 44, S Henrot-Versille 141, C Hensel 75, T Henß 217, C M Hernandez 12, Y Hernández Jiménez 209, R Herrberg 21, G Herten 67, R Hertenberger 123, L Hervas 44, G G Hesketh 101, N P Hessey 131, E Higón-Rodriguez 209, J C Hill 42, K H Hiller 61, S Hillert 30, S J Hillier 23, I Hinchliffe 20, E Hines 147, M Hirose 142, F Hirsch 62, D Hirschbuehl 217, J Hobbs 187, N Hod 192, M C Hodgkinson 175, P Hodgson 175, A Hoecker 44, M R Hoeferkamp 129, J Hoffman 59, D Hoffmann 107, M Hohlfeld 105, M Holder 177, S O Holmgren 184, T Holy 156, J L Holzbauer 112, T M Hong 147, L Hooft van Huysduynen 134, C Horn 179, S Horner 67, J-Y Hostachy 76, S Hou 190, A Hoummada 167, J Howard 144, J Howarth 106, I Hristova 21, J Hrivnac 141, T Hryn’ova 9, P J Hsu 105, S-C Hsu 20, Z Hubacek 156, F Hubaut 107, F Huegging 30, A Huettmann 61, T B Huffman 144, E W Hughes 53, G Hughes 94, M Huhtinen 44, M Hurwitz 20, U Husemann 61, N Huseynov 87, J Huston 112, J Huth 78, G Iacobucci 68, G Iakovidis 14, M Ibbotson 106, I Ibragimov 177, L Iconomidou-Fayard 141, J Idarraga 141, P Iengo 127, O Igonkina 131, Y Ikegami 88, M Ikeno 88, D Iliadis 193, N Ilic 197, T Ince 30, J Inigo-Golfin 44, P Ioannou 13, M Iodice 165, K Iordanidou 13, V Ippolito 161,162, A Irles Quiles 209, C Isaksson 208, M Ishino 90, M Ishitsuka 196, R Ishmukhametov 59, C Issever 144, S Istin 24, A V Ivashin 157, W Iwanski 58, H Iwasaki 88, J M Izen 60, V Izzo 127, B Jackson 147, J N Jackson 97, P Jackson 179, M R Jaekel 44, V Jain 83, K Jakobs 67, S Jakobsen 54, T Jakoubek 154, J Jakubek 156, D K Jana 137, E Jansen 101, H Jansen 44, A Jantsch 124, M Janus 67, G Jarlskog 103, L Jeanty 78, I Jen-La Plante 45, D Jennens 110, P Jenni 44, A E Loevschall-Jensen 54, P Jež 54, S Jézéquel 9, M K Jha 28, H Ji 215, W Ji 105, J Jia 187, Y Jiang 49, M Jimenez Belenguer 61, S Jin 48, O Jinnouchi 196, M D Joergensen 54, D Joffe 59, M Johansen 184,185, K E Johansson 184, P Johansson 175, S Johnert 61, K A Johns 11, K Jon-And 184,185, G Jones 212, R W L Jones 94, T J Jones 97, C Joram 44, P M Jorge 152, K D Joshi 106, J Jovicevic 186, T Jovin 18, X Ju 215, C A Jung 62, R M Jungst 44, V Juranek 154, P Jussel 84, A Juste Rozas 16, S Kabana 22, M Kaci 209, A Kaczmarska 58, P Kadlecik 54, M Kado 141, H Kagan 135, M Kagan 78, E Kajomovitz 191, S Kalinin 217, L V Kalinovskaya 87, S Kama 59, N Kanaya 194, M Kaneda 44, S Kaneti 42, T Kanno 196, V A Kantserov 121, J Kanzaki 88, B Kaplan 218, A Kapliy 45, J Kaplon 44, D Kar 74, M Karagounis 30, K Karakostas 14, M Karnevskiy 61, V Kartvelishvili 94, A N Karyukhin 157, L Kashif 215, G Kasieczka 80, R D Kass 135, A Kastanas 19, M Kataoka 9, Y Kataoka 194, E Katsoufis 14, J Katzy 61, V Kaushik 11, K Kawagoe 92, T Kawamoto 194, G Kawamura 105, M S Kayl 131, S Kazama 194, V A Kazanin 133, M Y Kazarinov 87, R Keeler 211, R Kehoe 59, M Keil 75, G D Kekelidze 87, J S Keller 174, M Kenyon 74, O Kepka 154, N Kerschen 44, B P Kerševan 98, S Kersten 217, K Kessoku 194, J Keung 197, F Khalil-zada 15, H Khandanyan 207, A Khanov 138, D Kharchenko 87, A Khodinov 121, A Khomich 79, T J Khoo 42, G Khoriauli 30, A Khoroshilov 217, V Khovanskiy 120, E Khramov 87, J Khubua 72, H Kim 184,185, S H Kim 200, N Kimura 213, O Kind 21, B T King 97, M King 89, R S B King 144, J Kirk 158, A E Kiryunin 124, T Kishimoto 89, D Kisielewska 57, T Kitamura 89, T Kittelmann 151, E Kladiva 181, M Klein 97, U Klein 97, K Kleinknecht 105, M Klemetti 109, A Klier 214, P Klimek 184,185, A Klimentov 37, R Klingenberg 62, J A Klinger 106, E B Klinkby 54, T Klioutchnikova 44, P F Klok 130, S Klous 131, E-E Kluge 79, T Kluge 97, P Kluit 131, S Kluth 124, N S Knecht 197, E Kneringer 84, E B F G Knoops 107, A Knue 75, B R Ko 64, T Kobayashi 194, M Kobel 63, M Kocian 179, P Kodys 155, K Köneke 44, A C König 130, S Koenig 105, L Köpke 105, F Koetsveld 130, P Koevesarki 30, T Koffas 43, E Koffeman 131, L A Kogan 144, S Kohlmann 217, F Kohn 75, Z Kohout 156, T Kohriki 88, T Koi 179, G M Kolachev 133, H Kolanoski 21, V Kolesnikov 87, I Koletsou 113, J Koll 112, M Kollefrath 67, A A Komar 119, Y Komori 194, T Kondo 88, T Kono 61, A I Kononov 67, R Konoplich 134, N Konstantinidis 101, S Koperny 57, K Korcyl 58, K Kordas 193, A Korn 144, A Korol 133, I Korolkov 16, E V Korolkova 175, V A Korotkov 157, O Kortner 124, S Kortner 124, V V Kostyukhin 30, S Kotov 124, V M Kotov 87, A Kotwal 64, C Kourkoumelis 13, V Kouskoura 193, A Koutsman 198, R Kowalewski 211, T Z Kowalski 57, W Kozanecki 172, A S Kozhin 157, V Kral 156, V A Kramarenko 122, G Kramberger 98, M W Krasny 102, A Krasznahorkay 134, J K Kraus 30, S Kreiss 134, F Krejci 156, J Kretzschmar 97, N Krieger 75, P Krieger 197, K Kroeninger 75, H Kroha 124, J Kroll 147, J Kroseberg 30, J Krstic 17, U Kruchonak 87, H Krüger 30, T Kruker 22, N Krumnack 86, Z V Krumshteyn 87, T Kubota 110, S Kuday 4, S Kuehn 67, A Kugel 81, T Kuhl 61, D Kuhn 84, V Kukhtin 87, Y Kulchitsky 115, S Kuleshov 47, C Kummer 123, M Kuna 102, J Kunkle 147, A Kupco 154, H Kurashige 89, M Kurata 200, Y A Kurochkin 115, V Kus 154, E S Kuwertz 186, M Kuze 196, J Kvita 178, R Kwee 21, A La Rosa 68, L La Rotonda 55,56, L Labarga 104, J Labbe 9, S Lablak 167, C Lacasta 209, F Lacava 161,162, H Lacker 21, D Lacour 102, V R Lacuesta 209, E Ladygin 87, R Lafaye 9, B Laforge 102, T Lagouri 104, S Lai 67, E Laisne 76, M Lamanna 44, L Lambourne 101, C L Lampen 11, W Lampl 11, E Lancon 172, U Landgraf 67, M P J Landon 99, J L Lane 106, V S Lang 79, C Lange 61, A J Lankford 203, F Lanni 37, K Lantzsch 217, S Laplace 102, C Lapoire 30, J F Laporte 172, T Lari 113, A Larner 144, M Lassnig 44, P Laurelli 66, V Lavorini 55,56, W Lavrijsen 20, P Laycock 97, O Le Dortz 102, E Le Guirriec 107, C Le Maner 197, E Le Menedeu 16, T LeCompte 10, F Ledroit-Guillon 76, H Lee 131, J S H Lee 142, S C Lee 190, L Lee 218, M Lefebvre 211, M Legendre 172, F Legger 123, C Leggett 20, M Lehmacher 30, G Lehmann Miotto 44, X Lei 11, M A L Leite 36, R Leitner 155, D Lellouch 214, B Lemmer 75, V Lendermann 79, K J C Leney 183, T Lenz 131, G Lenzen 217, B Lenzi 44, K Leonhardt 63, S Leontsinis 14, F Lepold 79, C Leroy 118, J-R Lessard 211, C G Lester 42, C M Lester 147, J Levêque 9, D Levin 111, L J Levinson 214, A Lewis 144, G H Lewis 134, A M Leyko 30, M Leyton 21, B Li 107, H Li 215, S Li 49, X Li 111, Z Liang 144, H Liao 52, B Liberti 163, P Lichard 44, M Lichtnecker 123, K Lie 207, W Liebig 19, C Limbach 30, A Limosani 110, M Limper 85, S C Lin 190, F Linde 131, J T Linnemann 112, E Lipeles 147, A Lipniacka 19, T M Liss 207, D Lissauer 37, A Lister 68, A M Litke 173, C Liu 43, D Liu 190, H Liu 111, J B Liu 111, L Liu 111, M Liu 49, Y Liu 49, M Livan 145,146, S S A Livermore 144, A Lleres 76, J Llorente Merino 104, S L Lloyd 99, E Lobodzinska 61, P Loch 11, W S Lockman 173, T Loddenkoetter 30, F K Loebinger 106, A Loginov 218, C W Loh 210, T Lohse 21, K Lohwasser 67, M Lokajicek 154, V P Lombardo 9, R E Long 94, L Lopes 152, D Lopez Mateos 78, J Lorenz 123, N Lorenzo Martinez 141, M Losada 202, P Loscutoff 20, F Lo Sterzo 161,162, M J Losty 198, X Lou 60, A Lounis 141, K F Loureiro 202, J Love 31, P A Love 94, A J Lowe 179, F Lu 48, H J Lubatti 174, C Luci 161,162, A Lucotte 76, A Ludwig 63, D Ludwig 61, I Ludwig 67, J Ludwig 67, F Luehring 83, G Luijckx 131, W Lukas 84, D Lumb 67, L Luminari 161, E Lund 143, B Lund-Jensen 186, B Lundberg 103, J Lundberg 184,185, O Lundberg 184,185, J Lundquist 54, M Lungwitz 105, D Lynn 37, E Lytken 103, H Ma 37, L L Ma 215, G Maccarrone 66, A Macchiolo 124, B Maček 98, J Machado Miguens 152, R Mackeprang 54, R J Madaras 20, H J Maddocks 94, W F Mader 63, R Maenner 81, T Maeno 37, P Mättig 217, S Mättig 61, L Magnoni 44, E Magradze 75, K Mahboubi 67, S Mahmoud 97, G Mahout 23, C Maiani 172, C Maidantchik 33, A Maio 152, S Majewski 37, Y Makida 88, N Makovec 141, P Mal 172, B Malaescu 44, Pa Malecki 58, P Malecki 58, V P Maleev 148, F Malek 76, U Mallik 85, D Malon 10, C Malone 179, S Maltezos 14, V Malyshev 133, S Malyukov 44, R Mameghani 123, J Mamuzic 18, A Manabe 88, L Mandelli 113, I Mandić 98, R Mandrysch 21, J Maneira 152, P S Mangeard 112, L Manhaes de Andrade Filho 34, J A Manjarres Ramos 172, A Mann 75, P M Manning 173, A Manousakis-Katsikakis 13, B Mansoulie 172, A Mapelli 44, L Mapelli 44, L March 104, J F Marchand 43, F Marchese 163,164, G Marchiori 102, M Marcisovsky 154, C P Marino 211, F Marroquim 33, Z Marshall 44, F K Martens 197, L F Marti 22, S Marti-Garcia 209, B Martin 44, B Martin 112, J P Martin 118, T A Martin 23, V J Martin 65, B Martin dit Latour 68, S Martin-Haugh 188, M Martinez 16, V Martinez Outschoorn 78, A C Martyniuk 211, M Marx 106, F Marzano 161, A Marzin 137, L Masetti 105, T Mashimo 194, R Mashinistov 119, J Masik 106, A L Maslennikov 133, I Massa 28,29, G Massaro 131, N Massol 9, P Mastrandrea 187, A Mastroberardino 55,56, T Masubuchi 194, P Matricon 141, H Matsunaga 194, T Matsushita 89, C Mattravers 144, J Maurer 107, S J Maxfield 97, A Mayne 175, R Mazini 190, M Mazur 30, L Mazzaferro 163,164, M Mazzanti 113, S P Mc Kee 111, A McCarn 207, R L McCarthy 187, T G McCarthy 43, N A McCubbin 158, K W McFarlane 77, J A Mcfayden 175, G Mchedlidze 72, T Mclaughlan 23, S J McMahon 158, R A McPherson 211, A Meade 108, J Mechnich 131, M Mechtel 217, M Medinnis 61, R Meera-Lebbai 137, T Meguro 142, R Mehdiyev 118, S Mehlhase 54, A Mehta 97, K Meier 79, B Meirose 103, C Melachrinos 45, B R Mellado Garcia 215, F Meloni 113,114, L Mendoza Navas 202, Z Meng 190, A Mengarelli 28,29, S Menke 124, E Meoni 201, K M Mercurio 78, P Mermod 68, L Merola 127,128, C Meroni 113, F S Merritt 45, H Merritt 135, A Messina 44, J Metcalfe 37, A S Mete 203, C Meyer 105, C Meyer 45, J-P Meyer 172, J Meyer 216, J Meyer 75, T C Meyer 44, J Miao 51, S Michal 44, L Micu 38, R P Middleton 158, S Migas 97, L Mijović 172, G Mikenberg 214, M Mikestikova 154, M Mikuž 98, D W Miller 45, R J Miller 112, W J Mills 210, C Mills 78, A Milov 214, D A Milstead 184,185, D Milstein 214, A A Minaenko 157, M Miñano Moya 209, I A Minashvili 87, A I Mincer 134, B Mindur 57, M Mineev 87, Y Ming 215, L M Mir 16, G Mirabelli 161, J Mitrevski 173, V A Mitsou 209, S Mitsui 88, P S Miyagawa 175, J U Mjörnmark 103, T Moa 184,185, V Moeller 42, K Mönig 61, N Möser 30, S Mohapatra 187, W Mohr 67, R Moles-Valls 209, J Monk 101, E Monnier 107, J Montejo Berlingen 16, F Monticelli 93, S Monzani 28,29, R W Moore 3, G F Moorhead 110, C Mora Herrera 68, A Moraes 74, N Morange 172, J Morel 75, G Morello 55,56, D Moreno 105, M Moreno Llácer 209, P Morettini 69, M Morgenstern 63, M Morii 78, A K Morley 44, G Mornacchi 44, J D Morris 99, L Morvaj 126, H G Moser 124, M Mosidze 72, J Moss 135, R Mount 179, E Mountricha 14, S V Mouraviev 119, E J W Moyse 108, F Mueller 79, J Mueller 151, K Mueller 30, T A Müller 123, T Mueller 105, D Muenstermann 44, Y Munwes 192, W J Murray 158, I Mussche 131, E Musto 127,128, A G Myagkov 157, M Myska 154, J Nadal 16, K Nagai 200, R Nagai 196, K Nagano 88, A Nagarkar 135, Y Nagasaka 82, M Nagel 124, A M Nairz 44, Y Nakahama 44, K Nakamura 194, T Nakamura 194, I Nakano 136, G Nanava 30, A Napier 201, R Narayan 80, M Nash 101, T Nattermann 30, T Naumann 61, G Navarro 202, H A Neal 111, P Yu Nechaeva 119, T J Neep 106, A Negri 145,146, G Negri 44, M Negrini 28, S Nektarijevic 68, A Nelson 203, T K Nelson 179, S Nemecek 154, P Nemethy 134, A A Nepomuceno 33, M Nessi 44, M S Neubauer 207, M Neumann 217, A Neusiedl 105, R M Neves 134, P Nevski 37, P R Newman 23, V Nguyen Thi Hong 172, R B Nickerson 144, R Nicolaidou 172, B Nicquevert 44, F Niedercorn 141, J Nielsen 173, N Nikiforou 53, A Nikiforov 21, V Nikolaenko 157, I Nikolic-Audit 102, K Nikolics 68, K Nikolopoulos 23, H Nilsen 67, P Nilsson 12, Y Ninomiya 194, A Nisati 161, R Nisius 124, T Nobe 196, L Nodulman 10, M Nomachi 142, I Nomidis 193, S Norberg 137, M Nordberg 44, P R Norton 158, J Novakova 155, M Nozaki 88, L Nozka 139, I M Nugent 198, A-E Nuncio-Quiroz 30, G Nunes Hanninger 110, T Nunnemann 123, E Nurse 101, B J O’Brien 65, S W O’Neale 23, D C O’Neil 178, V O’Shea 74, L B Oakes 123, F G Oakham 43, H Oberlack 124, J Ocariz 102, A Ochi 89, S Oda 92, S Odaka 88, J Odier 107, H Ogren 83, A Oh 106, S H Oh 64, C C Ohm 44, T Ohshima 126, H Okawa 37, Y Okumura 45, T Okuyama 194, A Olariu 38, A G Olchevski 87, S A Olivares Pino 46, M Oliveira 152, D Oliveira Damazio 37, E Oliver Garcia 209, D Olivito 147, A Olszewski 58, J Olszowska 58, A Onofre 152, P U E Onyisi 45, C J Oram 198, M J Oreglia 45, Y Oren 192, D Orestano 165,166, N Orlando 95,96, I Orlov 133, C Oropeza Barrera 74, R S Orr 197, B Osculati 69,70, R Ospanov 147, C Osuna 16, G Otero y Garzon 41, J P Ottersbach 131, M Ouchrif 170, E A Ouellette 211, F Ould-Saada 143, A Ouraou 172, Q Ouyang 48, A Ovcharova 20, M Owen 106, S Owen 175, V E Ozcan 24, N Ozturk 12, A Pacheco Pages 16, C Padilla Aranda 16, S Pagan Griso 20, E Paganis 175, C Pahl 124, F Paige 37, P Pais 108, K Pajchel 143, G Palacino 199, C P Paleari 11, S Palestini 44, D Pallin 52, A Palma 152, J D Palmer 23, Y B Pan 215, E Panagiotopoulou 14, P Pani 131, N Panikashvili 111, S Panitkin 37, D Pantea 38, A Papadelis 184, Th D Papadopoulou 14, A Paramonov 10, D Paredes Hernandez 52, W Park 37, M A Parker 42, F Parodi 69,70, J A Parsons 53, U Parzefall 67, S Pashapour 75, E Pasqualucci 161, S Passaggio 69, A Passeri 165, F Pastore 165,166, Fr Pastore 100, G Pásztor 68, S Pataraia 217, N Patel 189, J R Pater 106, S Patricelli 127,128, T Pauly 44, M Pecsy 180, S Pedraza Lopez 209, M I Pedraza Morales 215, S V Peleganchuk 133, D Pelikan 208, H Peng 49, B Penning 45, A Penson 53, J Penwell 83, M Perantoni 33, K Perez 53, T Perez Cavalcanti 61, E Perez Codina 198, M T Pérez García-Estañ 209, V Perez Reale 53, L Perini 113,114, H Pernegger 44, R Perrino 95, P Perrodo 9, V D Peshekhonov 87, K Peters 44, B A Petersen 44, J Petersen 44, T C Petersen 54, E Petit 9, A Petridis 193, C Petridou 193, E Petrolo 161, F Petrucci 165,166, D Petschull 61, M Petteni 178, R Pezoa 47, A Phan 110, P W Phillips 158, G Piacquadio 44, A Picazio 68, E Piccaro 99, M Piccinini 28,29, S M Piec 61, R Piegaia 41, D T Pignotti 135, J E Pilcher 45, A D Pilkington 106, J Pina 152, M Pinamonti 204,206, A Pinder 144, J L Pinfold 3, B Pinto 152, C Pizio 113,114, M Plamondon 211, M-A Pleier 37, E Plotnikova 87, A Poblaguev 37, S Poddar 79, F Podlyski 52, L Poggioli 141, M Pohl 68, G Polesello 145, A Policicchio 55,56, A Polini 28, J Poll 99, V Polychronakos 37, D Pomeroy 32, K Pommès 44, L Pontecorvo 161, B G Pope 112, G A Popeneciu 38, D S Popovic 17, A Poppleton 44, X Portell Bueso 44, G E Pospelov 124, S Pospisil 156, I N Potrap 124, C J Potter 188, C T Potter 140, G Poulard 44, J Poveda 83, V Pozdnyakov 87, R Prabhu 101, P Pralavorio 107, A Pranko 20, S Prasad 44, R Pravahan 37, S Prell 86, K Pretzl 22, D Price 83, J Price 97, L E Price 10, D Prieur 151, M Primavera 95, K Prokofiev 134, F Prokoshin 47, S Protopopescu 37, J Proudfoot 10, X Prudent 63, M Przybycien 57, H Przysiezniak 9, S Psoroulas 30, E Ptacek 140, E Pueschel 108, J Purdham 111, M Purohit 37, P Puzo 141, Y Pylypchenko 85, J Qian 111, A Quadt 75, D R Quarrie 20, W B Quayle 215, F Quinonez 46, M Raas 130, V Radescu 61, P Radloff 140, T Rador 24, F Ragusa 113,114, G Rahal 220, A M Rahimi 135, D Rahm 37, S Rajagopalan 37, M Rammensee 67, M Rammes 177, A S Randle-Conde 59, K Randrianarivony 43, F Rauscher 123, T C Rave 67, M Raymond 44, A L Read 143, D M Rebuzzi 145,146, A Redelbach 216, G Redlinger 37, R Reece 147, K Reeves 60, E Reinherz-Aronis 192, A Reinsch 140, H Reisin 41, I Reisinger 62, C Rembser 44, Z L Ren 190, A Renaud 141, M Rescigno 161, S Resconi 113, B Resende 172, P Reznicek 123, R Rezvani 197, R Richter 124, E Richter-Was 9, M Ridel 102, M Rijpstra 131, M Rijssenbeek 187, A Rimoldi 145,146, L Rinaldi 28, R R Rios 59, I Riu 16, G Rivoltella 113,114, F Rizatdinova 138, E Rizvi 99, S H Robertson 109, A Robichaud-Veronneau 144, D Robinson 42, J E M Robinson 106, A Robson 74, J G Rocha de Lima 132, C Roda 149,150, D Roda Dos Santos 44, A Roe 75, S Roe 44, O Røhne 143, S Rolli 201, A Romaniouk 121, M Romano 28,29, G Romeo 41, E Romero Adam 209, L Roos 102, E Ros 209, S Rosati 161, K Rosbach 68, A Rose 188, M Rose 100, G A Rosenbaum 197, E I Rosenberg 86, P L Rosendahl 19, O Rosenthal 177, L Rosselet 68, V Rossetti 16, E Rossi 161,162, L P Rossi 69, M Rotaru 38, I Roth 214, J Rothberg 174, D Rousseau 141, C R Royon 172, A Rozanov 107, Y Rozen 191, X Ruan 48, F Rubbo 16, I Rubinskiy 61, N Ruckstuhl 131, V I Rud 122, C Rudolph 63, G Rudolph 84, F Rühr 11, A Ruiz-Martinez 86, L Rumyantsev 87, Z Rurikova 67, N A Rusakovich 87, J P Rutherfoord 11, C Ruwiedel 20, P Ruzicka 154, Y F Ryabov 148, M Rybar 155, G Rybkin 141, N C Ryder 144, A F Saavedra 189, S Sacerdoti 41, I Sadeh 192, H F-W Sadrozinski 173, R Sadykov 87, F Safai Tehrani 161, H Sakamoto 194, G Salamanna 99, A Salamon 163, M Saleem 137, D Salek 44, D Salihagic 124, A Salnikov 179, J Salt 209, B M Salvachua Ferrando 10, D Salvatore 55,56, F Salvatore 188, A Salvucci 130, A Salzburger 44, D Sampsonidis 193, B H Samset 143, A Sanchez 127,128, V Sanchez Martinez 209, H Sandaker 19, H G Sander 105, M P Sanders 123, M Sandhoff 217, T Sandoval 42, C Sandoval 202, R Sandstroem 124, D P C Sankey 158, A Sansoni 66, C Santamarina Rios 109, C Santoni 52, R Santonico 163,164, H Santos 152, J G Saraiva 152, T Sarangi 215, E Sarkisyan-Grinbaum 12, F Sarri 149,150, G Sartisohn 217, O Sasaki 88, Y Sasaki 194, N Sasao 90, I Satsounkevitch 115, G Sauvage 9, E Sauvan 9, J B Sauvan 141, P Savard 197, V Savinov 151, D O Savu 44, L Sawyer 37, D H Saxon 74, J Saxon 147, C Sbarra 28, A Sbrizzi 28,29, D A Scannicchio 203, M Scarcella 189, J Schaarschmidt 141, P Schacht 124, D Schaefer 147, U Schäfer 105, S Schaepe 30, S Schaetzel 80, A C Schaffer 141, D Schaile 123, R D Schamberger 187, A G Schamov 133, V Scharf 79, V A Schegelsky 148, D Scheirich 111, M Schernau 203, M I Scherzer 53, C Schiavi 69,70, J Schieck 123, M Schioppa 55,56, S Schlenker 44, E Schmidt 67, K Schmieden 30, C Schmitt 105, S Schmitt 80, M Schmitz 30, B Schneider 22, U Schnoor 63, A Schoening 80, A L S Schorlemmer 75, M Schott 44, D Schouten 198, J Schovancova 154, M Schram 109, C Schroeder 105, N Schroer 81, M J Schultens 30, J Schultes 217, H-C Schultz-Coulon 79, H Schulz 21, M Schumacher 67, B A Schumm 173, Ph Schune 172, C Schwanenberger 106, A Schwartzman 179, Ph Schwemling 102, R Schwienhorst 112, R Schwierz 63, J Schwindling 172, T Schwindt 30, M Schwoerer 9, G Sciolla 32, W G Scott 158, J Searcy 140, G Sedov 61, E Sedykh 148, S C Seidel 129, A Seiden 173, F Seifert 63, J M Seixas 33, G Sekhniaidze 127, S J Sekula 59, K E Selbach 65, D M Seliverstov 148, B Sellden 184, G Sellers 97, M Seman 181, N Semprini-Cesari 28,29, C Serfon 123, L Serin 141, L Serkin 75, R Seuster 124, H Severini 137, A Sfyrla 44, E Shabalina 75, M Shamim 140, L Y Shan 48, J T Shank 31, Q T Shao 110, M Shapiro 20, P B Shatalov 120, K Shaw 204,206, D Sherman 218, P Sherwood 101, A Shibata 134, S Shimizu 44, M Shimojima 125, T Shin 77, M Shiyakova 87, A Shmeleva 119, M J Shochet 45, D Short 144, S Shrestha 86, E Shulga 121, M A Shupe 11, P Sicho 154, A Sidoti 161, F Siegert 67, Dj Sijacki 17, O Silbert 214, J Silva 152, Y Silver 192, D Silverstein 179, S B Silverstein 184, V Simak 156, O Simard 172, Lj Simic 17, S Simion 141, E Simioni 105, B Simmons 101, R Simoniello 113,114, M Simonyan 54, P Sinervo 197, N B Sinev 140, V Sipica 177, G Siragusa 216, A Sircar 37, A N Sisakyan 87, S Yu Sivoklokov 122, J Sjölin 184,185, T B Sjursen 19, L A Skinnari 20, H P Skottowe 78, K Skovpen 133, P Skubic 137, M Slater 23, T Slavicek 156, K Sliwa 201, V Smakhtin 214, B H Smart 65, S Yu Smirnov 121, Y Smirnov 121, L N Smirnova 122, O Smirnova 103, B C Smith 78, D Smith 179, K M Smith 74, M Smizanska 94, K Smolek 156, A A Snesarev 119, S W Snow 106, J Snow 137, S Snyder 37, R Sobie 211, J Sodomka 156, A Soffer 192, C A Solans 209, M Solar 156, J Solc 156, E Yu Soldatov 121, U Soldevila 209, E Solfaroli Camillocci 161,162, A A Solodkov 157, O V Solovyanov 157, V Solovyev 148, N Soni 110, V Sopko 156, B Sopko 156, M Sosebee 12, R Soualah 204,206, A Soukharev 133, S Spagnolo 95,96, F Spanò 100, R Spighi 28, G Spigo 44, R Spiwoks 44, M Spousta 155, T Spreitzer 197, B Spurlock 12, R D St Denis 74, J Stahlman 147, R Stamen 79, E Stanecka 58, R W Stanek 10, C Stanescu 165, M Stanescu-Bellu 61, S Stapnes 143, E A Starchenko 157, J Stark 76, P Staroba 154, P Starovoitov 61, R Staszewski 58, A Staude 123, P Stavina 180, G Steele 74, P Steinbach 63, P Steinberg 37, I Stekl 156, B Stelzer 178, H J Stelzer 112, O Stelzer-Chilton 198, H Stenzel 73, S Stern 124, G A Stewart 44, J A Stillings 30, M C Stockton 109, K Stoerig 67, G Stoicea 38, S Stonjek 124, P Strachota 155, A R Stradling 12, A Straessner 63, J Strandberg 186, S Strandberg 184,185, A Strandlie 143, M Strang 135, E Strauss 179, M Strauss 137, P Strizenec 181, R Ströhmer 216, D M Strom 140, J A Strong 100, R Stroynowski 59, J Strube 158, B Stugu 19, I Stumer 37, J Stupak 187, P Sturm 217, N A Styles 61, D A Soh 190, D Su 179, HS Subramania 3, A Succurro 16, Y Sugaya 142, C Suhr 132, M Suk 155, V V Sulin 119, S Sultansoy 7, T Sumida 90, X Sun 76, J E Sundermann 67, K Suruliz 175, G Susinno 55,56, M R Sutton 188, Y Suzuki 88, Y Suzuki 89, M Svatos 154, S Swedish 210, I Sykora 180, T Sykora 155, J Sánchez 209, D Ta 131, K Tackmann 61, A Taffard 203, R Tafirout 198, N Taiblum 192, Y Takahashi 126, H Takai 37, R Takashima 91, H Takeda 89, T Takeshita 176, Y Takubo 88, M Talby 107, A Talyshev 133, M C Tamsett 37, J Tanaka 194, R Tanaka 141, S Tanaka 160, S Tanaka 88, A J Tanasijczuk 178, K Tani 89, N Tannoury 107, S Tapprogge 105, D Tardif 197, S Tarem 191, F Tarrade 43, G F Tartarelli 113, P Tas 155, M Tasevsky 154, E Tassi 55,56, M Tatarkhanov 20, Y Tayalati 170, C Taylor 101, F E Taylor 117, G N Taylor 110, W Taylor 199, M Teinturier 141, M Teixeira Dias Castanheira 99, P Teixeira-Dias 100, K K Temming 67, H Ten Kate 44, P K Teng 190, S Terada 88, K Terashi 194, J Terron 104, M Testa 66, R J Teuscher 197, J Therhaag 30, T Theveneaux-Pelzer 102, S Thoma 67, J P Thomas 23, E N Thompson 53, P D Thompson 23, P D Thompson 197, A S Thompson 74, L A Thomsen 54, E Thomson 147, M Thomson 42, W M Thong 110, R P Thun 111, F Tian 53, M J Tibbetts 20, T Tic 154, V O Tikhomirov 119, Y A Tikhonov 133, S Timoshenko 121, P Tipton 218, S Tisserant 107, T Todorov 9, S Todorova-Nova 201, B Toggerson 203, J Tojo 92, S Tokár 180, K Tokushuku 88, K Tollefson 112, M Tomoto 126, L Tompkins 45, K Toms 129, A Tonoyan 19, C Topfel 22, N D Topilin 87, I Torchiani 44, E Torrence 140, H Torres 102, E Torró Pastor 209, J Toth 107, F Touchard 107, D R Tovey 175, T Trefzger 216, L Tremblet 44, A Tricoli 44, I M Trigger 198, S Trincaz-Duvoid 102, M F Tripiana 93, N Triplett 37, W Trischuk 197, B Trocmé 76, C Troncon 113, M Trottier-McDonald 178, M Trzebinski 58, A Trzupek 58, C Tsarouchas 44, J C-L Tseng 144, M Tsiakiris 131, P V Tsiareshka 115, D Tsionou 9, G Tsipolitis 14, S Tsiskaridze 16, V Tsiskaridze 67, E G Tskhadadze 71, I I Tsukerman 120, V Tsulaia 20, J-W Tsung 30, S Tsuno 88, D Tsybychev 187, A Tua 175, A Tudorache 38, V Tudorache 38, J M Tuggle 45, M Turala 58, D Turecek 156, I Turk Cakir 8, E Turlay 131, R Turra 113,114, P M Tuts 53, A Tykhonov 98, M Tylmad 184,185, M Tyndel 158, G Tzanakos 13, K Uchida 30, I Ueda 194, R Ueno 43, M Ugland 19, M Uhlenbrock 30, M Uhrmacher 75, F Ukegawa 200, G Unal 44, A Undrus 37, G Unel 203, Y Unno 88, D Urbaniec 53, G Usai 12, M Uslenghi 145,146, L Vacavant 107, V Vacek 156, B Vachon 109, S Vahsen 20, J Valenta 154, S Valentinetti 28,29, A Valero 209, S Valkar 155, E Valladolid Gallego 209, S Vallecorsa 191, J A Valls Ferrer 209, P C Van Der Deijl 131, R van der Geer 131, H van der Graaf 131, R Van Der Leeuw 131, E van der Poel 131, D van der Ster 44, N van Eldik 44, P van Gemmeren 10, I van Vulpen 131, M Vanadia 124, W Vandelli 44, A Vaniachine 10, P Vankov 61, F Vannucci 102, R Vari 161, T Varol 108, D Varouchas 20, A Vartapetian 12, K E Varvell 189, V I Vassilakopoulos 77, F Vazeille 52, T Vazquez Schroeder 75, G Vegni 113,114, J J Veillet 141, F Veloso 152, R Veness 44, S Veneziano 161, A Ventura 95,96, D Ventura 108, M Venturi 67, N Venturi 197, V Vercesi 145, M Verducci 174, W Verkerke 131, J C Vermeulen 131, A Vest 63, M C Vetterli 178, I Vichou 207, T Vickey 183, O E Vickey Boeriu 183, G H A Viehhauser 144, S Viel 210, M Villa 28,29, M Villaplana Perez 209, E Vilucchi 66, M G Vincter 43, E Vinek 44, V B Vinogradov 87, M Virchaux 172, J Virzi 20, O Vitells 214, M Viti 61, I Vivarelli 67, F Vives Vaque 3, S Vlachos 14, D Vladoiu 123, M Vlasak 156, A Vogel 30, P Vokac 156, G Volpi 66, M Volpi 110, G Volpini 113, H von der Schmitt 124, H von Radziewski 67, E von Toerne 30, V Vorobel 155, V Vorwerk 16, M Vos 209, R Voss 44, T T Voss 217, J H Vossebeld 97, N Vranjes 172, M Vranjes Milosavljevic 131, V Vrba 154, M Vreeswijk 131, T Vu Anh 67, R Vuillermet 44, I Vukotic 45, W Wagner 217, P Wagner 147, H Wahlen 217, S Wahrmund 63, J Wakabayashi 126, S Walch 111, J Walder 94, R Walker 123, W Walkowiak 177, R Wall 218, P Waller 97, B Walsh 218, C Wang 64, H Wang 215, H Wang 49, J Wang 190, J Wang 76, R Wang 129, S M Wang 190, T Wang 30, A Warburton 109, C P Ward 42, M Warsinsky 67, A Washbrook 65, C Wasicki 61, I Watanabe 89, P M Watkins 23, A T Watson 23, I J Watson 189, M F Watson 23, G Watts 174, S Watts 106, A T Waugh 189, B M Waugh 101, M S Weber 22, P Weber 75, A R Weidberg 144, P Weigell 124, J Weingarten 75, C Weiser 67, H Wellenstein 32, P S Wells 44, T Wenaus 37, D Wendland 21, Z Weng 190, T Wengler 44, S Wenig 44, N Wermes 30, M Werner 67, P Werner 44, M Werth 203, M Wessels 79, J Wetter 201, C Weydert 76, K Whalen 43, S J Wheeler-Ellis 203, A White 12, M J White 110, S White 149,150, S R Whitehead 144, D Whiteson 203, D Whittington 83, F Wicek 141, D Wicke 217, F J Wickens 158, W Wiedenmann 215, M Wielers 158, P Wienemann 30, C Wiglesworth 99, L A M Wiik-Fuchs 67, P A Wijeratne 101, A Wildauer 124, M A Wildt 61, I Wilhelm 155, H G Wilkens 44, J Z Will 123, E Williams 53, H H Williams 147, W Willis 53, S Willocq 108, J A Wilson 23, M G Wilson 179, A Wilson 111, I Wingerter-Seez 9, S Winkelmann 67, F Winklmeier 44, M Wittgen 179, S J Wollstadt 105, M W Wolter 58, H Wolters 152, W C Wong 60, G Wooden 111, B K Wosiek 58, J Wotschack 44, M J Woudstra 106, K W Wozniak 58, K Wraight 74, M Wright 74, B Wrona 97, S L Wu 215, X Wu 68, Y Wu 49, E Wulf 53, B M Wynne 65, S Xella 54, M Xiao 172, S Xie 67, C Xu 49, D Xu 175, B Yabsley 189, S Yacoob 183, M Yamada 88, H Yamaguchi 194, A Yamamoto 88, K Yamamoto 86, S Yamamoto 194, T Yamamura 194, T Yamanaka 194, J Yamaoka 64, T Yamazaki 194, Y Yamazaki 89, Z Yan 31, H Yang 111, U K Yang 106, Y Yang 83, Z Yang 184,185, S Yanush 116, L Yao 48, Y Yao 20, Y Yasu 88, G V Ybeles Smit 159, J Ye 59, S Ye 37, M Yilmaz 6, R Yoosoofmiya 151, K Yorita 213, R Yoshida 10, C Young 179, C J Young 144, S Youssef 31, D Yu 37, J Yu 12, J Yu 138, L Yuan 89, A Yurkewicz 132, B Zabinski 58, R Zaidan 85, A M Zaitsev 157, Z Zajacova 44, L Zanello 161,162, A Zaytsev 133, C Zeitnitz 217, M Zeman 154, A Zemla 58, C Zendler 30, O Zenin 157, T Ženiš 180, Z Zinonos 149,150, S Zenz 20, D Zerwas 141, G Zevi della Porta 78, Z Zhan 51, D Zhang 49, H Zhang 112, J Zhang 10, X Zhang 51, Z Zhang 141, L Zhao 134, T Zhao 174, Z Zhao 49, A Zhemchugov 87, J Zhong 144, B Zhou 111, N Zhou 203, Y Zhou 190, C G Zhu 51, H Zhu 61, J Zhu 111, Y Zhu 49, X Zhuang 123, V Zhuravlov 124, D Zieminska 83, N I Zimin 87, R Zimmermann 30, S Zimmermann 30, S Zimmermann 67, M Ziolkowski 177, R Zitoun 9, L Živković 53, V V Zmouchko 157, G Zobernig 215, A Zoccoli 28,29, M zur Nedden 21, V Zutshi 132, L Zwalinski 44
PMCID: PMC4371084  PMID: 25814854

Abstract

The measurement of the jet energy resolution is presented using data recorded with the ATLAS detector in proton-proton collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s}=7\mbox{ TeV}$\end{document}. The sample corresponds to an integrated luminosity of 35 pb−1. Jets are reconstructed from energy deposits measured by the calorimeters and calibrated using different jet calibration schemes. The jet energy resolution is measured with two different in situ methods which are found to be in agreement within uncertainties. The total uncertainties on these measurements range from 20 % to 10 % for jets within |y|<2.8 and with transverse momenta increasing from 30 GeV to 500 GeV. Overall, the Monte Carlo simulation of the jet energy resolution agrees with the data within 10 %.

Introduction

Precise knowledge of the jet energy resolution is of key importance for the measurement of the cross-sections of inclusive jets, dijets, multijets or vector bosons accompanied by jets [14], top-quark cross-sections and mass measurements [5], and searches involving resonances decaying to jets [6, 7]. The jet energy resolution also has a direct impact on the determination of the missing transverse energy, which plays an important role in many searches for new physics with jets in the final state [8, 9]. This article presents the determination with the ATLAS detector [10, 11] of the jet energy resolution in proton-proton collisions at a centre-of-mass energy of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s}=7\mbox{ TeV}$\end{document}. The data sample was collected during 2010 and corresponds to 35 pb−1 of integrated luminosity delivered by the Large Hadron Collider (LHC) [12] at CERN.

The jet energy resolution is determined by exploiting the transverse momentum balance in events containing jets with large transverse momenta (p T). This article is structured as follows: Sect. 2 describes the ATLAS detector. Sections 34 and 5 respectively introduce the Monte Carlo simulation, the event and jet selection criteria, and the jet calibration methods. The two techniques to estimate the jet energy resolution from calorimeter observables, the dijet balance method [13] and the bisector method [14], are discussed respectively in Sects. 6 and 7. These methods rely on somewhat different assumptions, which can be validated in data and are sensitive to different sources of systematic uncertainty. As such, the use of these two independent in situ measurements of the jet energy resolution is important to validate the Monte Carlo simulation. Section 8 presents the results obtained for data and simulation for the default jet energy calibration scheme implemented in ATLAS. Section 9 compares the resolutions obtained by applying the two in situ methods to the Monte Carlo simulation and the resolutions determined by comparing the jet energy at calorimeter and particle level. This comparison will be referred to as a closure test. Sources of systematic uncertainty on the jet energy resolution estimated using the available Monte Carlo simulations and collision data are discussed in Sect. 10. The results for other jet energy calibration schemes are discussed in Sects. 11 and 12, and the conclusions can be found in Sect. 13.

The ATLAS detector

The ATLAS detector is a multi-purpose detector designed to observe particles produced in high energy proton-proton collisions. A detailed description can be found in Refs. [10, 11]. The Inner (tracking) Detector has complete azimuthal coverage and spans the pseudorapidity region |η|<2.5.1 The Inner Detector consists of layers of silicon pixel, silicon microstrip and transition radiation tracking detectors. These sub-detectors are surrounded by a superconducting solenoid that produces a uniform 2 T axial magnetic field.

The calorimeter system is composed of several sub-detectors. A high-granularity liquid-argon (LAr) electromagnetic sampling calorimeter covers the |η|<3.2 range, and it is split into a barrel (|η|<1.475) and two end-caps (1.375<|η|<3.2). Lead absorber plates are used over its full coverage. The hadronic calorimetry in the barrel is provided by a sampling calorimeter using steel as the absorber material and scintillating tiles as active material in the range |η|<1.7. This tile hadronic calorimeter (Tilecal) is separated into a large barrel (|η|<0.8) and two smaller extended barrel cylinders, one on either side of the central barrel. In the end-caps, copper/LAr technology is used for the hadronic end-cap calorimeters (HEC), covering the range 1.5<|η|<3.2. The copper-tungsten/LAr forward calorimeters (FCal) provide both electromagnetic and hadronic energy measurements, extending the coverage to |η|=4.9.

The trigger system consists of a hardware-based Level 1 (L1) and a two-tier, software-based High Level Trigger (HLT). The L1 jet trigger uses a sliding window algorithm with coarse-granularity calorimeter towers. This is then refined using jets reconstructed from calorimeter cells in the HLT.

Monte Carlo simulation

Event generators

Data are compared to Monte Carlo (MC) simulations of jets with large transverse momentum produced via strong interactions described by Quantum Chromodynamics (QCD) in proton-proton collisions at a centre-of-mass energy of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s}$\end{document} = 7 TeV. The jet energy resolution is derived for several simulation models in order to study its dependence on the event generator, on the parton showering and hadronisation models, and on tunes of other soft model parameters, such as those of the underlying event. The event generators used for this analysis are described below.

  1. Pythia 6.4 MC10 tune: The event generator Pythia [15] simulates non-diffractive proton-proton collisions using a 2→2 matrix element at the leading order (LO) of the strong coupling constant to model the hard sub-process, and uses p T-ordered parton showers to model additional radiation in the leading-logarithm approximation [16]. Multiple parton interactions [17], as well as fragmentation and hadronization based on the Lund string model [18] are also simulated. The parton distribution function (PDF) set used is the modified leading-order MRST LO* set [19]. The parameters used to describe multiple parton interactions are denoted as the ATLAS MC10 tune [20]. This generator and tune are chosen as the baseline for the jet energy resolution studies.

  2. The Pythia Perugia2010 tune is an independent tune of Pythia to hadron collider data with increased final-state radiation to better reproduce the jet and hadronic event shapes observed in LEP and Tevatron data [21]. Parameters sensitive to the production of particles with strangeness and related to jet fragmentation have also been adjusted. It is the tune favoured by ATLAS jet shape measurements [22].

  3. The Pythia PARP90 modification is an independent systematic variation of Pythia. The variation has been carried out by changing the PARP(90) parameter that controls the energy dependence of the cut-off, deciding whether the events are generated with the matrix element and parton-shower approach, or the soft underlying event [23].

  4. Pythia8 [24] is based on the event generator Pythia and contains several modelling improvements, such as fully interleaved p T-ordered evolution of multiparton interactions and initial- and final-state radiation, and a richer mix of underlying-event processes.

  5. The Herwig++ generator [2528] uses a leading order 2→2 matrix element with angular-ordered parton showers in the leading-logarithm approximation. Hadronization is performed in the cluster model [29]. The underlying event and soft inclusive interactions use hard and soft multiple partonic interaction models [30]. The MRST LO* PDFs [19] are used.

  6. Alpgen is a tree-level matrix element generator for hard multi-parton processes (2→n) in hadronic collisions [31]. It is interfaced to Herwig to produce parton showers in leading-logarithm approximation, which are matched to the matrix element partons with the MLM matching scheme [32]. Herwig is used for hadronization and Jimmy [33] is used to model soft multiple parton interactions. The LO CTEQ6L1 PDFs [34] are used.

Simulation of the ATLAS detector

Detector simulation is performed with the ATLAS simulation framework [35] based on Geant4 [36], which includes a detailed description of the geometry and the material of the detector. The set of processes that describe hadronic interactions in the Geant4 detector simulation are outlined in Refs. [37, 38]. The energy deposited by particles in the active detector material is converted into detector signals to mimic the detector read-out. Finally, the Monte Carlo generated events are processed through the trigger simulation of the experiment and are reconstructed and analysed with the same software that is used for data.

Simulated pile-up samples

The nominal MC simulation does not include additional proton-proton interactions (pile-up). In order to study its effect on the jet energy resolution, two additional MC samples are used. The first one simulates additional proton-proton interactions in the same bunch crossing (in-time pile-up) while the second sample in addition simulates effects on calorimeter cell energies from close-by bunches (out-of-time pile-up). The average number of interactions per event is 1.7 (1.9) for the in-time (in-time plus out-of-time) pile-up samples, which is a good representation of the 2010 data.

Event and jet selection

The status of each sub-detector and trigger, as well as reconstructed physics objects in ATLAS is continuously assessed by inspection of a standard set of distributions, and data-quality flags are recorded in a database for each luminosity block (of about two minutes of data-taking). This analysis selects events satisfying data-quality criteria for the Inner Detector and the calorimeters, and for track, jet, and missing transverse energy reconstruction [39].

For each event, the reconstructed primary vertex position is required to be consistent with the beamspot, both transversely and longitudinally, and to be reconstructed from at least five tracks with transverse momentum \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{\mathrm{T}} ^{\mathrm{track}} > 150~\mbox{MeV}$\end{document} associated with it. The primary vertex is defined as the one with the highest associated sum of squared track transverse momenta \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varSigma( p_{\mathrm{T}} ^{\mathrm{track}})^{2}$\end{document}, where the sum runs over all tracks used in the vertex fit. Events are selected by requiring a specific OR combination of inclusive single-jet and dijet calorimeter-based triggers [40, 41]. The combinations are chosen such that the trigger efficiency for each p T bin is greater than 99 %. For the lowest p T bin (30–40 GeV), this requirement is relaxed, allowing the lowest-threshold calorimeter inclusive single-jet trigger to be used with an efficiency above 95 %.

Jets are reconstructed with the anti-k t jet algorithm [42] using the FastJet software [43] with radius parameters R=0.4 or R=0.6, a four-momentum recombination scheme, and three-dimensional calorimeter topological clusters [44] as inputs. Topological clusters are built from calorimeter cells with a signal at least four times higher than the root-mean-square (RMS) of the noise distribution (seed cells). Cells neighbouring the seed which have a signal to RMS-noise ratio ≥2 are then iteratively added. Finally, all nearest neighbour cells are added to the cluster without any threshold.

Jets from non-collision backgrounds (e.g. beam-gas events) and instrumental noise are removed using the selection criteria outlined in Ref. [39].

Jets are categorized according to their reconstructed rapidity in four different regions to account for the differently instrumented parts of the calorimeter:

  • Central region (|y|<0.8).

  • Extended Tile Barrel (0.8≤|y|<1.2).

  • Transition region (1.2≤|y|<2.1).

  • End-Cap region (2.1≤|y|<2.8).

Events are selected only if the transverse momenta of the two leading jets are above a jet reconstruction threshold of 7 GeV at the electromagnetic scale (see Sect. 5) and within |y|≤2.8, at least one of them being in the central region. The analysis is restricted to |y|≤2.8 because of the limited number of jets at higher rapidities.

Monte Carlo simulated “particle jets” are defined as those built using the same jet algorithm as described above, but using instead as inputs the stable particles from the event generator (with a lifetime longer than 10 ps), excluding muons and neutrinos.

Jet energy calibration

Calorimeter jets are reconstructed from calorimeter energy deposits measured at the electromagnetic scale (EM-scale), the baseline signal scale for the energy deposited by electromagnetic showers in the calorimeter. Their transverse momentum is referred to as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{\mathrm{T}} ^{\text{EM-scale}}$\end{document}. For hadrons this leads to a jet energy measurement that is typically 15–55 % lower than the true energy, due mainly to the non-compensating nature of the ATLAS calorimeter [45]. Fluctuations of the hadronic shower, in particular of its electromagnetic content, as well as energy losses in the dead material lead to a degraded resolution and jet energy response compared to particles interacting only electromagnetically. The jet response is defined as the ratio of calorimeter jet p T and particle jet p T (see Sect. 4), reconstructed with the same algorithm, and matched in ηϕ space (see Sect. 9). Several complementary jet calibration schemes with different levels of complexity and different sensitivity to systematic effects have been developed to understand the jet energy measurements. The jet calibration is performed by applying corrections derived from Monte Carlo simulations to restore the jet response to unity. This is referred to as determining the jet energy scale (JES).

The analysis presented in this article aims to determine the jet energy resolution for jets reconstructed using various JES strategies. A simple calibration, referred to as the EM+JES calibration scheme, has been chosen for the first physics analysis of the 2010 data [39]. It allows a direct evaluation of the systematic uncertainties from single-hadron response measurements and is therefore suitable for first physics analyses. More sophisticated calibration techniques to improve the jet resolution and reduce partonic flavour response differences have also been developed. They are the Local Cluster Weighting (LCW), the Global Cell Weighting (GCW) and the Global Sequential (GS) methods [39]. In addition to these calorimeter calibration schemes, a Track-Based Jet Correction (TBJC) has been derived to adjust the response and reduce fluctuations on a jet-by-jet basis without changing the average jet energy scale. These calibration techniques are briefly described below.

The EM+JES calibration

For the analysis of the first proton-proton collisions, a simple Monte Carlo simulation-based correction is applied as the default to restore the hadronic energy scale on average. The EM+JES calibration scheme applies corrections as a function of the jet transverse momentum and pseudorapidity to jets reconstructed at the electromagnetic scale. The main advantage of this approach is that it allows the most direct evaluation of the systematic uncertainties. The uncertainty on the absolute jet energy scale was determined to be less than ±2.5 % in the central calorimeter region (|y|<0.8) and ±14 % in the most forward region (3.2≤|y|<4.5) for jets with p T>30 GeV [39]. These uncertainties were evaluated using test-beam results, single hadron response in situ measurements, comparison with jets built from tracks, p T balance in dijet and γ+jet events, estimations of pile-up energy deposits, and detailed Monte Carlo comparisons.

The Local Cluster Weighting (LCW) calibration

The LCW calibration scheme uses properties of clusters to calibrate them individually prior to jet finding and reconstruction. The calibration weights are determined from Monte Carlo simulations of charged and neutral pions according to the cluster topology measured in the calorimeter. The cluster properties used are the energy density in the cells forming them, the fraction of their energy deposited in the different calorimeter layers, the cluster isolation and its depth in the calorimeter. Corrections are applied to the cluster energy to account for the energy deposited in the calorimeter but outside of clusters and energy deposited in material before and in between the calorimeters. Jets are formed from calibrated clusters. A final jet-level energy correction based on the same procedure as for the EM+JES case is applied to attain unity response, but with corrections that are numerically smaller. The resulting jet energy calibration is denoted as LCW+JES.

The Global Cell Weighting (GCW) calibration

The GCW calibration scheme attempts to compensate for the different calorimeter response to hadronic and electromagnetic energy deposits at cell level. The hadronic signal is characterized by low cell energy densities and, thus, a positive weight is applied. The weights, which depend on the cell energy density and the calorimeter layer only, are determined by minimizing the jet resolution evaluated by comparing reconstructed and particle jets in Monte Carlo simulation. They correct for several effects at once (calorimeter non-compensation, dead material, etc.). A jet-level correction is applied to jets reconstructed from weighted cells to account for global effects. The resulting jet energy calibration is denoted as GCW+JES.

The Global Sequential (GS) calibration

The GS calibration scheme uses the longitudinal and transverse structure of the jet calorimeter shower to compensate for fluctuations in the jet energy measurement. In this scheme the jet energy response is first calibrated with the EM+JES calibration. Subsequently, the jet properties are used to exploit the topology of the energy deposits in the calorimeter to characterize fluctuations in the hadronic shower development. These corrections are applied such that the mean jet energy is left unchanged, and each correction is applied sequentially. This calibration is designed to improve the jet energy resolution without changing the average jet energy scale.

Track-based correction to the jet calibration

Regardless of the inputs, algorithms and calibration methods chosen for calorimeter jets, more information on the jet topology can be obtained from reconstructed tracks associated to the jet. Calibrated jets have an average energy response close to unity. However, the energy of an individual jet can be over- or underestimated depending on several factors, for example: the ratio of the electromagnetic and hadronic components of the jet; the fraction of energy lost in dead material, in either the inner detector, the solenoid, the cryostat before the LAr, or the cryostat between the LAr and the TileCal. The reconstructed tracks associated to the jet are sensitive to some of these effects and therefore can be used to correct the calibration on a jet-by-jet basis.

In the method referred to as Track-Based Jet Correction (TBJC) [45], the response is adjusted depending on the number of tracks associated with the jet. The jet energy response is observed to decrease with increasing track multiplicity of the jets, mainly because the ratio of the electromagnetic to the hadronic component decreases on average as the number of tracks increases. In effect, a low charged-track multiplicity typically indicates a predominance of neutral hadrons, in particular π 0s which yield electromagnetic deposits in the calorimeter with R≃1. A large number of charged particles, on the contrary, signals a more dominant hadronic component, with a lower response due to the non-compensating nature of the calorimeter (h/e<1). The TBJC method is designed to be applied as an option in addition to any JES calibration scheme, since it does not change the average response, to reduce the jet-to-jet energy fluctuations and improve the resolution.

In situ jet resolution measurement using the dijet balance method

Two methods are used in dijet events to measure in situ the fractional jet p T resolution, σ(p T)/p T, which at fixed rapidity is equivalent to the fractional jet energy resolution, σ(E)/E. The first method, presented in this section, relies on the approximate scalar balance between the transverse momenta of the two leading jets and measures the sensitivity of this balance to the presence of extra jets directly from data. The second one, presented in the next section, uses the projection of the vector sum of the leading jets’ transverse momenta on the coordinate system bisector of the azimuthal angle between the transverse momentum vectors of the two jets. It takes advantage of the very different sensitivities of each of these projections to the underlying physics of the dijet system and to the jet energy resolution.

Measurement of resolution from asymmetry

The dijet balance method for the determination of the jet p T resolution is based on momentum conservation in the transverse plane. The asymmetry between the transverse momenta of the two leading jets A(p T,1,p T,2) is defined as

\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ A(p_{{\mathrm{T}},1},p_{{\mathrm{T}},2}) \equiv\frac{p_{{\mathrm{T}},1}-p_{{\mathrm{T}},2}}{p_{{\mathrm{T}} ,1}+p_{{\mathrm{T}},2}}, $$\end{document} 1

where p T,1 and p T,2 refer to the randomly ordered transverse momenta of the two leading jets. The width σ(A) of a Gauss distribution fitted to A(p T,1,p T,2) is used to characterize the asymmetry distribution and determine the jet p T resolutions.

For events with exactly two particle jets that satisfy the hypothesis of momentum balance in the transverse plane, and requiring both jets to be in the same rapidity region, the relation between σ(A) and the fractional jet resolution is given by

\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sigma(A) \simeq\frac{\sqrt{{\sigma^2(p_{{\mathrm{T}},1}) + \sigma^2(p_{{\mathrm{T}} ,2})}}}{\langle p_{{\mathrm{T}},1} + p_{{\mathrm{T}},2} \rangle} \simeq \frac{1}{\sqrt{2}} \frac{\sigma( p_{\mathrm {T}} )}{ p_{\mathrm{T}} }, $$\end{document} 2

where σ(p T,1)=σ(p T,2)=σ(p T), since both jets are in the same y region.

If one of the two leading jets (j) is in the rapidity bin being probed and the other one (i) in a reference y region where the resolution may be different, the fractional jet p T resolution is given by

\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{\sigma(p_{\mathrm{T}})}{p_{\mathrm{T}}} {\bigg\vert}_{(j)} = \sqrt{4\sigma^{2}(A_{(i,j)}) - 2\sigma^{2}(A_{(i)})} , $$\end{document} 3

where A (i,j) is measured in a topology with the two jets in different rapidity regions and where (i)≡(i,i) denotes both jets in the same y region.

The back-to-back requirement is approximated by an azimuthal angle cut between the leading jets, Δϕ(j 1,j 2)≥2.8, and a veto on the third jet momentum, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p^{\text{EM-scale}}_{{\mathrm{T}},3} < 10~\text{GeV}$\end{document}, with no rapidity restriction. The resulting asymmetry distribution is shown in Fig. 1 for a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\bar{p}_{\mathrm{T}}\equiv(p_{{\mathrm {T}},1} + p_{{\mathrm{T}},2})/2$\end{document} bin of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$60~\text{GeV}\le\bar{p}_{\mathrm{T}}<80~\text{GeV}$\end{document}, in the central region (|y|<0.8). Reasonable agreement in the bulk is observed between data and Monte Carlo simulation.

Fig. 1.

Fig. 1

Asymmetry distribution as defined in Eq. (1) for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$60\le\bar{p}_{\mathrm{T}}<80~\mbox{GeV}$\end{document} and |y|<0.8. Data (points with error bars) and Monte Carlo simulation (histogram with shaded error bands) are overlaid, together with a Gaussian function fit to the data. The lower panel shows the ratio between data and MC simulation. The errors shown are only statistical

Soft radiation correction

Although requirements on the azimuthal angle between the leading jets and on the third jet transverse momentum are designed to enrich the purity of the back-to-back jet sample, it is important to account for the presence of additional soft particle jets not detected in the calorimeter.

In order to estimate the value of the asymmetry for a pure particle dijet event, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sigma( p_{\mathrm{T}} )/ p_{\mathrm{T}} \equiv\sqrt{2}\, \sigma(A)$\end{document} is recomputed allowing for the presence of an additional third jet in the sample for a series of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{{\mathrm{T}},3}^{\text{EM-scale}}$\end{document} threshold values up to 20 GeV. The cut on the third jet is placed at the EM-scale to be independent of calibration effects and to have a stable reference for all calibration schemes. For each p T bin, the jet energy resolutions obtained with the different \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{{\mathrm{T}} ,3}^{\text{EM-scale}}$\end{document} cuts are fitted with a straight line and extrapolated to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{{\mathrm{T}},3}^{\text{EM-scale}}\rightarrow0$\end{document}, in order to estimate the expected resolution for an ideal dijet topology

\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{\sigma(p_{\mathrm{T}})}{p_{\mathrm{T}}}\bigg|_{p_{{\mathrm{T}},3}^{\text{EM-scale}} \rightarrow 0}. $$\end{document}

The dependence of the jet p T resolution on the presence of a third jet is illustrated in Fig. 2. The linear fits and their extrapolations for a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\bar{p}_{\mathrm{T}}$\end{document} bin of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$60 \le\bar{p}_{\mathrm{T}}<80~\mbox{GeV}$\end{document} are shown. Note that the resolutions become systematically broader as the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{{\mathrm{T}},3}^{\text{EM-scale}}$\end{document} cut increases. This is a clear indication that the jet resolution determined from two-jet topologies depends on the presence of additional radiation and on the underlying event.

Fig. 2.

Fig. 2

Fractional jet p T resolutions, from Eq. (2), measured in events with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$60 \le\bar{p}_{\mathrm{T}} <80~\mbox{GeV}$\end{document} and with third jet with p T less than \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{{\mathrm{T}},3}^{\text{EM-scale}}$\end{document}, as a function of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{{\mathrm{T}},3}^{\text{EM-scale}}$\end{document}, for data (squares) and Monte Carlo simulation (circles). The solid lines correspond to linear fits while the dashed lines show the extrapolations to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{{\mathrm{T}},3}^{\text{EM-scale}}= 0$\end{document}. The lower panel shows the ratio between data and MC simulation. The errors shown are only statistical

A soft radiation (SR) correction factor, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$K_{\mathrm{soft}}(\bar {p}_{\mathrm{T}} )$\end{document}, is obtained from the ratio of the values of the linear fit at 0 GeV and at 10 GeV:

\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ K_{\mathrm{soft}}(\bar{p}_{\mathrm{T}}) = \frac{\frac{\sigma( p_{\mathrm{T}} )}{ p_{\mathrm{T}} }|_{p_{{\mathrm{T}},3}^{\text{EM-scale}} \longrightarrow 0~\text{GeV}}}{ \frac{\sigma( p_{\mathrm{T}} )}{ p_{\mathrm{T}} }|_{p_{{\mathrm{T}},3}^{\text{EM-scale}}=10~\text{GeV}}} . $$\end{document} 4

This multiplicative correction is applied to the resolutions extracted from the dijet asymmetry for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p^{\text{EM-scale}}_{{\mathrm{T}},3}<10~\mbox{GeV}$\end{document} events. The correction varies from 25 % for events with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\bar{p}_{\mathrm{T}}$\end{document} of 50 GeV down to 5 % for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\bar{p}_{\mathrm{T}}$\end{document} of 400 GeV. In order to limit the statistical fluctuations, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$K_{\mathrm{soft}}(\bar{p}_{\mathrm{T}})$\end{document} is fit with a parameterization of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$K_{\mathrm{soft}}(\bar{p}_{\mathrm{T}}) = a + b/ (\log\bar {p}_{\mathrm{T}})^{2}$\end{document}, which was found to describe the distribution well, within uncertainties. The differences in the resolution due to other parameterizations of K were studied and treated as a systematic uncertainty, resulting in a relative uncertainty of about 6 % (see Sect. 10).

Particle balance correction

The p T difference between the two calorimeter jets is not solely due to resolution effects, but also to the balance between the respective particle jets,

graphic file with name 10052_2013_2306_Equb_HTML.gif

The measured difference (left side) is decomposed into resolution fluctuations (the first two terms on the right side) plus a particle-level balance (PB) term that originates from out-of-jet showering in the particle jets. In order to correct for this contribution, the particle-level balance is estimated using the same technique (asymmetry plus soft radiation correction) as for calorimeter jets. The contribution of the dijet PB after the SR correction is subtracted in quadrature from the in situ resolution for both data and Monte Carlo simulation. The result of this procedure is shown for simulated events in the central region in Fig. 3. The relative size of the particle-level balance correction with respect to the measured resolutions is of the order of 5 %.

Fig. 3.

Fig. 3

Fractional jet resolution obtained in simulation using the dijet balance method, shown as a function of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\bar{p}_{\mathrm{T}}$\end{document}, both before (circles) and after the particle-balance (PB) correction (triangles). Also shown is the dijet PB correction itself (squares) and, in the lower panel, its relative size with respect to the fractional jet resolution. The curves correspond to fits with the functional form in Eq. (9). The errors shown are only statistical

In situ jet resolution measurement using the bisector method

Bisector rationale

The bisector method [14] is based on a transverse balance vector, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\vec{\mathrm{P}}_{\mathrm{T}}$\end{document}, defined as the sum of the momenta of the two leading jets in dijet events, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\vec{p}_{{\mathrm{T}},1}$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\vec{p}_{{\mathrm{T}},2}$\end{document}. This vector is projected along an orthogonal coordinate system in the transverse plane, (ψ,η), where η is chosen in the direction that bisects Δϕ 12, the angle formed by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\vec{p}_{{\mathrm{T}},1}$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\vec{p}_{{\mathrm{T}},2}$\end{document}. This is illustrated in Fig. 4.

Fig. 4.

Fig. 4

Variables used in the bisector method. The η-axis corresponds to the azimuthal angular bisector of the dijet system in the plane transverse to the beam, while the ψ-axis is defined as the one orthogonal to the η-axis

For a perfectly balanced dijet event, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\vec{\mathrm{P}}_{{\mathrm{T}}}=0$\end{document}. There are of course a number of sources that give rise to significant fluctuations around this value, and thus to a non-zero variance of its ψ and η components, denoted \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sigma_{\psi}^{2} $\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sigma_{\eta}^{2}$\end{document}, respectively.

At particle level, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\vec{\mathrm{P}}^{{\mathrm{part}}}_{\mathrm{T}}$\end{document} receives contributions mostly from initial-state radiation. This effect is expected to be isotropic in (ψ,η), leading to similar fluctuations in both components, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sigma^{{\mathrm{part}}}_{\psi}=\sigma^{{\mathrm{part}}}_{\eta}$\end{document}. The validity of this assumption, which is at the root of the method, can be studied with Monte Carlo simulations and with data. The precision with which it can be assessed is considered as a systematic uncertainty (see Sect. 7.2).

At calorimeter level, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\vec{\mathrm{P}}^{{\mathrm{calo}}}_{{\mathrm{T}}}$\end{document} will further differ from zero due to detector effects. Its ψ component, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{P}^{\mathrm{calo}}_{{\mathrm{T}} \psi}=p^{\mathrm{calo}}_{{{\mathrm{T}},1}{ \psi}}-p^{\mathrm{calo}}_{{{\mathrm{T}},2}{ \psi}}$\end{document}, can be decomposed into three contributions,

graphic file with name 10052_2013_2306_Equc_HTML.gif

where the first two terms correspond to fluctuations due to the detector p T resolution, and the last one to the particle jet imbalance. Taking the variance of the sum of these three independent terms yields

\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sigma^{2\ {\mathrm{calo}}}_{\psi}\simeq\sigma^{2\ {\mathrm {part}}}_{\psi}+2 \sigma^2(p_{\mathrm{T}})\bigl\langle\sin^2(\Delta \phi_{12}/2)\bigr\rangle $$\end{document} 5

where the following relations have been used

graphic file with name 10052_2013_2306_Equd_HTML.gif

Here σ(p T) corresponds to σ(p T,1)≃σ(p T,2), as both jets have the same p T resolution since they belong to the same y region. A relation similar to Eq. (5) holds for the η component:

\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sigma^{2\ {\mathrm{calo}}}_{\eta}\simeq\sigma^{2\ {\mathrm {part}}}_{\eta}+2 \sigma^2(p_{\mathrm{T}})\bigl\langle\cos^2(\Delta \phi_{12}/2)\bigr\rangle. $$\end{document} 6

Subtracting Eq. (6) from Eq. (5), and using \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sigma^{{\mathrm{part}}}_{\psi}=\sigma^{{\mathrm{part}}}_{\eta }$\end{document}, yields

\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{\sigma( p_{\mathrm{T}} )}{ p_{\mathrm {T}} } \simeq \frac{\sqrt{\sigma^{2\ {\mathrm{calo}}}_{\psi}-\sigma^{2\ {\mathrm {calo}}}_{\eta}}}{ \sqrt{2} p_{\mathrm{T}} \sqrt{\langle|\cos \Delta\phi_{12}|\rangle}} , $$\end{document} 7

where the fractional jet p T resolution, σ(p T)/p T, is expressed in terms of calorimeter observables only. The contribution from soft radiation and the underlying event is minimised by subtracting in quadrature σ η from σ ψ.

If one of the leading jets (j) belongs to the rapidity region being probed, and the other one (i) to a previously measured reference y region, then

\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{\sigma( p_{\mathrm{T}} )}{ p_{\mathrm {T}} } {\bigg\vert}_{(j)} \simeq \sqrt{ \frac{\sigma^{2\ {\mathrm{calo}}}_{\psi}-\sigma^{2\ {\mathrm {calo}}}_{\eta}}{ p^2_{\mathrm{T}} \langle|\cos\Delta\phi_{12}|\rangle} {\bigg\vert }_{(i,j)} - \frac{\sigma^{2}( p_{\mathrm{T}} )}{ p^2_{\mathrm{T}} } { \bigg\lvert}_{(i)}}. $$\end{document} 8

The dispersions σ ψ and σ η are extracted from Gaussian fits to the PTψ and PTη distributions in bins of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\bar {p}_{\mathrm{T}}$\end{document}. There is no Δϕ cut imposed between the leading jets, but it is implicitly limited by a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{{\mathrm{T}},3}^{\text{EM-scale}}<10~\mbox{GeV}$\end{document} requirement on the third jet, as discussed in the next section. Figure 5 compares the distributions of PTψ and PTη between data and Monte Carlo simulation in the momentum bin \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$60\le\bar{p}_{\mathrm{T}}<80~\mbox{GeV}$\end{document}. The distributions agree within statistical fluctuations. The resolutions obtained from the PTψ and PTη components of the balance vector are summarised in the central region as a function of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\bar {p}_{\mathrm{T}}$\end{document} in Fig. 6. As expected, the resolution on the η component does not vary with the jet p T, while the resolution on the ψ component degrades as the jet p T increases.

Fig. 5.

Fig. 5

Distributions of the PTψ (top) and PTη (bottom) components of the balance vector \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\vec{\mathrm{P}}_{\mathrm{T}}$\end{document}, for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$60\le\bar{p}_{\mathrm {T}}<80~\mbox{GeV}$\end{document}. The data (points with error bars) and Monte Carlo simulation (histogram with shaded error bands) are overlaid. The lower panel shows the ratio between data and MC simulation. The errors shown are only statistical

Fig. 6.

Fig. 6

Standard deviations of PTψ and PTη, the components of the balance vector, as a function of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\bar{p}_{\mathrm{T}}$\end{document}. MC simulation points are joined by lines. The lower panel shows the ratio between data and MC simulation. The errors shown are only statistical

Validation of the soft radiation isotropy with data

Figure 7 shows the width of the ψ and η components of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\vec{\mathrm{P}}_{{\mathrm{T}}}$\end{document} as a function of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{{\mathrm{T}} ,3}^{\text{EM-scale}}$\end{document} cut, for anti-k t jets with R=0.6. The two leading jets are required to be in the same rapidity region, |y|<0.8, while there is no rapidity restriction for the third jet. As expected, both components increase due to the contribution from soft radiation as the p T,3 cut is increased. Also shown as a function of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{{\mathrm{T}},3}^{\text{EM-scale}}$\end{document} cut is the square-root of the difference between their variances, which yields the fractional momentum resolution when divided by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2\langle p^{2}_{\mathrm{T}} \rangle\langle \cos\Delta\phi\rangle$\end{document}.

Fig. 7.

Fig. 7

Standard deviations \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sigma^{\mathrm{calo}}_{\psi}$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sigma^{\mathrm{calo}}_{\eta}$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$[(\sigma^{2}_{\psi}-\sigma^{2}_{\eta})^{\mathrm {calo}}]^{1/2}$\end{document} as a function of the upper \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{{\mathrm{T}},3}^{\text{EM-scale}}$\end{document} cut, for R=0.6 anti-k t jets with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$160\le\bar{p}_{\mathrm{T}}<260~\mbox{GeV}$\end{document}. The errors shown are only statistical

It is observed in Fig. 7 that the difference \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\sigma^{2}_{\psi}-\sigma^{2}_{\eta})^{\mathrm{calo}}$\end{document} remains almost constant, within statistical uncertainties, up to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{{\mathrm{T}},3}^{\text{EM-scale}}\simeq$\end{document} 20 GeV for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$160\leq\bar{p}_{\mathrm{T}}<260~\mbox{GeV}$\end{document}. The same behaviour is observed for other \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\bar{p}_{\mathrm{T}}$\end{document} ranges. This cancellation demonstrates that the isotropy assumption used for the bisector method is consistent with the data over a wide range of choices of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{{\mathrm{T}},3}^{\text{EM-scale}}$\end{document} without the need for requiring an explicit Δϕ cut between the leading jets. The precision with which it can be ascertained that the data is consistent with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sigma^{\mathrm{part}}_{\psi}=\sigma^{\mathrm {part}}_{\eta}$\end{document} is taken conservatively as a systematic uncertainty on the method, of about 4–5 % at 50 GeV (see Sect. 10).

Performance for the EM+JES calibration

The performances of the dijet balance and bisector methods are compared for both data and Monte Carlo simulation as a function of jet p T for jets reconstructed in the central region with the anti-k t algorithm with R=0.6 and using the EM+JES calibration scheme. The results are shown in Fig. 8. The resolutions obtained from the two independent in situ methods are in good agreement with each other within the statistical uncertainties. The agreement between data and Monte Carlo simulation is also good within the statistical precision.

Fig. 8.

Fig. 8

Fractional jet p T resolution for the dijet balance and bisector methods as a function of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\bar{p}_{\mathrm{T}}$\end{document}. The lower panel shows the relative difference between data and Monte Carlo results. The dotted lines indicate a relative difference of ±10 %. Both methods are found to be in agreement within 10 % between data and Monte Carlo simulation. The errors shown are only statistical

The resolutions for the three jet rapidity bins with |y|>0.8, the Extended Tile Barrel, the Transition and the End-Cap regions, are measured using Eqs. (3) and (8), taking the central region as the reference. The results for the bisector method are shown in Fig. 9. Within statistical errors the resolutions obtained for data and Monte Carlo simulation are in agreement within ±10% over most of the p T-range in the various regions.

Fig. 9.

Fig. 9

Fractional jet p T resolution as a function of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\bar {p}_{\mathrm{T}} $\end{document} for anti-k t with R=0.6 jets in the Extended Tile Barrel (top), Transition (center) and End-Cap (bottom) regions using the bisector method. In the lower panel of each figure, the relative difference between the data and the MC simulation results is shown. The dotted lines indicate a relative difference of ±10 %. The curves correspond to fits with the functional form in Eq. (9). The errors shown are only statistical

Figure 9 shows that dependences are well described by fits to the standard functional form expected for calorimeter-based resolutions, with three independent contributions, the effective noise (N), stochastic (S) and constant (C) terms.

\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{\sigma( p_{\mathrm{T}} )}{ p_{\mathrm {T}} } = \frac{N}{ p_{\mathrm{T}} }\oplus\frac{S}{\sqrt { p_{\mathrm{T}} }}\oplus C. $$\end{document} 9

The N term is due to external noise contributions that are not (or only weakly) dependent on the jet p T, and include the electronics and detector noise, and contributions from pile-up. It is expected to be significant in the low-p T region, below ∼30 GeV. The C term encompasses the fluctuations that are a constant fraction of the jet p T, assumed at this early stage of data-taking to be due to real signal lost in passive material (e.g. cryostats and solenoid coil), to non-uniformities of response across the calorimeter, etc. It is expected to dominate the high-p T region, above 400 GeV. For intermediate values of the jet p T, the statistical fluctuations, represented by the S term, become the limiting factor of the resolution. With the present data sample that covers a restricted p T range, 30 GeV≤p T<500 GeV, there is a high degree of correlation between the fitted parameters and it is not possible to unequivocally disentangle their contributions.

Closure test using Monte Carlo simulation

The Monte Carlo simulation expected resolution is derived considering matched particle and calorimeter jets in the event, with no back-to-back geometry requirements. Matching is done in ηϕ space, and jets are associated if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta R = \sqrt{(\Delta \eta)^{2} +(\Delta\phi)^{2} }$\end{document} <0.3. The jet response is defined as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{\mathrm{T}} ^{\mathrm{calo}} / p_{\mathrm {T}} ^{\mathrm{part}}$\end{document}, in bins of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{\mathrm{T}} ^{\mathrm {part}}$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{\mathrm{T}} ^{\mathrm{calo}}$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{\mathrm {T}} ^{\mathrm{part}}$\end{document} correspond to the transverse momentum of the reconstructed jet and its matched particle jet, respectively. The jet response distribution is modelled by a fitted Gauss distribution, and its standard deviation is defined as the truth jet p T resolution.

The Monte Carlo simulation truth jet p T resolution is compared to the results obtained from the dijet balance and the bisector in situ methods (applied to Monte Carlo simulation) in Fig. 10. This comparison will be referred to as the closure test. The in situ and truth resolutions agree within 10 %, with the truth results typically 10 % lower. This result confirms the validity of the physical assumptions discussed in Sects. 6 and 7 and the inference that the observables derived for the in situ MC dijet balance and bisector methods provide reliable estimates of the jet energy resolution. The systematic uncertainties on these estimates are of the order of 10 % (15 %) for jets with R=0.6 (R=0.4), and are discussed in Sect. 10.

Fig. 10.

Fig. 10

Comparison between the Monte Carlo simulation truth jet p T resolution and the results obtained from the bisector and dijet balance in situ methods (applied to Monte Carlo simulation) for the EM+JES calibration, as a function of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\bar{p}_{\mathrm{T}}$\end{document}. The curves correspond to fits with the functional form in Eq. (9). The lower panel of the figure shows the relative difference between the in situ methods and the fit to the Monte Carlo truth results. The dotted lines indicate a relative difference of ±10 %. The errors shown are only statistical

Jet energy resolution uncertainties

There are three kind of systematic uncertainties to be considered. Section 10.1 discusses the experimental uncertainties that affect the in situ measurements. Section 10.2 addresses the method uncertainties, that is the precision with which the in situ methods in data describe the truth resolution. Finally, Sect. 10.3 studies the truth resolution uncertainty due to event modelling in the Monte Carlo simulation.

Experimental in situ uncertainties

The squares (circles) in Fig. 11 show the experimental relative systematic uncertainty in the dijet balance (bisector) method as a function of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\bar {p}_{\mathrm{T}}$\end{document}. The different contributions are discussed below. The shaded area corresponds to the larger of the two systematic uncertainties for each \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\bar{p}_{\mathrm{T}}$\end{document} bin.

Fig. 11.

Fig. 11

The experimental systematic uncertainty on the dijet balance (squares) and bisector (circles) methods as a function of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\bar {p}_{\mathrm{T}} $\end{document}, for jets with |y|<0.8. Also shown is the absolute value of the relative difference between the two methods in each p T bin for data (dot-dashed lines) and for Monte Carlo simulation (dashed lines)

For the dijet balance method, systematic uncertainties take into account the variation in resolution when applying different Δϕ cuts (varied from 2.6 to 3.0), resulting in a 2–3 % effect for 30≤p T<60 GeV, and when varying the parameterization of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$K_{\mathrm{soft}}(\bar{p}_{\mathrm{T}})$\end{document} (see Sect. 6.2), which contributes up to 6 % at p T≈ 30 GeV. For the bisector method, the relative systematic uncertainty is about 4–5 %, and is derived from the precision with which it can be verified that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sigma^{2\ {\mathrm{calo}}}_{\psi}-\sigma^{2\ {\mathrm{calo}} }_{\eta}$\end{document} stays constant when varying the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p^{\text{EM-scale}}_{{\mathrm{T}},3}$\end{document} cut.

The contribution from the JES uncertainties [39] is common to both methods. It is 1–2 %, determined by re-calculating the jet resolutions after varying the JES within its uncertainty in a fully correlated way. The resolution has also been studied in simulated events with added pile-up events (i.e. additional interactions as explained in Sect. 3.3), as compared to events with one hard interaction only. The sensitivity of the resolution to pile-up is found to be less than 1 % for an average number of vertices per event of 1.9.

In summary, the overall relative uncertainty from the in situ methods decreases from about 7 % at p T=30 GeV down to 4 % at p T=500 GeV. Figure 11 also shows the absolute value of the relative difference between the two in situ methods, for both data and Monte Carlo simulation. They are found to be in agreement within 4 % up to 500 GeV, and consistent with these systematic uncertainties.

Uncertainties on the measured resolutions

The uncertainties in the measured resolutions are dominated by the systematic uncertainties, which are shown in Table 1 as a percentage of the resolution for the four rapidity regions and the two jet sizes considered, and for characteristic ranges, low (∼50 GeV), medium (∼150 GeV) and high (∼400 GeV) p T. The results are similar for the four calibration schemes.

Table 1.

Relative systematic uncertainties on the measured resolutions at low (∼50 GeV), medium (∼150 GeV) and high (∼400 GeV) p T, for the four rapidity regions and the two jet radii studied. The uncertainties are similar for the four calibration schemes, and are dominated by the contributions from closure and data/MC agreement

Jet radius Rapidity range Total systematic uncertainty
Low p T Med p T High p T
R=0.6 0.0≤|y|<0.8 12 % 10 % 11 %
0.8≤|y|<1.2 12 % 10 % 13 %
1.2≤|y|<2.1 14 % 12 % 14 %
2.1≤|y|<2.8 15 % 13 % 18 %
R=0.4 0.0≤|y|<0.8 17 % 15 % 11 %
0.8≤|y|<1.2 20 % 18 % 14 %
1.2≤|y|<2.1 20 % 18 % 14 %
2.1≤|y|<2.8 20 % 18 % 18 %

The dominant sources of systematic uncertainty are the closure and the data/MC agreement. The experimental systematic uncertainties, discussed in Sect. 10.1, are significantly smaller. The closure uncertainty (see Sect. 9), defined as the precision with which in simulation the resolution determined using the in situ method reproduces the truth jet resolution, is larger for R=0.4 than for R=0.6, smaller at high p T than at low p T, and basically independent of the rapidity. The data/MC agreement uncertainty, the precision with which the MC simulation describes the data, is independent of R, larger at low and high p T than at medium p T, and it grows with rapidity because of the increasingly limited statistical accuracy with which checks can be performed to assess it.

The systematic uncertainties in Table 1 for jets with R=0.4 are dominated by the contribution from the closure test. They decrease with increasing p T and are constant for the highest three rapidity bins. The systematic uncertainties for jets with R=0.6 are consistently smaller than for the R=0.4 case, and receive comparable contributions from closure and data/MC agreement. They tend to increase with rapidity and are slightly lower in the medium p T range. The uncertainty increases at high p T for the end-cap, 2.1≤|y|<2.8, because of the limited number of events in this region.

Uncertainties due to the event modelling in the Monte Carlo generators

Although not relevant for the in situ measurements of the jet energy resolution, physics analyses sensitive to the expected resolution have to consider its systematic uncertainty arising from the simulation of the event. The expected jet p T resolution is calculated for several Monte Carlo simulations in order to assess its dependence on different generator models (Alpgen and Herwig++), Pythia tunes (Perugia2010), and other systematic variations (PARP90; see Sect. 3.1). Differences between the nominal Monte Carlo simulation and Pythia8 [24] have also been considered. These effects, displayed in Fig. 12, never exceed 4 %. The total modelling uncertainty is estimated from the sum in quadrature of the different cases considered here. This is shown by the shaded area in Fig. 12 and found to be at most 5 %.

Fig. 12.

Fig. 12

Systematic uncertainty due to event modelling in Monte Carlo generators on the expected jet energy resolution as a function of p T, for jets with |y|<0.8. The points correspond to absolute differences with respect to the results obtained with the nominal simulation (Pythia MC10). Other event generators are shown as solid triangles (Herwig++) and open circles (Alpgen). Solid squares (Pythia Perugia2010), inverted triangles (Pythia PARP90), and open squares (Pythia8), summarize differences coming from different tunes, cut-off parameters, and program version, respectively. The total modelling uncertainty is estimated from the sum in quadrature of the different cases considered here (shaded area)

Jet energy resolution for other calibration schemes

The resolution performance for anti-k t jets with R=0.6 reconstructed from calorimeter topological clusters for the Local Cluster Weighting (LCW+JES), the Global Cell Weighting (GCW+JES) and the Global Sequential (GS) calibration strategies (using the bisector method) is presented in Fig. 13 for the Central, Extended Tile Barrel, Transition and End-Cap regions. The top panel shows the resolutions determined from data, whereas the bottom part compares data and Monte Carlo simulation results. The three more sophisticated calibration techniques improve the resolution σ(p T)/p T with respect to the EM+JES calibrated jets by approximately 0.02 over the whole p T range. The relative improvement ranges from 10 % at low p T up to 40 % at high p T for all four rapidity regions.

Fig. 13.

Fig. 13

Fractional jet p T resolutions as a function of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\bar{p}_{\mathrm{T}}$\end{document} for anti-k t jets with R=0.6 with |y|<0.8 (top left), 0.8≤|y|<1.2 (top right), 1.2≤|y|<2.1 (bottom left) and 2.1≤|y|<2.8 (bottom right), using the bisector in situ method, for four jet calibration schemes: EM+JES, Local Cluster Weighting (LCW+JES), Global Cell Weighting (GCW+JES) and Global Sequential (GS). The lower panels show the relative difference between data and Monte Carlo simulation results. The dotted lines indicate relative differences of ±10 %. The errors shown are only statistical

Figure 14 displays the resolutions for the two in situ methods applied to data and Monte Carlo simulation for |y|<0.8 (left plots). It can be observed that the results from the two methods agree, within uncertainties. The Monte Carlo simulation reproduces the data within 10 %. The figures on the right show the results of a study of the closure for each case, where the truth resolution is compared to that obtained from the in situ methods applied to Monte Carlo simulation data. The agreement is within 10 %. Overall, comparable agreement in resolution is observed in data and Monte Carlo simulation for the EM+JES, LCW+JES, GCW+JES and GS calibration schemes, with similar systematic uncertainties in the resolutions determined using in situ methods.

Fig. 14.

Fig. 14

Fractional jet p T resolutions as a function of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\bar {p}_{\mathrm{T}}$\end{document} for anti-k t jets with R=0.6 for the Local Cluster Weighting (LCW+JES), Global Cell Weighting (GCW+JES) and Global Sequential (GS) calibrations. Left: Comparison of both in situ methods on data and MC simulation for |y|<0.8. The lower panels show the relative difference. Right: Comparison between the Monte Carlo simulation truth jet p T resolution and the final results obtained from the bisector and dijet balance in situ methods (applied to Monte Carlo simulation). The curves correspond to fits with the functional form in Eq. (9). The lower panel of the figure shows the relative difference between the in situ methods and the fit to the Monte Carlo truth results. The dotted lines indicate relative differences of ±10 %. The errors shown are only statistical

Improvement in jet energy resolution using tracks

The addition of tracking information to the calorimeter-based energy measurement is expected to compensate for the jet-by-jet fluctuations and improve the jet energy resolution (see Sect. 5.5).

The performance of the Track-Based Jet Correction method (TBJC) is studied by applying it to both the EM+JES and LCW+JES calibration schemes, in the central region. The measured resolution for anti-k t jets with R=0.6 (R=0.4) is presented as a function of the average jet transverse momentum in the top (bottom) plot of Fig. 15.

Fig. 15.

Fig. 15

Top: Fractional jet p T resolutions as a function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\bar {p}_{\mathrm{T}} $\end{document}, measured in data for anti-k t jets with R=0.6 (top) and R=0.4 (bottom) and for four jet calibration schemes: EM+JES, EM+JES+TBJC, LCW+JES and LCW+JES+TBJC. The lower panel of the figure shows the relative improvement for the EM+JES+TBJC, LCW+JES and LCW+JES+TBJC calibrations with respect to the EM+JES jet calibration scheme, used as reference (dotted line). The errors shown are only statistical

The relative improvement in resolution due to the addition of tracking information is larger at low p T and more important for the EM+JES calibration scheme. It ranges from 22 % (10 %) at low p T to 15 % (5 %) at high p T for the EM+JES (LCW+JES) calibration. For p T<70 GeV, jets calibrated with the EM+JES+TBJC scheme show a similar performance to those calibrated with the LCW+JES+TBJC scheme. Overall, jets with LCW+JES+TBJC show the best fractional energy resolution over the full p T range.

Summary

The jet energy resolution for various JES calibration schemes has been measured using two in situ methods with a data sample corresponding to an integrated luminosity of 35 pb−1 collected in 2010 by the ATLAS experiment at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s}= 7\mbox{ TeV}$\end{document}.

The Monte Carlo simulation describes the jet energy resolution measured in data within 10 % for jets with p T values between 30 GeV and 500 GeV in the rapidity range |y|<2.8.

The resolutions obtained applying the in situ techniques to Monte Carlo simulation are in agreement within 10 % with the resolutions determined by comparing jets at calorimeter and particle level. Overall, the results measured with the two in situ methods have been found to be consistent within systematic uncertainties.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET and ERC, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Open Access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Footnotes

1

The ATLAS reference system is a Cartesian right-handed coordinate system, with the nominal collision point at the origin. The anti-clockwise beam direction defines the positive z-axis, with the x-axis pointing to the centre of the LHC ring. The angle ϕ defines the direction in the plane transverse to the beam (x,y). The pseudorapidity is given by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\eta= -\ln\tan\frac{\theta}{2}$\end{document}, where the polar angle θ is taken with respect to the positive z direction. The rapidity is defined as y=0.5×ln[(E+p z)/(Ep z)], where E denotes the energy and p z is the component of the momentum along the z-axis.

References

  • 1.ATLAS Collaboration Measurement of inclusive jet and dijet cross sections in proton-proton collisions at 7 TeV centre-of-mass energy with the ATLAS detector. Eur. Phys. J. C. 2011;71:1512. [Google Scholar]
  • 2.ATLAS Collaboration Measurement of dijet azimuthal decorrelations in pp collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s}=7\mbox{ TeV}$\end{document} Phys. Rev. Lett. 2011;106:172002. doi: 10.1103/PhysRevLett.106.172002. [DOI] [PubMed] [Google Scholar]
  • 3.ATLAS Collaboration Measurement of multi-jet cross sections in proton-proton collisions at a 7 TeV center-of-mass energy. Eur. Phys. J. C. 2011;71:1763. doi: 10.1140/epjc/s10052-011-1763-6. [DOI] [Google Scholar]
  • 4.ATLAS Collaboration Measurement of the production cross section for W-bosons in association with jets in pp collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s} = 7\mbox{ TeV}$\end{document} with the ATLAS detector. Phys. Lett. B. 2011;698:325–345. doi: 10.1016/j.physletb.2011.03.012. [DOI] [Google Scholar]
  • 5.ATLAS Collaboration Measurement of the top quark-pair production cross section with ATLAS in pp collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s}=7\mbox{ TeV}$\end{document} Eur. Phys. J. C. 2011;71:1. [Google Scholar]
  • 6.ATLAS Collaboration Search for new particles in two-jet final states in 7 TeV proton-proton collisions with the ATLAS detector at the LHC. Phys. Rev. Lett. 2010;105:161801. doi: 10.1103/PhysRevLett.105.161801. [DOI] [PubMed] [Google Scholar]
  • 7.ATLAS Collaboration Search for new physics in dijet mass and angular distributions in pp collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s} = 7\mbox{ TeV}$\end{document} measured with the ATLAS detector. New J. Phys. 2011;13:053044. doi: 10.1088/1367-2630/13/5/053044. [DOI] [Google Scholar]
  • 8.ATLAS Collaboration Search for supersymmetry using final states with one lepton, jets, and missing transverse momentum with the ATLAS detector in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s} = 7\mbox{ TeV}$\end{document} pp collisions. Phys. Rev. Lett. 2011;106:131802. doi: 10.1103/PhysRevLett.106.131802. [DOI] [PubMed] [Google Scholar]
  • 9.ATLAS Collaboration Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s} = 7\mbox{ TeV}$\end{document} proton-proton collisions. Phys. Lett. B. 2011;701:186–203. doi: 10.1016/j.physletb.2011.05.061. [DOI] [Google Scholar]
  • 10.ATLAS Collaboration The ATLAS experiment at the CERN Large Hadron Collider. J. Instrum. 2008;3:S08003. doi: 10.1088/1748-0221/3/08/S08003. [DOI] [Google Scholar]
  • 11.ATLAS Collaboration, ATLAS Detector Technical Design Report, CERN-LHCC-99-14, ATLAS-TDR-14. http://inspirehep.net/record/511648
  • 12.Evans L., Bryant P. LHC machine. J. Instrum. 2008;3:S08001. doi: 10.1088/1748-0221/3/08/S08001. [DOI] [Google Scholar]
  • 13.Abbott B., DØ Collaboration et al. High-pT jets in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p \bar{p}$\end{document} collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s} = 630\mbox{ GeV and }1800\mbox{ GeV}$\end{document} Phys. Rev. D. 2001;64:032003. doi: 10.1103/PhysRevD.64.032003. [DOI] [Google Scholar]
  • 14.Bagnaia P., UA2 Collaboration et al. Measurement of jet production properties at the CERN \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p\bar{p}$\end{document} collider. Phys. Lett. B. 1984;144:283. doi: 10.1016/0370-2693(84)91822-7. [DOI] [Google Scholar]
  • 15.Sjostrand T., Mrenna S., Skands P.Z. PYTHIA 6.4 physics and manual. J. High Energy Phys. 2006;05:026. doi: 10.1088/1126-6708/2006/05/026. [DOI] [Google Scholar]
  • 16.Corke R., Sjostrand T. Improved parton showers at large transverse momenta. Eur. Phys. J. C. 2010;69:1–18. doi: 10.1140/epjc/s10052-010-1409-0. [DOI] [Google Scholar]
  • 17.Sjostrand T., Skands P.Z. Transverse-momentum-ordered showers and interleaved multiple interactions. Eur. Phys. J. C. 2005;39:129–154. doi: 10.1140/epjc/s2004-02084-y. [DOI] [Google Scholar]
  • 18.Andersson B., et al. Parton fragmentation and string dynamics. Phys. Rep. 1983;97:31–145. doi: 10.1016/0370-1573(83)90080-7. [DOI] [Google Scholar]
  • 19.Sherstnev A., Thorne R.S. Parton distributions for LO generators. Eur. Phys. J. C. 2008;55:553–575. doi: 10.1140/epjc/s10052-008-0610-x. [DOI] [Google Scholar]
  • 20.ATLAS Collaboration Charged-particle multiplicities in pp interactions measured with the ATLAS detector at the LHC. New J. Phys. 2011;13:053033. doi: 10.1088/1367-2630/13/5/053033. [DOI] [Google Scholar]
  • 21.Skands P.Z. Tuning Monte Carlo generators: the Perugia tunes. Phys. Rev. D. 2010;82:074018. doi: 10.1103/PhysRevD.82.074018. [DOI] [Google Scholar]
  • 22.ATLAS Collaboration Study of jet shapes in inclusive jet production in pp collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s}=7\mbox{ TeV}$\end{document} using the ATLAS detector. Phys. Rev. D. 2011;83:052003. doi: 10.1103/PhysRevD.83.052003. [DOI] [Google Scholar]
  • 23.ATLAS Collaboration, ATLAS Monte Carlo tunes for MC09, ATLAS-PHYS-PUB-2010-002. http://cdsweb.cern.ch/record/1247375
  • 24.T. Sjostrand, PYTHIA 8 status report. arXiv:0809.0303 [hep-ph]
  • 25.Bahr M., et al. Herwig++ physics and manual. Eur. Phys. J. C. 2008;58:639–707. doi: 10.1140/epjc/s10052-008-0798-9. [DOI] [Google Scholar]
  • 26.G. Corcella et al., HERWIG 6.5 release note. arXiv:hep-ph/0210213
  • 27.Marchesini G., et al. A Monte Carlo event generator for simulating hadron emission reactions with interfering gluons. Comput. Phys. Commun. 1991;67:465–508. doi: 10.1016/0010-4655(92)90055-4. [DOI] [Google Scholar]
  • 28.Marchesini G., et al. Monte Carlo simulation of general hard processes with coherent QCD radiation. Nucl. Phys. B. 1988;310:461. doi: 10.1016/0550-3213(88)90089-2. [DOI] [Google Scholar]
  • 29.Webber B.R. A QCD model for jet fragmentation including soft gluon interference. Nucl. Phys. B. 1984;238:492. doi: 10.1016/0550-3213(84)90333-X. [DOI] [Google Scholar]
  • 30.Bahr M., Gieseke S., Seymour M.H. Simulation of multiple partonic interactions in Herwig++ J. High Energy Phys. 2008;07:076. doi: 10.1088/1126-6708/2008/07/076. [DOI] [Google Scholar]
  • 31.Mangano M.L., Moretti M., Piccinini F., Pittau R., Polosa A.D. ALPGEN, a generator for hard multiparton processes in hadronic collisions. J. High Energy Phys. 2003;07:001. doi: 10.1088/1126-6708/2003/07/001. [DOI] [Google Scholar]
  • 32.Mangano M.L., Moretti M., Pittau R. Multijet matrix elements and shower evolution in hadronic collisions: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$W b \bar{b} + n$\end{document} jets as a case study. Nucl. Phys. B. 2002;632:343–362. doi: 10.1016/S0550-3213(02)00249-3. [DOI] [Google Scholar]
  • 33.Butterworth J.M., Forshaw J.R., Seymour M.H. Multiparton interactions in photoproduction at HERA. Z. Phys. C. 1996;72:637–646. doi: 10.1007/s002880050286. [DOI] [Google Scholar]
  • 34.Pumplin J., et al. New generation of parton distributions with uncertainties from global QCD analysis. J. High Energy Phys. 2002;07:012. doi: 10.1088/1126-6708/2002/07/012. [DOI] [Google Scholar]
  • 35.ATLAS Collaboration The ATLAS simulation infrastructure. Eur. Phys. J. C. 2010;70:823–874. doi: 10.1140/epjc/s10052-010-1429-9. [DOI] [Google Scholar]
  • 36.Agostinelli S., et al. Geant 4—a simulation toolkit. Nucl. Instrum. Methods Phys. Res., Sect. A. 2003;506(3):250–303. doi: 10.1016/S0168-9002(03)01368-8. [DOI] [Google Scholar]
  • 37.G. Folger, J.P. Wellisch, String parton models in Geant4. arXiv:nucl-th/0306007
  • 38.Bertini H.W. Intranuclear-cascade calculation of the secondary nucleon spectra from nucleon-nucleus interactions in the energy range 340 to 2900 MeV and comparisons with experiment. Phys. Rev. 1969;188:1711–1730. doi: 10.1103/PhysRev.188.1711. [DOI] [Google Scholar]
  • 39.ATLAS Collaboration, Jet energy measurement with the ATLAS detector in proton-proton collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s}=7\mbox{ TeV}$\end{document}. Eur. Phys. J. (to be published). arXiv:1112.6426 [hep-ex] [DOI] [PMC free article] [PubMed]
  • 40.R. Achenbach et al., The ATLAS Level-1 Calorimeter Trigger, ATLAS-DAQ-PUB-2008-001. http://cdsweb.cern.ch/record/1080560
  • 41.Atlas Collaboration Performance of the ATLAS trigger system in 2010. Eur. Phys. J. C. 1849;72:2012. doi: 10.1140/epjc/s10052-017-4852-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Cacciari M., Salam G.P., Soyez G. The anti-kt jet clustering algorithm. J. High Energy Phys. 2008;04:063. doi: 10.1088/1126-6708/2008/04/063. [DOI] [Google Scholar]
  • 43.M. Cacciari, G.P. Salam, G. Soyez, http://fastjet.fr/
  • 44.W. Lampl et al., Calorimeter clustering algorithms: description and performance, ATLAS-LARG-PUB-2008-002. http://cdsweb.cern.ch/record/1099735
  • 45.ATLAS Collaboration, Expected performance of the ATLAS experiment—detector, trigger and physics. arXiv:0901.0512 [hep-ex]

Articles from The European Physical Journal. C, Particles and Fields are provided here courtesy of Springer

RESOURCES