Skip to main content
Springer logoLink to Springer
letter
. 2013 Mar 2;73(3):2328. doi: 10.1140/epjc/s10052-013-2328-7

Measurement of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\bar{t}$\end{document} production cross section in the tau + jets channel using the ATLAS detector

The ATLAS Collaboration1, G Aad 69, T Abajyan 31, B Abbott 139, J Abdallah 17, S Abdel Khalek 143, A A Abdelalim 70, O Abdinov 16, R Aben 133, B Abi 140, M Abolins 114, O S AbouZeid 199, H Abramowicz 194, H Abreu 174, B S Acharya 206,207, L Adamczyk 59, D L Adams 38, T N Addy 79, J Adelman 220, S Adomeit 125, P Adragna 101, T Adye 160, S Aefsky 33, J A Aguilar-Saavedra 155, M Agustoni 23, M Aharrouche 107, S P Ahlen 32, F Ahles 69, A Ahmad 189, M Ahsan 62, G Aielli 165,166, T P A Åkesson 105, G Akimoto 196, A V Akimov 121, M A Alam 102, J Albert 213, S Albrand 78, M Aleksa 45, I N Aleksandrov 89, F Alessandria 115, C Alexa 39, G Alexander 194, G Alexandre 70, T Alexopoulos 15, M Alhroob 206,208, M Aliev 22, G Alimonti 115, J Alison 149, B M M Allbrooke 24, L J Allison 96, P P Allport 99, S E Allwood-Spiers 76, J Almond 108, A Aloisio 129,130, R Alon 216, A Alonso 105, F Alonso 95, A Altheimer 55, B Alvarez Gonzalez 114, M G Alviggi 129,130, K Amako 90, C Amelung 33, V V Ammosov 159, S P Amor Dos Santos 154, A Amorim 154, N Amram 194, C Anastopoulos 45, L S Ancu 23, N Andari 143, T Andeen 55, C F Anders 82, G Anders 81, K J Anderson 46, A Andreazza 115,116, V Andrei 81, M-L Andrieux 78, X S Anduaga 95, S Angelidakis 14, P Anger 65, A Angerami 55, F Anghinolfi 45, A Anisenkov 135, N Anjos 154, A Annovi 68, A Antonaki 14, M Antonelli 68, A Antonov 123, J Antos 183, F Anulli 163, M Aoki 128, S Aoun 109, L Aperio Bella 10, R Apolle 146, G Arabidze 114, I Aracena 181, Y Arai 90, A T H Arce 66, S Arfaoui 189, J-F Arguin 120, S Argyropoulos 63, E Arik 25, M Arik 25, A J Armbruster 113, O Arnaez 107, V Arnal 106, A Artamonov 122, G Artoni 163,164, D Arutinov 31, S Asai 196, S Ask 43, B Åsman 186,187, L Asquith 11, K Assamagan 38, A Astbury 213, M Atkinson 209, B Aubert 10, E Auge 143, K Augsten 157, M Aurousseau 184, G Avolio 45, D Axen 212, G Azuelos 120, Y Azuma 196, M A Baak 45, G Baccaglioni 115, C Bacci 167,168, A M Bach 21, H Bachacou 174, K Bachas 195, M Backes 70, M Backhaus 31, J Backus Mayes 181, E Badescu 39, P Bagnaia 163,164, S Bahinipati 4, Y Bai 49, D C Bailey 199, T Bain 55, J T Baines 160, O K Baker 220, M D Baker 38, S Baker 103, P Balek 158, E Banas 60, P Banerjee 120, Sw Banerjee 217, D Banfi 45, A Bangert 191, V Bansal 213, H S Bansil 24, L Barak 216, S P Baranov 121, T Barber 69, E L Barberio 112, D Barberis 71,72, M Barbero 31, D Y Bardin 89, T Barillari 126, M Barisonzi 219, T Barklow 181, N Barlow 43, B M Barnett 160, R M Barnett 21, A Baroncelli 167, G Barone 70, A J Barr 146, F Barreiro 106, J Barreiro Guimarães da Costa 80, R Bartoldus 181, A E Barton 96, V Bartsch 190, A Basye 209, R L Bates 76, L Batkova 182, J R Batley 43, A Battaglia 23, M Battistin 45, F Bauer 174, H S Bawa 181, S Beale 125, T Beau 104, P H Beauchemin 203, R Beccherle 71, P Bechtle 31, H P Beck 23, K Becker 219, S Becker 125, M Beckingham 176, K H Becks 219, A J Beddall 27, A Beddall 27, S Bedikian 220, V A Bednyakov 89, C P Bee 109, L J Beemster 133, M Begel 38, S Behar Harpaz 193, P K Behera 87, M Beimforde 126, C Belanger-Champagne 111, P J Bell 70, W H Bell 70, G Bella 194, L Bellagamba 29, M Bellomo 45, A Belloni 80, O Beloborodova 135, K Belotskiy 123, O Beltramello 45, O Benary 194, D Benchekroun 169, K Bendtz 186,187, N Benekos 209, Y Benhammou 194, E Benhar Noccioli 70, J A Benitez Garcia 201, D P Benjamin 66, M Benoit 143, J R Bensinger 33, K Benslama 161, S Bentvelsen 133, D Berge 45, E Bergeaas Kuutmann 63, N Berger 10, F Berghaus 213, E Berglund 133, J Beringer 21, P Bernat 103, R Bernhard 69, C Bernius 38, T Berry 102, C Bertella 109, A Bertin 29,30, F Bertolucci 151,152, M I Besana 115,116, G J Besjes 132, N Besson 174, S Bethke 126, W Bhimji 67, R M Bianchi 45, L Bianchini 33, M Bianco 97,98, O Biebel 125, S P Bieniek 103, K Bierwagen 77, J Biesiada 21, M Biglietti 167, H Bilokon 68, M Bindi 29,30, S Binet 143, A Bingul 27, C Bini 163,164, C Biscarat 222, B Bittner 126, C W Black 191, K M Black 32, R E Blair 11, J-B Blanchard 174, T Blazek 182, I Bloch 63, C Blocker 33, J Blocki 60, A Blondel 70, W Blum 107, U Blumenschein 77, G J Bobbink 133, V S Bobrovnikov 135, S S Bocchetta 105, A Bocci 66, C R Boddy 146, M Boehler 69, J Boek 219, T T Boek 219, N Boelaert 56, J A Bogaerts 45, A Bogdanchikov 135, A Bogouch 117, C Bohm 186, J Bohm 156, V Boisvert 102, T Bold 59, V Boldea 39, N M Bolnet 174, M Bomben 104, M Bona 101, M Boonekamp 174, S Bordoni 104, C Borer 23, A Borisov 159, G Borissov 96, I Borjanovic 18, M Borri 108, S Borroni 113, J Bortfeldt 125, V Bortolotto 167,168, K Bos 133, D Boscherini 29, M Bosman 17, H Boterenbrood 133, J Bouchami 120, J Boudreau 153, E V Bouhova-Thacker 96, D Boumediene 54, C Bourdarios 143, N Bousson 109, A Boveia 46, J Boyd 45, I R Boyko 89, I Bozovic-Jelisavcic 19, J Bracinik 24, P Branchini 167, A Brandt 13, G Brandt 146, O Brandt 77, U Bratzler 197, B Brau 110, J E Brau 142, H M Braun 219, S F Brazzale 206,208, B Brelier 199, J Bremer 45, K Brendlinger 149, R Brenner 210, S Bressler 216, T M Bristow 185, D Britton 76, F M Brochu 43, I Brock 31, R Brock 114, F Broggi 115, C Bromberg 114, J Bronner 126, G Brooijmans 55, T Brooks 102, W K Brooks 48, G Brown 108, P A Bruckman de Renstrom 60, D Bruncko 183, R Bruneliere 69, S Brunet 85, A Bruni 29, G Bruni 29, M Bruschi 29, L Bryngemark 105, T Buanes 20, Q Buat 78, F Bucci 70, J Buchanan 146, P Buchholz 179, R M Buckingham 146, A G Buckley 67, S I Buda 39, I A Budagov 89, B Budick 136, V Büscher 107, L Bugge 145, O Bulekov 123, A C Bundock 99, M Bunse 64, T Buran 145, H Burckhart 45, S Burdin 99, T Burgess 20, S Burke 160, E Busato 54, P Bussey 76, C P Buszello 210, B Butler 181, J M Butler 32, C M Buttar 76, J M Butterworth 103, W Buttinger 43, M Byszewski 45, S Cabrera Urbán 211, D Caforio 29,30, O Cakir 5, P Calafiura 21, G Calderini 104, P Calfayan 125, R Calkins 134, L P Caloba 34, R Caloi 163,164, D Calvet 54, S Calvet 54, R Camacho Toro 54, P Camarri 165,166, D Cameron 145, L M Caminada 21, R Caminal Armadans 17, S Campana 45, M Campanelli 103, V Canale 129,130, F Canelli 46, A Canepa 200, J Cantero 106, R Cantrill 102, M D M Capeans Garrido 45, I Caprini 39, M Caprini 39, D Capriotti 126, M Capua 57,58, R Caputo 107, R Cardarelli 165, T Carli 45, G Carlino 129, L Carminati 115,116, B Caron 111, S Caron 132, E Carquin 48, G D Carrillo-Montoya 185, A A Carter 101, J R Carter 43, J Carvalho 154, D Casadei 136, M P Casado 17, M Cascella 151,152, C Caso 71,72, A M Castaneda Hernandez 217, E Castaneda-Miranda 217, V Castillo Gimenez 211, N F Castro 154, G Cataldi 97, P Catastini 80, A Catinaccio 45, J R Catmore 45, A Cattai 45, G Cattani 165,166, S Caughron 114, V Cavaliere 209, P Cavalleri 104, D Cavalli 115, M Cavalli-Sforza 17, V Cavasinni 151,152, F Ceradini 167,168, A S Cerqueira 35, A Cerri 21, L Cerrito 101, F Cerutti 21, S A Cetin 26, A Chafaq 169, D Chakraborty 134, I Chalupkova 158, K Chan 4, P Chang 209, B Chapleau 111, J D Chapman 43, J W Chapman 113, D G Charlton 24, V Chavda 108, C A Chavez Barajas 45, S Cheatham 111, S Chekanov 11, S V Chekulaev 200, G A Chelkov 89, M A Chelstowska 132, C Chen 88, H Chen 38, S Chen 51, X Chen 217, Y Chen 55, Y Cheng 46, A Cheplakov 89, R Cherkaoui El Moursli 173, V Chernyatin 38, E Cheu 12, S L Cheung 199, L Chevalier 174, G Chiefari 129,130, L Chikovani 73, J T Childers 45, A Chilingarov 96, G Chiodini 97, A S Chisholm 24, R T Chislett 103, A Chitan 39, M V Chizhov 89, G Choudalakis 46, S Chouridou 175, I A Christidi 103, A Christov 69, D Chromek-Burckhart 45, M L Chu 192, J Chudoba 156, G Ciapetti 163,164, A K Ciftci 5, R Ciftci 5, D Cinca 54, V Cindro 100, A Ciocio 21, M Cirilli 113, P Cirkovic 19, Z H Citron 216, M Citterio 115, M Ciubancan 39, A Clark 70, P J Clark 67, R N Clarke 21, W Cleland 153, J C Clemens 109, B Clement 78, C Clement 186,187, Y Coadou 109, M Cobal 206,208, A Coccaro 176, J Cochran 88, L Coffey 33, J G Cogan 181, J Coggeshall 209, J Colas 10, S Cole 134, A P Colijn 133, N J Collins 24, C Collins-Tooth 76, J Collot 78, T Colombo 147,148, G Colon 110, G Compostella 126, P Conde Muiño 154, E Coniavitis 210, M C Conidi 17, S M Consonni 115,116, V Consorti 69, S Constantinescu 39, C Conta 147,148, G Conti 80, F Conventi 129, M Cooke 21, B D Cooper 103, A M Cooper-Sarkar 146, K Copic 21, T Cornelissen 219, M Corradi 29, F Corriveau 111, A Cortes-Gonzalez 209, G Cortiana 126, G Costa 115, M J Costa 211, D Costanzo 177, D Côté 45, L Courneyea 213, G Cowan 102, B E Cox 108, K Cranmer 136, F Crescioli 104, M Cristinziani 31, G Crosetti 57,58, S Crépé-Renaudin 78, C-M Cuciuc 39, C Cuenca Almenar 220, T Cuhadar Donszelmann 177, J Cummings 220, M Curatolo 68, C J Curtis 24, C Cuthbert 191, P Cwetanski 85, H Czirr 179, P Czodrowski 65, Z Czyczula 220, S D’Auria 76, M D’Onofrio 99, A D’Orazio 163,164, M J Da Cunha Sargedas De Sousa 154, C Da Via 108, W Dabrowski 59, A Dafinca 146, T Dai 113, F Dallaire 120, C Dallapiccola 110, M Dam 56, M Dameri 71,72, D S Damiani 175, H O Danielsson 45, V Dao 70, G Darbo 71, G L Darlea 40, J A Dassoulas 63, W Davey 31, T Davidek 158, N Davidson 112, R Davidson 96, E Davies 146, M Davies 120, O Davignon 104, A R Davison 103, Y Davygora 81, E Dawe 180, I Dawson 177, R K Daya-Ishmukhametova 33, K De 13, R de Asmundis 129, S De Castro 29,30, S De Cecco 104, J de Graat 125, N De Groot 132, P de Jong 133, C De La Taille 143, H De la Torre 106, F De Lorenzi 88, L de Mora 96, L De Nooij 133, D De Pedis 163, A De Salvo 163, U De Sanctis 206,208, A De Santo 190, J B De Vivie De Regie 143, G De Zorzi 163,164, W J Dearnaley 96, R Debbe 38, C Debenedetti 67, B Dechenaux 78, D V Dedovich 89, J Degenhardt 149, J Del Peso 106, T Del Prete 151,152, T Delemontex 78, M Deliyergiyev 100, A Dell’Acqua 45, L Dell’Asta 32, M Della Pietra 129, D della Volpe 129,130, M Delmastro 10, P A Delsart 78, C Deluca 133, S Demers 220, M Demichev 89, B Demirkoz 17, S P Denisov 159, D Derendarz 60, J E Derkaoui 172, F Derue 104, P Dervan 99, K Desch 31, E Devetak 189, P O Deviveiros 133, A Dewhurst 160, B DeWilde 189, S Dhaliwal 199, R Dhullipudi 38, A Di Ciaccio 165,166, L Di Ciaccio 10, C Di Donato 129,130, A Di Girolamo 45, B Di Girolamo 45, S Di Luise 167,168, A Di Mattia 193, B Di Micco 45, R Di Nardo 68, A Di Simone 165,166, R Di Sipio 29,30, M A Diaz 47, E B Diehl 113, J Dietrich 63, T A Dietzsch 81, S Diglio 112, K Dindar Yagci 61, J Dingfelder 31, F Dinut 39, C Dionisi 163,164, P Dita 39, S Dita 39, F Dittus 45, F Djama 109, T Djobava 74, M A B do Vale 36, A Do Valle Wemans 154, T K O Doan 10, M Dobbs 111, D Dobos 45, E Dobson 45, J Dodd 55, C Doglioni 70, T Doherty 76, Y Doi 90, J Dolejsi 158, Z Dolezal 158, B A Dolgoshein 123, T Dohmae 196, M Donadelli 37, J Donini 54, J Dopke 45, A Doria 129, A Dos Anjos 217, A Dotti 151,152, M T Dova 95, A D Doxiadis 133, A T Doyle 76, N Dressnandt 149, M Dris 15, J Dubbert 126, S Dube 21, E Duchovni 216, G Duckeck 125, D Duda 219, A Dudarev 45, F Dudziak 88, M Dührssen 45, I P Duerdoth 108, L Duflot 143, M-A Dufour 111, L Duguid 102, M Dunford 81, H Duran Yildiz 5, R Duxfield 177, M Dwuznik 59, M Düren 75, W L Ebenstein 66, J Ebke 125, S Eckweiler 107, W Edson 3, C A Edwards 102, N C Edwards 76, W Ehrenfeld 63, T Eifert 181, G Eigen 20, K Einsweiler 21, E Eisenhandler 101, T Ekelof 210, M El Kacimi 171, M Ellert 210, S Elles 10, F Ellinghaus 107, K Ellis 101, N Ellis 45, J Elmsheuser 125, M Elsing 45, D Emeliyanov 160, R Engelmann 189, A Engl 125, B Epp 86, J Erdmann 220, A Ereditato 23, D Eriksson 186, J Ernst 3, M Ernst 38, J Ernwein 174, D Errede 209, S Errede 209, E Ertel 107, M Escalier 143, H Esch 64, C Escobar 153, X Espinal Curull 17, B Esposito 68, F Etienne 109, A I Etienvre 174, E Etzion 194, D Evangelakou 77, H Evans 85, L Fabbri 29,30, C Fabre 45, R M Fakhrutdinov 159, S Falciano 163, Y Fang 49, M Fanti 115,116, A Farbin 13, A Farilla 167, J Farley 189, T Farooque 199, S Farrell 205, S M Farrington 214, P Farthouat 45, F Fassi 211, P Fassnacht 45, D Fassouliotis 14, B Fatholahzadeh 199, A Favareto 115,116, L Fayard 143, P Federic 182, O L Fedin 150, W Fedorko 114, M Fehling-Kaschek 69, L Feligioni 109, C Feng 52, E J Feng 11, A B Fenyuk 159, J Ferencei 183, W Fernando 11, S Ferrag 76, J Ferrando 76, V Ferrara 63, A Ferrari 210, P Ferrari 133, R Ferrari 147, D E Ferreira de Lima 76, A Ferrer 211, D Ferrere 70, C Ferretti 113, A Ferretto Parodi 71,72, M Fiascaris 46, F Fiedler 107, A Filipčič 100, F Filthaut 132, M Fincke-Keeler 213, M C N Fiolhais 154, L Fiorini 211, A Firan 61, G Fischer 63, M J Fisher 137, M Flechl 69, I Fleck 179, J Fleckner 107, P Fleischmann 218, S Fleischmann 219, T Flick 219, A Floderus 105, L R Flores Castillo 217, A C Florez Bustos 201, M J Flowerdew 126, T Fonseca Martin 23, A Formica 174, A Forti 108, D Fortin 200, D Fournier 143, A J Fowler 66, H Fox 96, P Francavilla 17, M Franchini 29,30, S Franchino 147,148, D Francis 45, T Frank 216, M Franklin 80, S Franz 45, M Fraternali 147,148, S Fratina 149, S T French 43, C Friedrich 63, F Friedrich 65, D Froidevaux 45, J A Frost 43, C Fukunaga 197, E Fullana Torregrosa 158, B G Fulsom 181, J Fuster 211, C Gabaldon 45, O Gabizon 216, T Gadfort 38, S Gadomski 70, G Gagliardi 71,72, P Gagnon 85, C Galea 125, B Galhardo 154, E J Gallas 146, V Gallo 23, B J Gallop 160, P Gallus 156, K K Gan 137, Y S Gao 181, A Gaponenko 21, F Garberson 220, M Garcia-Sciveres 21, C García 211, J E García Navarro 211, R W Gardner 46, N Garelli 45, V Garonne 45, C Gatti 68, G Gaudio 147, B Gaur 179, L Gauthier 174, P Gauzzi 163,164, I L Gavrilenko 121, C Gay 212, G Gaycken 31, E N Gazis 15, P Ge 52, Z Gecse 212, C N P Gee 160, D A A Geerts 133, Ch Geich-Gimbel 31, K Gellerstedt 186,187, C Gemme 71, A Gemmell 76, M H Genest 78, S Gentile 163,164, M George 77, S George 102, D Gerbaudo 17, P Gerlach 219, A Gershon 194, C Geweniger 81, H Ghazlane 170, N Ghodbane 54, B Giacobbe 29, S Giagu 163,164, V Giangiobbe 17, F Gianotti 45, B Gibbard 38, A Gibson 199, S M Gibson 45, M Gilchriese 21, D Gillberg 44, A R Gillman 160, D M Gingrich 4, J Ginzburg 194, N Giokaris 14, M P Giordani 208, R Giordano 129,130, F M Giorgi 22, P Giovannini 126, P F Giraud 174, D Giugni 115, M Giunta 120, B K Gjelsten 145, L K Gladilin 124, C Glasman 106, J Glatzer 31, A Glazov 63, K W Glitza 219, G L Glonti 89, J R Goddard 101, J Godfrey 180, J Godlewski 45, M Goebel 63, T Göpfert 65, C Goeringer 107, C Gössling 64, S Goldfarb 113, T Golling 220, D Golubkov 159, A Gomes 154, L S Gomez Fajardo 63, R Gonçalo 102, J Goncalves Pinto Firmino Da Costa 63, L Gonella 31, S González de la Hoz 211, G Gonzalez Parra 17, M L Gonzalez Silva 42, S Gonzalez-Sevilla 70, J J Goodson 189, L Goossens 45, P A Gorbounov 122, H A Gordon 38, I Gorelov 131, G Gorfine 219, B Gorini 45, E Gorini 97,98, A Gorišek 100, E Gornicki 60, A T Goshaw 11, M Gosselink 133, M I Gostkin 89, I Gough Eschrich 205, M Gouighri 169, D Goujdami 171, M P Goulette 70, A G Goussiou 176, C Goy 10, S Gozpinar 33, I Grabowska-Bold 59, P Grafström 29,30, K-J Grahn 63, E Gramstad 145, F Grancagnolo 97, S Grancagnolo 22, V Grassi 189, V Gratchev 150, H M Gray 45, J A Gray 189, E Graziani 167, O G Grebenyuk 150, T Greenshaw 99, Z D Greenwood 38, K Gregersen 56, I M Gregor 63, P Grenier 181, J Griffiths 13, N Grigalashvili 89, A A Grillo 175, K Grimm 96, S Grinstein 17, Ph Gris 54, Y V Grishkevich 124, J-F Grivaz 143, A Grohsjean 63, E Gross 216, J Grosse-Knetter 77, J Groth-Jensen 216, K Grybel 179, D Guest 220, C Guicheney 54, E Guido 71,72, S Guindon 77, U Gul 76, J Gunther 156, B Guo 199, J Guo 55, P Gutierrez 139, N Guttman 194, O Gutzwiller 217, C Guyot 174, C Gwenlan 146, C B Gwilliam 99, A Haas 136, S Haas 45, C Haber 21, H K Hadavand 13, D R Hadley 24, P Haefner 31, F Hahn 45, Z Hajduk 60, H Hakobyan 221, D Hall 146, K Hamacher 219, P Hamal 141, K Hamano 112, M Hamer 77, A Hamilton 185, S Hamilton 203, L Han 50, K Hanagaki 144, K Hanawa 202, M Hance 21, C Handel 107, P Hanke 81, J R Hansen 56, J B Hansen 56, J D Hansen 56, P H Hansen 56, P Hansson 181, K Hara 202, T Harenberg 219, S Harkusha 117, D Harper 113, R D Harrington 67, O M Harris 176, J Hartert 69, F Hartjes 133, T Haruyama 90, A Harvey 79, S Hasegawa 128, Y Hasegawa 178, S Hassani 174, S Haug 23, M Hauschild 45, R Hauser 114, M Havranek 31, C M Hawkes 24, R J Hawkings 45, A D Hawkins 105, T Hayakawa 91, T Hayashi 202, D Hayden 102, C P Hays 146, H S Hayward 99, S J Haywood 160, S J Head 24, V Hedberg 105, L Heelan 13, S Heim 149, B Heinemann 21, S Heisterkamp 56, L Helary 32, C Heller 125, M Heller 45, S Hellman 186,187, D Hellmich 31, C Helsens 17, R C W Henderson 96, M Henke 81, A Henrichs 220, A M Henriques Correia 45, S Henrot-Versille 143, C Hensel 77, C M Hernandez 13, Y Hernández Jiménez 211, R Herrberg 22, G Herten 69, R Hertenberger 125, L Hervas 45, G G Hesketh 103, N P Hessey 133, E Higón-Rodriguez 211, J C Hill 43, K H Hiller 63, S Hillert 31, S J Hillier 24, I Hinchliffe 21, E Hines 149, M Hirose 144, F Hirsch 64, D Hirschbuehl 219, J Hobbs 189, N Hod 194, M C Hodgkinson 177, P Hodgson 177, A Hoecker 45, M R Hoeferkamp 131, J Hoffman 61, D Hoffmann 109, M Hohlfeld 107, M Holder 179, S O Holmgren 186, T Holy 157, J L Holzbauer 114, T M Hong 149, L Hooft van Huysduynen 136, S Horner 69, J-Y Hostachy 78, S Hou 192, A Hoummada 169, J Howard 146, J Howarth 108, I Hristova 22, J Hrivnac 143, T Hryn’ova 10, P J Hsu 107, S-C Hsu 176, D Hu 55, Z Hubacek 45, F Hubaut 109, F Huegging 31, A Huettmann 63, T B Huffman 146, E W Hughes 55, G Hughes 96, M Huhtinen 45, M Hurwitz 21, N Huseynov 89, J Huston 114, J Huth 80, G Iacobucci 70, G Iakovidis 15, M Ibbotson 108, I Ibragimov 179, L Iconomidou-Fayard 143, J Idarraga 143, P Iengo 129, O Igonkina 133, Y Ikegami 90, M Ikeno 90, D Iliadis 195, N Ilic 199, T Ince 126, P Ioannou 14, M Iodice 167, K Iordanidou 14, V Ippolito 163,164, A Irles Quiles 211, C Isaksson 210, M Ishino 92, M Ishitsuka 198, R Ishmukhametov 137, C Issever 146, S Istin 25, A V Ivashin 159, W Iwanski 60, H Iwasaki 90, J M Izen 62, V Izzo 129, B Jackson 149, J N Jackson 99, P Jackson 2, M R Jaekel 45, V Jain 3, K Jakobs 69, S Jakobsen 56, T Jakoubek 156, J Jakubek 157, D O Jamin 192, D K Jana 139, E Jansen 103, H Jansen 45, J Janssen 31, A Jantsch 126, M Janus 69, R C Jared 217, G Jarlskog 105, L Jeanty 80, I Jen-La Plante 46, G-Y Jeng 191, D Jennens 112, P Jenni 45, A E Loevschall-Jensen 56, P Jež 56, S Jézéquel 10, M K Jha 29, H Ji 217, W Ji 107, J Jia 189, Y Jiang 50, M Jimenez Belenguer 63, S Jin 49, O Jinnouchi 198, M D Joergensen 56, D Joffe 61, M Johansen 186,187, K E Johansson 186, P Johansson 177, S Johnert 63, K A Johns 12, K Jon-And 186,187, G Jones 214, R W L Jones 96, T J Jones 99, C Joram 45, P M Jorge 154, K D Joshi 108, J Jovicevic 188, T Jovin 19, X Ju 217, C A Jung 64, R M Jungst 45, V Juranek 156, P Jussel 86, A Juste Rozas 17, S Kabana 23, M Kaci 211, A Kaczmarska 60, P Kadlecik 56, M Kado 143, H Kagan 137, M Kagan 80, E Kajomovitz 193, S Kalinin 219, L V Kalinovskaya 89, S Kama 61, N Kanaya 196, M Kaneda 45, S Kaneti 43, T Kanno 198, V A Kantserov 123, J Kanzaki 90, B Kaplan 136, A Kapliy 46, D Kar 76, M Karagounis 31, K Karakostas 15, M Karnevskiy 82, V Kartvelishvili 96, A N Karyukhin 159, L Kashif 217, G Kasieczka 82, R D Kass 137, A Kastanas 20, M Kataoka 10, Y Kataoka 196, J Katzy 63, V Kaushik 12, K Kawagoe 94, T Kawamoto 196, G Kawamura 107, M S Kayl 133, S Kazama 196, V F Kazanin 135, M Y Kazarinov 89, R Keeler 213, P T Keener 149, R Kehoe 61, M Keil 77, G D Kekelidze 89, J S Keller 176, M Kenyon 76, O Kepka 156, N Kerschen 45, B P Kerševan 100, S Kersten 219, K Kessoku 196, J Keung 199, F Khalil-zada 16, H Khandanyan 186,187, A Khanov 140, D Kharchenko 89, A Khodinov 123, A Khomich 81, T J Khoo 43, G Khoriauli 31, A Khoroshilov 219, V Khovanskiy 122, E Khramov 89, J Khubua 74, H Kim 186,187, S H Kim 202, N Kimura 215, O Kind 22, B T King 99, M King 91, R S B King 146, J Kirk 160, A E Kiryunin 126, T Kishimoto 91, D Kisielewska 59, T Kitamura 91, T Kittelmann 153, K Kiuchi 202, E Kladiva 183, M Klein 99, U Klein 99, K Kleinknecht 107, M Klemetti 111, A Klier 216, P Klimek 186,187, A Klimentov 38, R Klingenberg 64, J A Klinger 108, E B Klinkby 56, T Klioutchnikova 45, P F Klok 132, S Klous 133, E-E Kluge 81, T Kluge 99, P Kluit 133, S Kluth 126, E Kneringer 86, E B F G Knoops 109, A Knue 77, B R Ko 66, T Kobayashi 196, M Kobel 65, M Kocian 181, P Kodys 158, K Köneke 45, A C König 132, S Koenig 107, L Köpke 107, F Koetsveld 132, P Koevesarki 31, T Koffas 44, E Koffeman 133, L A Kogan 146, S Kohlmann 219, F Kohn 77, Z Kohout 157, T Kohriki 90, T Koi 181, G M Kolachev 135, H Kolanoski 22, V Kolesnikov 89, I Koletsou 115, J Koll 114, A A Komar 121, Y Komori 196, T Kondo 90, T Kono 63, A I Kononov 69, R Konoplich 136, N Konstantinidis 103, R Kopeliansky 193, S Koperny 59, K Korcyl 60, K Kordas 195, A Korn 146, A Korol 135, I Korolkov 17, E V Korolkova 177, V A Korotkov 159, O Kortner 126, S Kortner 126, V V Kostyukhin 31, S Kotov 126, V M Kotov 89, A Kotwal 66, C Kourkoumelis 14, V Kouskoura 195, A Koutsman 200, R Kowalewski 213, T Z Kowalski 59, W Kozanecki 174, A S Kozhin 159, V Kral 157, V A Kramarenko 124, G Kramberger 100, M W Krasny 104, A Krasznahorkay 136, J K Kraus 31, A Kravchenko 38, S Kreiss 136, F Krejci 157, J Kretzschmar 99, K Kreutzfeldt 75, N Krieger 77, P Krieger 199, K Kroeninger 77, H Kroha 126, J Kroll 149, J Kroseberg 31, J Krstic 18, U Kruchonak 89, H Krüger 31, T Kruker 23, N Krumnack 88, Z V Krumshteyn 89, M K Kruse 66, T Kubota 112, S Kuday 5, S Kuehn 69, A Kugel 83, T Kuhl 63, D Kuhn 86, V Kukhtin 89, Y Kulchitsky 117, S Kuleshov 48, C Kummer 125, M Kuna 104, J Kunkle 149, A Kupco 156, H Kurashige 91, M Kurata 202, Y A Kurochkin 117, V Kus 156, E S Kuwertz 188, M Kuze 198, J Kvita 180, R Kwee 22, A La Rosa 70, L La Rotonda 57,58, L Labarga 106, S Lablak 169, C Lacasta 211, F Lacava 163,164, J Lacey 44, H Lacker 22, D Lacour 104, V R Lacuesta 211, E Ladygin 89, R Lafaye 10, B Laforge 104, T Lagouri 220, S Lai 69, E Laisne 78, L Lambourne 103, C L Lampen 12, W Lampl 12, E Lancon 174, U Landgraf 69, M P J Landon 101, V S Lang 81, C Lange 63, A J Lankford 205, F Lanni 38, K Lantzsch 45, A Lanza 147, S Laplace 104, C Lapoire 31, J F Laporte 174, T Lari 115, A Larner 146, M Lassnig 45, P Laurelli 68, V Lavorini 57,58, W Lavrijsen 21, P Laycock 99, O Le Dortz 104, E Le Guirriec 109, E Le Menedeu 17, T LeCompte 11, F Ledroit-Guillon 78, H Lee 133, J S H Lee 144, S C Lee 192, L Lee 220, M Lefebvre 213, M Legendre 174, F Legger 125, C Leggett 21, M Lehmacher 31, G Lehmann Miotto 45, A G Leister 220, M A L Leite 37, R Leitner 158, D Lellouch 216, B Lemmer 77, V Lendermann 81, K J C Leney 185, T Lenz 133, G Lenzen 219, B Lenzi 45, K Leonhardt 65, S Leontsinis 15, F Lepold 81, C Leroy 120, J-R Lessard 213, C G Lester 43, C M Lester 149, J Levêque 10, D Levin 113, L J Levinson 216, A Lewis 146, G H Lewis 136, A M Leyko 31, M Leyton 22, B Li 50, B Li 109, H Li 189, H L Li 46, S Li 50, X Li 113, Z Liang 146, H Liao 54, B Liberti 165, P Lichard 45, M Lichtnecker 125, K Lie 209, W Liebig 20, C Limbach 31, A Limosani 112, M Limper 87, S C Lin 192, F Linde 133, J T Linnemann 114, E Lipeles 149, A Lipniacka 20, T M Liss 209, D Lissauer 38, A Lister 70, A M Litke 175, C Liu 44, D Liu 192, J B Liu 50, L Liu 113, M Liu 50, Y Liu 50, M Livan 147,148, S S A Livermore 146, A Lleres 78, J Llorente Merino 106, S L Lloyd 101, E Lobodzinska 63, P Loch 12, W S Lockman 175, T Loddenkoetter 31, F K Loebinger 108, A Loginov 220, C W Loh 212, T Lohse 22, K Lohwasser 69, M Lokajicek 156, V P Lombardo 10, R E Long 96, L Lopes 154, D Lopez Mateos 80, J Lorenz 125, N Lorenzo Martinez 143, M Losada 204, P Loscutoff 21, F Lo Sterzo 163,164, M J Losty 200, X Lou 62, A Lounis 143, K F Loureiro 204, J Love 11, P A Love 96, A J Lowe 181, F Lu 49, H J Lubatti 176, C Luci 163,164, A Lucotte 78, D Ludwig 63, I Ludwig 69, J Ludwig 69, F Luehring 85, G Luijckx 133, W Lukas 86, L Luminari 163, E Lund 145, B Lund-Jensen 188, B Lundberg 105, J Lundberg 186,187, O Lundberg 186,187, J Lundquist 56, M Lungwitz 107, D Lynn 38, E Lytken 105, H Ma 38, L L Ma 217, G Maccarrone 68, A Macchiolo 126, B Maček 100, J Machado Miguens 154, D Macina 45, R Mackeprang 56, R J Madaras 21, H J Maddocks 96, W F Mader 65, R Maenner 83, T Maeno 38, P Mättig 219, S Mättig 63, L Magnoni 205, E Magradze 77, K Mahboubi 69, J Mahlstedt 133, S Mahmoud 99, G Mahout 24, C Maiani 174, C Maidantchik 34, A Maio 154, S Majewski 38, Y Makida 90, N Makovec 143, P Mal 174, B Malaescu 45, Pa Malecki 60, P Malecki 60, V P Maleev 150, F Malek 78, U Mallik 87, D Malon 11, C Malone 181, S Maltezos 15, V Malyshev 135, S Malyukov 45, J Mamuzic 19, A Manabe 90, L Mandelli 115, I Mandić 100, R Mandrysch 87, J Maneira 154, A Manfredini 126, L Manhaes de Andrade Filho 35, J A Manjarres Ramos 174, A Mann 125, P M Manning 175, A Manousakis-Katsikakis 14, B Mansoulie 174, R Mantifel 111, A Mapelli 45, L Mapelli 45, L March 211, J F Marchand 44, F Marchese 165,166, G Marchiori 104, M Marcisovsky 156, C P Marino 213, F Marroquim 34, Z Marshall 45, L F Marti 23, S Marti-Garcia 211, B Martin 45, B Martin 114, J P Martin 120, T A Martin 24, V J Martin 67, B Martin dit Latour 70, S Martin-Haugh 190, H Martinez 174, M Martinez 17, V Martinez Outschoorn 80, A C Martyniuk 213, M Marx 108, F Marzano 163, A Marzin 139, L Masetti 107, T Mashimo 196, R Mashinistov 121, J Masik 108, A L Maslennikov 135, I Massa 29,30, G Massaro 133, N Massol 10, P Mastrandrea 189, A Mastroberardino 57,58, T Masubuchi 196, H Matsunaga 196, T Matsushita 91, C Mattravers 146, J Maurer 109, S J Maxfield 99, D A Maximov 135, A Mayne 177, R Mazini 192, M Mazur 31, L Mazzaferro 165,166, M Mazzanti 115, J Mc Donald 111, S P Mc Kee 113, A McCarn 209, R L McCarthy 189, T G McCarthy 44, N A McCubbin 160, K W McFarlane 79, J A Mcfayden 177, G Mchedlidze 74, T Mclaughlan 24, S J McMahon 160, R A McPherson 213, A Meade 110, J Mechnich 133, M Mechtel 219, M Medinnis 63, S Meehan 46, R Meera-Lebbai 139, T Meguro 144, S Mehlhase 56, A Mehta 99, K Meier 81, B Meirose 105, C Melachrinos 46, B R Mellado Garcia 217, F Meloni 115,116, L Mendoza Navas 204, Z Meng 192, A Mengarelli 29,30, S Menke 126, E Meoni 203, K M Mercurio 80, P Mermod 70, L Merola 129,130, C Meroni 115, F S Merritt 46, H Merritt 137, A Messina 45, J Metcalfe 38, A S Mete 205, C Meyer 107, C Meyer 46, J-P Meyer 174, J Meyer 218, J Meyer 77, S Michal 45, L Micu 39, R P Middleton 160, S Migas 99, L Mijović 174, G Mikenberg 216, M Mikestikova 156, M Mikuž 100, D W Miller 46, R J Miller 114, W J Mills 212, C Mills 80, A Milov 216, D A Milstead 186,187, D Milstein 216, A A Minaenko 159, M Miñano Moya 211, I A Minashvili 89, A I Mincer 136, B Mindur 59, M Mineev 89, Y Ming 217, L M Mir 17, G Mirabelli 163, J Mitrevski 175, V A Mitsou 211, S Mitsui 90, P S Miyagawa 177, J U Mjörnmark 105, T Moa 186,187, V Moeller 43, K Mönig 63, N Möser 31, S Mohapatra 189, W Mohr 69, R Moles-Valls 211, A Molfetas 45, J Monk 103, E Monnier 109, J Montejo Berlingen 17, F Monticelli 95, S Monzani 29,30, R W Moore 4, G F Moorhead 112, C Mora Herrera 70, A Moraes 76, N Morange 174, J Morel 77, G Morello 57,58, D Moreno 107, M Moreno Llácer 211, P Morettini 71, M Morgenstern 65, M Morii 80, A K Morley 45, G Mornacchi 45, J D Morris 101, L Morvaj 128, H G Moser 126, M Mosidze 74, J Moss 137, R Mount 181, E Mountricha 15, S V Mouraviev 121, E J W Moyse 110, F Mueller 81, J Mueller 153, K Mueller 31, T A Müller 125, T Mueller 107, D Muenstermann 45, Y Munwes 194, W J Murray 160, I Mussche 133, E Musto 193, A G Myagkov 159, M Myska 156, O Nackenhorst 77, J Nadal 17, K Nagai 202, R Nagai 198, K Nagano 90, A Nagarkar 137, Y Nagasaka 84, M Nagel 126, A M Nairz 45, Y Nakahama 45, K Nakamura 196, T Nakamura 196, I Nakano 138, G Nanava 31, A Napier 203, R Narayan 82, M Nash 103, T Nattermann 31, T Naumann 63, G Navarro 204, H A Neal 113, P Yu Nechaeva 121, T J Neep 108, A Negri 147,148, G Negri 45, M Negrini 29, S Nektarijevic 70, A Nelson 205, T K Nelson 181, S Nemecek 156, P Nemethy 136, A A Nepomuceno 34, M Nessi 45, M S Neubauer 209, M Neumann 219, A Neusiedl 107, R M Neves 136, P Nevski 38, F M Newcomer 149, P R Newman 24, V Nguyen Thi Hong 174, R B Nickerson 146, R Nicolaidou 174, B Nicquevert 45, F Niedercorn 143, J Nielsen 175, N Nikiforou 55, A Nikiforov 22, V Nikolaenko 159, I Nikolic-Audit 104, K Nikolics 70, K Nikolopoulos 24, H Nilsen 69, P Nilsson 13, Y Ninomiya 196, A Nisati 163, R Nisius 126, T Nobe 198, L Nodulman 11, M Nomachi 144, I Nomidis 195, S Norberg 139, M Nordberg 45, J Novakova 158, M Nozaki 90, L Nozka 141, A-E Nuncio-Quiroz 31, G Nunes Hanninger 112, T Nunnemann 125, E Nurse 103, B J O’Brien 67, D C O’Neil 180, V O’Shea 76, L B Oakes 125, F G Oakham 44, H Oberlack 126, J Ocariz 104, A Ochi 91, S Oda 94, S Odaka 90, J Odier 109, H Ogren 85, A Oh 108, S H Oh 66, C C Ohm 45, T Ohshima 128, W Okamura 144, H Okawa 38, Y Okumura 46, T Okuyama 196, A Olariu 39, A G Olchevski 89, S A Olivares Pino 47, M Oliveira 154, D Oliveira Damazio 38, E Oliver Garcia 211, D Olivito 149, A Olszewski 60, J Olszowska 60, A Onofre 154, P U E Onyisi 46, C J Oram 200, M J Oreglia 46, Y Oren 194, D Orestano 167,168, N Orlando 97,98, I Orlov 135, C Oropeza Barrera 76, R S Orr 199, B Osculati 71,72, R Ospanov 149, C Osuna 17, G Otero y Garzon 42, J P Ottersbach 133, M Ouchrif 172, E A Ouellette 213, F Ould-Saada 145, A Ouraou 174, Q Ouyang 49, A Ovcharova 21, M Owen 108, S Owen 177, V E Ozcan 25, N Ozturk 13, A Pacheco Pages 17, C Padilla Aranda 17, S Pagan Griso 21, E Paganis 177, C Pahl 126, F Paige 38, P Pais 110, K Pajchel 145, G Palacino 201, C P Paleari 12, S Palestini 45, D Pallin 54, A Palma 154, J D Palmer 24, Y B Pan 217, E Panagiotopoulou 15, J G Panduro Vazquez 102, P Pani 133, N Panikashvili 113, S Panitkin 38, D Pantea 39, A Papadelis 186, Th D Papadopoulou 15, A Paramonov 11, D Paredes Hernandez 54, W Park 38, M A Parker 43, F Parodi 71,72, J A Parsons 55, U Parzefall 69, S Pashapour 77, E Pasqualucci 163, S Passaggio 71, A Passeri 167, F Pastore 167,168, Fr Pastore 102, G Pásztor 70, S Pataraia 219, N Patel 191, J R Pater 108, S Patricelli 129,130, T Pauly 45, M Pecsy 182, S Pedraza Lopez 211, M I Pedraza Morales 217, S V Peleganchuk 135, D Pelikan 210, H Peng 50, B Penning 46, A Penson 55, J Penwell 85, M Perantoni 34, K Perez 55, T Perez Cavalcanti 63, E Perez Codina 200, M T Pérez García-Estañ 211, V Perez Reale 55, L Perini 115,116, H Pernegger 45, R Perrino 97, P Perrodo 10, V D Peshekhonov 89, K Peters 45, B A Petersen 45, J Petersen 45, T C Petersen 56, E Petit 10, A Petridis 195, C Petridou 195, E Petrolo 163, F Petrucci 167,168, D Petschull 63, M Petteni 180, R Pezoa 48, A Phan 112, P W Phillips 160, G Piacquadio 45, A Picazio 70, E Piccaro 101, M Piccinini 29,30, S M Piec 63, R Piegaia 42, D T Pignotti 137, J E Pilcher 46, A D Pilkington 108, J Pina 154, M Pinamonti 206,208, A Pinder 146, J L Pinfold 4, A Pingel 56, B Pinto 154, C Pizio 115,116, M-A Pleier 38, E Plotnikova 89, A Poblaguev 38, S Poddar 81, F Podlyski 54, L Poggioli 143, D Pohl 31, M Pohl 70, G Polesello 147, A Policicchio 57,58, A Polini 29, J Poll 101, V Polychronakos 38, D Pomeroy 33, K Pommès 45, L Pontecorvo 163, B G Pope 114, G A Popeneciu 39, D S Popovic 18, A Poppleton 45, X Portell Bueso 45, G E Pospelov 126, S Pospisil 157, I N Potrap 126, C J Potter 190, C T Potter 142, G Poulard 45, J Poveda 85, V Pozdnyakov 89, R Prabhu 103, P Pralavorio 109, A Pranko 21, S Prasad 45, R Pravahan 38, S Prell 88, K Pretzl 23, D Price 85, J Price 99, L E Price 11, D Prieur 153, M Primavera 97, K Prokofiev 136, F Prokoshin 48, S Protopopescu 38, J Proudfoot 11, X Prudent 65, M Przybycien 59, H Przysiezniak 10, S Psoroulas 31, E Ptacek 142, E Pueschel 110, D Puldon 189, J Purdham 113, M Purohit 38, P Puzo 143, Y Pylypchenko 87, J Qian 113, A Quadt 77, D R Quarrie 21, W B Quayle 217, M Raas 132, V Radeka 38, V Radescu 63, P Radloff 142, F Ragusa 115,116, G Rahal 222, A M Rahimi 137, D Rahm 38, S Rajagopalan 38, M Rammensee 69, M Rammes 179, A S Randle-Conde 61, K Randrianarivony 44, K Rao 205, F Rauscher 125, T C Rave 69, M Raymond 45, A L Read 145, D M Rebuzzi 147,148, A Redelbach 218, G Redlinger 38, R Reece 149, K Reeves 62, A Reinsch 142, I Reisinger 64, C Rembser 45, Z L Ren 192, A Renaud 143, M Rescigno 163, S Resconi 115, B Resende 174, P Reznicek 125, R Rezvani 199, R Richter 126, E Richter-Was 10, M Ridel 104, M Rijpstra 133, M Rijssenbeek 189, A Rimoldi 147,148, L Rinaldi 29, R R Rios 61, I Riu 17, G Rivoltella 115,116, F Rizatdinova 140, E Rizvi 101, S H Robertson 111, A Robichaud-Veronneau 146, D Robinson 43, J E M Robinson 108, A Robson 76, J G Rocha de Lima 134, C Roda 151,152, D Roda Dos Santos 45, A Roe 77, S Roe 45, O Røhne 145, S Rolli 203, A Romaniouk 123, M Romano 29,30, G Romeo 42, E Romero Adam 211, N Rompotis 176, L Roos 104, E Ros 211, S Rosati 163, K Rosbach 70, A Rose 190, M Rose 102, G A Rosenbaum 199, P L Rosendahl 20, O Rosenthal 179, L Rosselet 70, V Rossetti 17, E Rossi 163,164, L P Rossi 71, M Rotaru 39, I Roth 216, J Rothberg 176, D Rousseau 143, C R Royon 174, A Rozanov 109, Y Rozen 193, X Ruan 49, F Rubbo 17, I Rubinskiy 63, N Ruckstuhl 133, V I Rud 124, C Rudolph 65, G Rudolph 86, F Rühr 12, A Ruiz-Martinez 88, L Rumyantsev 89, Z Rurikova 69, N A Rusakovich 89, A Ruschke 125, J P Rutherfoord 12, N Ruthmann 69, P Ruzicka 156, Y F Ryabov 150, M Rybar 158, G Rybkin 143, N C Ryder 146, A F Saavedra 191, I Sadeh 194, H F-W Sadrozinski 175, R Sadykov 89, F Safai Tehrani 163, H Sakamoto 196, G Salamanna 101, A Salamon 165, M Saleem 139, D Salek 45, D Salihagic 126, A Salnikov 181, J Salt 211, B M Salvachua Ferrando 11, D Salvatore 57,58, F Salvatore 190, A Salvucci 132, A Salzburger 45, D Sampsonidis 195, B H Samset 145, A Sanchez 129,130, V Sanchez Martinez 211, H Sandaker 20, H G Sander 107, M P Sanders 125, M Sandhoff 219, T Sandoval 43, C Sandoval 204, R Sandstroem 126, D P C Sankey 160, A Sansoni 68, C Santamarina Rios 111, C Santoni 54, R Santonico 165,166, H Santos 154, I Santoyo Castillo 190, J G Saraiva 154, T Sarangi 217, E Sarkisyan-Grinbaum 13, B Sarrazin 31, F Sarri 151,152, G Sartisohn 219, O Sasaki 90, Y Sasaki 196, N Sasao 92, I Satsounkevitch 117, G Sauvage 10, E Sauvan 10, J B Sauvan 143, P Savard 199, V Savinov 153, D O Savu 45, L Sawyer 38, D H Saxon 76, J Saxon 149, C Sbarra 29, A Sbrizzi 29,30, D A Scannicchio 205, M Scarcella 191, J Schaarschmidt 143, P Schacht 126, D Schaefer 149, U Schäfer 107, A Schaelicke 67, S Schaepe 31, S Schaetzel 82, A C Schaffer 143, D Schaile 125, R D Schamberger 189, A G Schamov 135, V Scharf 81, V A Schegelsky 150, D Scheirich 113, M Schernau 205, M I Scherzer 55, C Schiavi 71,72, J Schieck 125, M Schioppa 57,58, S Schlenker 45, E Schmidt 69, K Schmieden 31, C Schmitt 107, S Schmitt 82, B Schneider 23, U Schnoor 65, L Schoeffel 174, A Schoening 82, A L S Schorlemmer 77, M Schott 45, D Schouten 200, J Schovancova 156, M Schram 111, C Schroeder 107, N Schroer 83, M J Schultens 31, J Schultes 219, H-C Schultz-Coulon 81, H Schulz 22, M Schumacher 69, B A Schumm 175, Ph Schune 174, A Schwartzman 181, Ph Schwegler 126, Ph Schwemling 104, R Schwienhorst 114, R Schwierz 65, J Schwindling 174, T Schwindt 31, M Schwoerer 10, F G Sciacca 23, G Sciolla 33, W G Scott 160, J Searcy 142, G Sedov 63, E Sedykh 150, S C Seidel 131, A Seiden 175, F Seifert 65, J M Seixas 34, G Sekhniaidze 129, S J Sekula 61, K E Selbach 67, D M Seliverstov 150, B Sellden 186, G Sellers 99, M Seman 183, N Semprini-Cesari 29,30, C Serfon 125, L Serin 143, L Serkin 77, R Seuster 200, H Severini 139, A Sfyrla 45, E Shabalina 77, M Shamim 142, L Y Shan 49, J T Shank 32, Q T Shao 112, M Shapiro 21, P B Shatalov 122, K Shaw 206,208, D Sherman 220, P Sherwood 103, S Shimizu 128, M Shimojima 127, T Shin 79, M Shiyakova 89, A Shmeleva 121, M J Shochet 46, D Short 146, S Shrestha 88, E Shulga 123, M A Shupe 12, P Sicho 156, A Sidoti 163, F Siegert 69, Dj Sijacki 18, O Silbert 216, J Silva 154, Y Silver 194, D Silverstein 181, S B Silverstein 186, V Simak 157, O Simard 174, Lj Simic 18, S Simion 143, E Simioni 107, B Simmons 103, R Simoniello 115,116, M Simonyan 56, P Sinervo 199, N B Sinev 142, V Sipica 179, G Siragusa 218, A Sircar 38, A N Sisakyan 89, S Yu Sivoklokov 124, J Sjölin 186,187, T B Sjursen 20, L A Skinnari 21, H P Skottowe 80, K Skovpen 135, P Skubic 139, M Slater 24, T Slavicek 157, K Sliwa 203, V Smakhtin 216, B H Smart 67, L Smestad 145, S Yu Smirnov 123, Y Smirnov 123, L N Smirnova 124, O Smirnova 105, B C Smith 80, D Smith 181, K M Smith 76, M Smizanska 96, K Smolek 157, A A Snesarev 121, S W Snow 108, J Snow 139, S Snyder 38, R Sobie 213, J Sodomka 157, A Soffer 194, C A Solans 211, M Solar 157, J Solc 157, E Yu Soldatov 123, U Soldevila 211, E Solfaroli Camillocci 163,164, A A Solodkov 159, O V Solovyanov 159, V Solovyev 150, N Soni 2, A Sood 21, V Sopko 157, B Sopko 157, M Sosebee 13, R Soualah 206,208, P Soueid 120, A Soukharev 135, S Spagnolo 97,98, F Spanò 102, R Spighi 29, G Spigo 45, R Spiwoks 45, M Spousta 158, T Spreitzer 199, B Spurlock 13, R D St Denis 76, J Stahlman 149, R Stamen 81, E Stanecka 60, R W Stanek 11, C Stanescu 167, M Stanescu-Bellu 63, M M Stanitzki 63, S Stapnes 145, E A Starchenko 159, J Stark 78, P Staroba 156, P Starovoitov 63, R Staszewski 60, A Staude 125, P Stavina 182, G Steele 76, P Steinbach 65, P Steinberg 38, I Stekl 157, B Stelzer 180, H J Stelzer 114, O Stelzer-Chilton 200, H Stenzel 75, S Stern 126, G A Stewart 45, J A Stillings 31, M C Stockton 111, M Stoebe 111, K Stoerig 69, G Stoicea 39, S Stonjek 126, P Strachota 158, A R Stradling 13, A Straessner 65, J Strandberg 188, S Strandberg 186,187, A Strandlie 145, M Strang 137, E Strauss 181, M Strauss 139, P Strizenec 183, R Ströhmer 218, D M Strom 142, J A Strong 102, R Stroynowski 61, B Stugu 20, I Stumer 38, J Stupak 189, P Sturm 219, N A Styles 63, D A Soh 192, D Su 181, HS Subramania 4, R Subramaniam 38, A Succurro 17, Y Sugaya 144, C Suhr 134, M Suk 158, V V Sulin 121, S Sultansoy 8, T Sumida 92, X Sun 78, J E Sundermann 69, K Suruliz 177, G Susinno 57,58, M R Sutton 190, Y Suzuki 90, Y Suzuki 91, M Svatos 156, S Swedish 212, I Sykora 182, T Sykora 158, J Sánchez 211, D Ta 133, K Tackmann 63, A Taffard 205, R Tafirout 200, N Taiblum 194, Y Takahashi 128, H Takai 38, R Takashima 93, H Takeda 91, T Takeshita 178, Y Takubo 90, M Talby 109, A Talyshev 135, M C Tamsett 38, K G Tan 112, J Tanaka 196, R Tanaka 143, S Tanaka 162, S Tanaka 90, A J Tanasijczuk 180, K Tani 91, N Tannoury 109, S Tapprogge 107, D Tardif 199, S Tarem 193, F Tarrade 44, G F Tartarelli 115, P Tas 158, M Tasevsky 156, E Tassi 57,58, Y Tayalati 172, C Taylor 103, F E Taylor 119, G N Taylor 112, W Taylor 201, M Teinturier 143, F A Teischinger 45, M Teixeira Dias Castanheira 101, P Teixeira-Dias 102, K K Temming 69, H Ten Kate 45, P K Teng 192, S Terada 90, K Terashi 196, J Terron 106, M Testa 68, R J Teuscher 199, J Therhaag 31, T Theveneaux-Pelzer 104, S Thoma 69, J P Thomas 24, E N Thompson 55, P D Thompson 24, P D Thompson 199, A S Thompson 76, L A Thomsen 56, E Thomson 149, M Thomson 43, W M Thong 112, R P Thun 113, F Tian 55, M J Tibbetts 21, T Tic 156, V O Tikhomirov 121, Y A Tikhonov 135, S Timoshenko 123, E Tiouchichine 109, P Tipton 220, S Tisserant 109, T Todorov 10, S Todorova-Nova 203, B Toggerson 205, J Tojo 94, S Tokár 182, K Tokushuku 90, K Tollefson 114, M Tomoto 128, L Tompkins 46, K Toms 131, A Tonoyan 20, C Topfel 23, N D Topilin 89, E Torrence 142, H Torres 104, E Torró Pastor 211, J Toth 109, F Touchard 109, D R Tovey 177, T Trefzger 218, L Tremblet 45, A Tricoli 45, I M Trigger 200, S Trincaz-Duvoid 104, M F Tripiana 95, N Triplett 38, W Trischuk 199, B Trocmé 78, C Troncon 115, M Trottier-McDonald 180, P True 114, M Trzebinski 60, A Trzupek 60, C Tsarouchas 45, J C-L Tseng 146, M Tsiakiris 133, P V Tsiareshka 117, D Tsionou 10, G Tsipolitis 15, S Tsiskaridze 17, V Tsiskaridze 69, E G Tskhadadze 73, I I Tsukerman 122, V Tsulaia 21, J-W Tsung 31, S Tsuno 90, D Tsybychev 189, A Tua 177, A Tudorache 39, V Tudorache 39, J M Tuggle 46, M Turala 60, D Turecek 157, I Turk Cakir 9, E Turlay 133, R Turra 115,116, P M Tuts 55, A Tykhonov 100, M Tylmad 186,187, M Tyndel 160, G Tzanakos 14, K Uchida 31, I Ueda 196, R Ueno 44, M Ughetto 109, M Ugland 20, M Uhlenbrock 31, M Uhrmacher 77, F Ukegawa 202, G Unal 45, A Undrus 38, G Unel 205, Y Unno 90, D Urbaniec 55, P Urquijo 31, G Usai 13, M Uslenghi 147,148, L Vacavant 109, V Vacek 157, B Vachon 111, S Vahsen 21, S Valentinetti 29,30, A Valero 211, S Valkar 158, E Valladolid Gallego 211, S Vallecorsa 193, J A Valls Ferrer 211, R Van Berg 149, P C Van Der Deijl 133, R van der Geer 133, H van der Graaf 133, R Van Der Leeuw 133, E van der Poel 133, D van der Ster 45, N van Eldik 45, P van Gemmeren 11, J Van Nieuwkoop 180, I van Vulpen 133, M Vanadia 126, W Vandelli 45, A Vaniachine 11, P Vankov 63, F Vannucci 104, R Vari 163, E W Varnes 12, T Varol 110, D Varouchas 21, A Vartapetian 13, K E Varvell 191, V I Vassilakopoulos 79, F Vazeille 54, T Vazquez Schroeder 77, G Vegni 115,116, J J Veillet 143, F Veloso 154, R Veness 45, S Veneziano 163, A Ventura 97,98, D Ventura 110, M Venturi 69, N Venturi 199, V Vercesi 147, M Verducci 176, W Verkerke 133, J C Vermeulen 133, A Vest 65, M C Vetterli 180, I Vichou 209, T Vickey 185, O E Vickey Boeriu 185, G H A Viehhauser 146, S Viel 212, M Villa 29,30, M Villaplana Perez 211, E Vilucchi 68, M G Vincter 44, E Vinek 45, V B Vinogradov 89, M Virchaux 174, J Virzi 21, O Vitells 216, M Viti 63, I Vivarelli 69, F Vives Vaque 4, S Vlachos 15, D Vladoiu 125, M Vlasak 157, A Vogel 31, P Vokac 157, G Volpi 68, M Volpi 112, G Volpini 115, H von der Schmitt 126, H von Radziewski 69, E von Toerne 31, V Vorobel 158, V Vorwerk 17, M Vos 211, R Voss 45, J H Vossebeld 99, N Vranjes 174, M Vranjes Milosavljevic 133, V Vrba 156, M Vreeswijk 133, T Vu Anh 69, R Vuillermet 45, I Vukotic 46, W Wagner 219, P Wagner 31, H Wahlen 219, S Wahrmund 65, J Wakabayashi 128, S Walch 113, J Walder 96, R Walker 125, W Walkowiak 179, R Wall 220, P Waller 99, B Walsh 220, C Wang 66, H Wang 217, H Wang 61, J Wang 192, J Wang 49, R Wang 131, S M Wang 192, T Wang 31, A Warburton 111, C P Ward 43, D R Wardrope 103, M Warsinsky 69, A Washbrook 67, C Wasicki 63, I Watanabe 91, P M Watkins 24, A T Watson 24, I J Watson 191, M F Watson 24, G Watts 176, S Watts 108, A T Waugh 191, B M Waugh 103, M S Weber 23, J S Webster 46, A R Weidberg 146, P Weigell 126, J Weingarten 77, C Weiser 69, P S Wells 45, T Wenaus 38, D Wendland 22, Z Weng 192, T Wengler 45, S Wenig 45, N Wermes 31, M Werner 69, P Werner 45, M Werth 205, M Wessels 81, J Wetter 203, C Weydert 78, K Whalen 44, A White 13, M J White 112, S White 151,152, S R Whitehead 146, D Whiteson 205, D Whittington 85, D Wicke 219, F J Wickens 160, W Wiedenmann 217, M Wielers 160, P Wienemann 31, C Wiglesworth 101, L A M Wiik-Fuchs 31, P A Wijeratne 103, A Wildauer 126, M A Wildt 63, I Wilhelm 158, H G Wilkens 45, J Z Will 125, E Williams 55, H H Williams 149, S Williams 43, W Willis 55, S Willocq 110, J A Wilson 24, M G Wilson 181, A Wilson 113, I Wingerter-Seez 10, S Winkelmann 69, F Winklmeier 45, M Wittgen 181, S J Wollstadt 107, M W Wolter 60, H Wolters 154, W C Wong 62, G Wooden 113, B K Wosiek 60, J Wotschack 45, M J Woudstra 108, K W Wozniak 60, K Wraight 76, M Wright 76, B Wrona 99, S L Wu 217, X Wu 70, Y Wu 50, E Wulf 55, B M Wynne 67, S Xella 56, M Xiao 174, S Xie 69, C Xu 50, D Xu 49, L Xu 50, B Yabsley 191, S Yacoob 184, M Yamada 90, H Yamaguchi 196, A Yamamoto 90, K Yamamoto 88, S Yamamoto 196, T Yamamura 196, T Yamanaka 196, K Yamauchi 128, T Yamazaki 196, Y Yamazaki 91, Z Yan 32, H Yang 113, U K Yang 108, Y Yang 137, Z Yang 186,187, S Yanush 118, L Yao 49, Y Yasu 90, E Yatsenko 63, J Ye 61, S Ye 38, A L Yen 80, M Yilmaz 7, R Yoosoofmiya 153, K Yorita 215, R Yoshida 11, K Yoshihara 196, C Young 181, C J Young 146, S Youssef 32, D Yu 38, D R Yu 21, J Yu 13, J Yu 140, L Yuan 91, A Yurkewicz 134, B Zabinski 60, R Zaidan 87, A M Zaitsev 159, L Zanello 163,164, D Zanzi 126, A Zaytsev 38, C Zeitnitz 219, M Zeman 157, A Zemla 60, O Zenin 159, T Ženiš 182, Z Zinonos 151,152, D Zerwas 143, G Zevi della Porta 80, D Zhang 113, H Zhang 114, J Zhang 11, X Zhang 52, Z Zhang 143, L Zhao 136, Z Zhao 50, A Zhemchugov 89, J Zhong 146, B Zhou 113, N Zhou 205, Y Zhou 192, C G Zhu 52, H Zhu 63, J Zhu 113, Y Zhu 50, X Zhuang 125, V Zhuravlov 126, A Zibell 125, D Zieminska 85, N I Zimin 89, R Zimmermann 31, S Zimmermann 31, S Zimmermann 69, M Ziolkowski 179, R Zitoun 10, L Živković 55, V V Zmouchko 159, G Zobernig 217, A Zoccoli 29,30, M zur Nedden 22, V Zutshi 134, L Zwalinski 45
PMCID: PMC4371093  PMID: 25814855

Abstract

A measurement of the top quark pair production cross section in the final state with a hadronically decaying tau lepton and jets is presented. The analysis is based on proton–proton collision data recorded by the ATLAS experiment at the LHC, with a centre-of-mass energy of 7 TeV. The data sample corresponds to an integrated luminosity of 1.67 fb−1. The cross section is measured to be \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sigma_{t\bar{t}} = 194 \pm18\ (\mbox{stat}.) \pm46\ (\mbox{syst}.)~\mbox{pb}$\end{document} and is in agreement with other measurements and with the Standard Model prediction.

Introduction

Top quark pairs (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\bar {t}$\end{document}) are produced in abundance at the Large Hadron Collider (LHC) due to the high centre-of-mass energy of 7 TeV. The large sample of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\bar {t}$\end{document} events collected with the ATLAS detector makes it possible to study experimentally challenging decay channels and topologies. This letter describes a measurement of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\bar {t}$\end{document} production cross section. The final state studied here consists of a hadronically decaying tau lepton (τ had) and jets, corresponding to the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\bar{t} \rightarrow [b \tau_{\mathrm{had}} \nu_{\tau}][bqq]$\end{document} decay, where b and q are used to denote b-quarks and lighter quarks, respectively. Such an event topology with a hadronically decaying tau lepton corresponds to approximately 10 % of all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\bar {t}$\end{document} decays [1].

A \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\bar {t}$\end{document} cross-section measurement in the final state with tau leptons makes it possible to probe flavour-dependent effects in top quark decays. It is also relevant to searches for processes beyond the Standard Model, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\bar {t}$\end{document} events with tau leptons in the final state are a dominant background. This measurement is particularly important for hypothetical charged Higgs boson production [25] in top quark decays, where the existence of a charged Higgs boson would lead to an enhancement in the cross section for the considered \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\bar {t}$\end{document} final state. The measurement presented here is complementary to the previously published tau + lepton (electron or muon) channel measurement [6]. The most recent cross-section measurements of the tau + jets decay channel have been performed by the CDF and D0 collaborations in proton–antiproton collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s} = 1.96~\mbox{TeV}$\end{document} [7, 8]. This is the first measurement reported in this specific channel at the LHC.

In this analysis, events with at least five jets are selected, where two of the jets are identified as having originated from b-quarks. After identifying the two jets likely to come from the hadronic decay of one of the top quarks, one of the remaining jets is selected as the τ had candidate from the other top quark. The τ had contribution is separated from quark- or gluon-initiated jets with a one-dimensional fit to the distribution of the number of tracks associated with the τ had candidate. Since the τ had decays preferentially to one or three charged particles (and other neutral decay products), this variable provides good separation between hadronically decaying tau leptons and jets, as the latter typically produce a large number of charged particles. The main backgrounds to the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\bar {t}$\end{document} signal are multijet events, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\bar {t}$\end{document} events with a different final state or signal events where the wrong jet is chosen as the τ had candidate. A small contribution from single-top and W+jets events is also present. The distributions for the backgrounds used in the fit are obtained with data-driven methods.

The ATLAS detector

The ATLAS detector [9] is a multipurpose particle physics detector with a forward-backward symmetric cylindrical geometry and a near-4π coverage in solid angle.1 The inner tracking system covers the pseudorapidity range |η|<2.5, and consists of a silicon pixel detector, a silicon microstrip detector (SCT), and, for |η|<2.0, a transition radiation tracker. The inner detector is surrounded by a thin superconducting solenoid providing a 2 T magnetic field along the beam direction. A high-granularity liquid-argon sampling electromagnetic calorimeter covers the region |η|<3.2. An iron/scintillator tile hadronic calorimeter provides coverage in the range |η|<1.7. The end-cap and forward regions, spanning 1.5<|η|<4.9, are instrumented with liquid-argon calorimeters for both electromagnetic and hadronic measurements. The muon spectrometer surrounds the calorimeters. It consists of three large air-core superconducting toroid systems and separate trigger and high-precision tracking chambers providing accurate muon tracking for |η|<2.7.

Data and simulation samples

The data used in this analysis were collected during the first half of the 2011 data-taking period and correspond to a total integrated luminosity of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{L} = 1.67~\mbox{\mbox {fb$^{-1}$}}$\end{document}. The data sample was selected with a b-jet trigger that required at least four jets identified with |η|<3.2 and a transverse energy (E T) above 10 GeV. Two of these jets were required to be identified as b-jets using a dedicated high-level-trigger b-tagging algorithm [10]. This trigger was enabled for only part of the 2011 data-taking period and is therefore the limiting factor in determining the integrated luminosity of the dataset used.

The selection efficiency for the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\bar {t} \to \tau_{\mathrm{had}} + \mbox{jets}$\end{document} signal is derived from Monte Carlo (MC) simulations. The MC@NLO v4.01 [11] generator, with the parton distribution function (PDF) set CT10 [12], is used for the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\bar {t}$\end{document} signal. The theoretical prediction of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\bar {t}$\end{document} cross section for proton–proton collisions at a centre-of-mass energy of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s} = 7~\mbox{TeV}$\end{document} is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sigma_{ t\bar {t} } = 167^{+17}_{-18}~\mbox{pb}$\end{document} for a top quark mass of 172.5 GeV. It has been calculated at approximate next-to-next-to-leading order (NNLO) in QCD with Hathor 1.2 [13] using the MSTW2008 90 % confidence level NNLO PDF sets [14], incorporating PDF and α S uncertainties according to the MSTW prescription [15], and cross-checked with the next-to-leading-order + next-to-next-to-leading-log calculation of Cacciari et al. [16] as implemented in Top++ 1.0 [17]. Tau lepton decays are modelled with Tauola [18]. Samples of simulated events are also used to estimate the small contributions from W+jets, Z+jets, single-top-quark and diboson events, as described in Ref. [19]. The generated events were processed through the full ATLAS detector simulation using Geant4 [20, 21], followed by the trigger and offline reconstruction. The distribution of the number of pile-up events (i.e. collisions in the same, or nearby, bunch crossing as the hard-scattering event) is adjusted to match the scattering multiplicity measured in the data.

Event selection

Jets are reconstructed from clusters of calorimeter cells [22] using the anti-k t algorithm [23, 24] with a radius parameter R=0.4. The jets are calibrated using transverse momentum- and η-dependent corrections obtained from simulation and validated with collision data [25]. Candidate events are required to contain at least five jets with a transverse momentum (p T) larger than 20 GeV and |η|<2.5.

The identification of jets originating from b-quarks is performed using algorithms that combine secondary vertex properties and track impact parameters [26]. The algorithm identifies b-jets with an average efficiency of 60 % and provides a light-quark jet rejection factor of about 340 in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\bar {t}$\end{document} topologies. The likelihood of misidentifying a τ had as a b-jet in a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\bar {t}$\end{document} event is approximately 5 %. The two jets with the highest b-tag probability are chosen as the event b-candidates; events with fewer than two b-jets are rejected.

The magnitude of the missing transverse energy (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E_{\mathrm {T}}^{\mathrm {miss}}$\end{document}) is reconstructed from energy clusters in the calorimeters. The calibration of each cluster depends on the type of physical object associated with the cluster. The transverse momentum of muons in the event is also taken into account. The \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E_{\mathrm {T}}^{\mathrm {miss}}$\end{document} significance (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S_{E_{\mathrm{T}}^{\mathrm{miss}}}$\end{document}) is defined as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E_{\mathrm {T}}^{\mathrm {miss}} / (0.5~[\sqrt{\mathrm{GeV}}] \cdot\sqrt{ \sum E_{\mathrm{T}} })$\end{document}, where ∑E T is the scalar sum of the transverse momentum of all objects. Using a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S_{E_{\mathrm{T}}^{\mathrm{miss}}}$\end{document} requirement instead of a direct \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E_{\mathrm {T}}^{\mathrm {miss}}$\end{document} requirement allows the rejection of multijet events where the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E_{\mathrm {T}}^{\mathrm {miss}}$\end{document} arises from energy resolution effects, while still retaining high efficiency for signal events with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E_{\mathrm {T}}^{\mathrm {miss}}$\end{document} coming from particles which do not interact with the detector [27]. Candidate events are required to have \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S_{E_{\mathrm{T}}^{\mathrm{miss}}} > 8$\end{document}.

Events containing a reconstructed electron or muon [28, 29] with p T>15 GeV and |η|<2.5 are vetoed to reduce the background due to events containing W bosons that decay to electrons or muons and to avoid overlap with other \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\bar {t}$\end{document} cross-section measurements.

In each event, a single τ had candidate is selected from the reconstructed jets using the following procedure. First, the reconstruction of the hadronically decaying top quark is attempted by selecting the three jets (including exactly one of the two b-candidates) which, when their four-momenta are added vectorially, give the highest p T sum. The remaining jet with the highest p T, excluding the remaining b-candidate, is selected as the τ had candidate. Events where the τ had candidate p T is below 40 GeV are rejected.

The main contributions to the selected τ had candidates in the signal region come from the signal (τ had from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\bar {t}$\end{document} events), electrons from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\bar {t}$\end{document} events and misidentified jets from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\bar {t}$\end{document}, single-top-quark production, W+jets and multijet events. The contributions from Z/γ +jets and diboson processes are negligible.

Data analysis

The majority of τ had decays are characterised by the presence of one or three charged hadrons in the final state, which can be reconstructed as charged particle tracks in the inner detector. The number of tracks (n track) originating from the interaction point associated with a τ had candidate is used to separate the τ had contribution from the misidentified jet background.

All selected tracks with p T>1 GeV located in a core region spanning ΔR<0.2 around the jet axis are counted. To increase the discriminating power, tracks in the outer cone 0.2<ΔR<0.6 are also counted, using a variable p T requirement that is dependent on both the ΔR of the outer track and the p T of the core tracks. This variable p T requirement is designed to reduce the contribution from pile-up and underlying event tracks, and is explained in Ref. [30]. The separation power of the n track variable is illustrated in Fig. 1 where a comparison of the n track distribution is shown for τ had, electrons and misidentified jets from multijet events.

Fig. 1.

Fig. 1

Distribution of n track for τ had from MC \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\bar {t}$\end{document} events (solid black line), electrons from MC \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\bar {t}$\end{document} events (dashed red line), and for jets from multijet events from data (blue triangles). The multijet event selection uses a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S_{E_{\mathrm{T}}^{\mathrm{miss}}}$\end{document} sideband region as described in Sect. 5. All distributions are normalised to unity (Color figure online)

To extract the signal from the n track distribution, the data sample is fitted with three probability density functions (templates): a tau/electron template, a gluon-jet template and a quark-jet template. The τ had component from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\bar {t}$\end{document} events constitutes the signal in the event sample. Real electrons from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\bar {t}$\end{document} events (either prompt or from leptonic tau decays) which failed to be rejected by the electron veto also contribute significantly to the event sample. The electron and τ had templates are combined into a single tau/electron template to ensure a stable fit, using MC predictions to determine their relative contributions. The tau/electron template is obtained from simulated \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\bar {t}$\end{document} events. The small expected contributions to the real tau/electron component of the fit from single-top-quark and W+jets events do not change the shape of the template.

The remaining significant contributions come from misidentified jets, and are separated into two templates. The gluon-jet template describes the QCD multijet processes which are dominated by gluon-initiated jets, and the quark-jet template describes the remaining processes (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\bar {t}$\end{document}, single-top quark and W+jets) that are enriched in quark-initiated jets.

The gluon-jet template is determined using a sideband region where the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S_{E_{\mathrm{T}}^{\mathrm{miss}}}$\end{document} requirement is changed to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$3 < S_{E_{\mathrm{T}}^{\mathrm{miss}}} < 4$\end{document}. This selection greatly enhances the contribution from multijet events, reducing other contributions (e.g. from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\bar {t}$\end{document} events) to less than 1 %. The regions defined by the selection \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2 < S_{E_{\mathrm{T}}^{\mathrm{miss}}} < 3$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$4 < S_{E_{\mathrm{T}}^{\mathrm{miss}}} < 5$\end{document} are also used to study any correlations between the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S_{E_{\mathrm{T}}^{\mathrm{miss}}}$\end{document} criteria and the n track distribution.

The quark-jet template is obtained from a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\bar {t}$\end{document} control sample where the τ had candidate is replaced by a muon candidate. The reconstructed muon [29] is required to have p T>20 GeV, |η|<2.5 and no jet within a distance ΔR=0.4. The requirement on the number of non-b-tagged jets is changed from three to two as the jet corresponding to the τ had is now replaced by a muon. The other selection requirements are the same as for the signal region. This isolates \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\bar {t}$\end{document} events with very high purity; the contribution from backgrounds is estimated from MC predictions to be at the 5 % level, and consists mainly of single-top-quark and W+jets events. The two highest-p T jets that are not identified as b-jet candidates are selected as τ had candidates. The template is corrected using MC simulations for differences in the transverse momentum distribution between the signal region and the control sample, and for the expected contribution to the control sample from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\bar {t}$\end{document} dilepton events (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\bar {t} \rightarrow \mu + \tau_{\mathrm{had}} + X$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\bar {t} \rightarrow \mu + e + X$\end{document}).

Results

An extended binned-likelihood fit is used to extract the different contributions from the n track distribution. To improve the fit stability, a soft constraint is applied to the ratio of quark-jet events to tau/electron events, which are dominated by the same process (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\bar {t}$\end{document} events). The constraint, based on MC predictions, is a Gaussian with a width of 19 % of its central value. This width was estimated based on studies of the associated systematic uncertainties using the same methodology as described in Sect. 7. The statistical uncertainties on the fit parameters are calculated using the shape of the fit likelihood. The systematic uncertainties on the shapes of the templates are propagated using a pseudo-experiment approach, taking into account the bin-by-bin correlations. This yields a final number of tau/electron events of 270 ± 24 (stat.) ± 11 (syst.).

The fit results are shown in Fig. 2. A comparison between the fit results, and the expected event yields from the MC predictions is presented in Table 1. The numbers are in good agreement.

Fig. 2.

Fig. 2

The n track distribution for τ had candidates after all selection cuts. The black points correspond to data, while the solid black line is the result of the fit. The red (dashed), blue (dotted) and magenta (dash-dotted) histograms show the fitted contributions from the tau/electron signal, and the gluon-jet and quark-jet backgrounds, respectively (Color figure online)

Table 1.

Comparison of the numbers of events from MC expectations and from the results of the fit to the data for the three templates. The uncertainties on the MC expectations include the systematic uncertainties of the selection efficiency described in Sect. 7. No MC predictions are available for the gluon-jet contribution

Source Number of events
tau/electron
\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\bar {t}$\end{document} (τ had) 170 ± 40
\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\bar {t}$\end{document} (electrons) 47 ± 11
Single top 12 ± 2
W+jets 9 ± 5
Total expected 240 ± 50
Fit result 270 ± 24 (stat.) ± 11 (syst.)
quark-jet
\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\bar {t}$\end{document} (jets) 540 ± 160
Single top 24 ± 4
W+jets 21 ± 12
Total expected 580 ± 160
Fit result 520 ± 97 (stat.) ± 78 (syst.)
gluon-jet
Fit result 960 ± 77 (stat.) ± 74 (syst.)

To extract the number of signal events, predictions from simulation are used to subtract the backgrounds from W+jets and single-top events (9 ± 5 and 12 ± 2, respectively) from the fitted number of tau/electron events. The number is then scaled by the expected ratio, N τ/(N τ+N e), of τ had and electrons passing the selection in the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\bar {t}$\end{document} sample. This ratio is estimated from MC simulation to be 0.78 ± 0.03 (stat.) ± 0.03 (syst.). This yields a final number of observed signal events of N τ = 194 ± 18 (stat.) ± 11 (syst.).

The cross section is obtained using \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sigma_{t\bar{t}} = {N_{\tau}}/({\mathcal{L} \cdot \varepsilon})$\end{document}. The efficiency (ε) is estimated from MC simulation to be (6.0 ± 1.4) ×10−4. It includes the branching fractions for the various \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\bar {t}$\end{document} decays and the acceptance, and assumes Br(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\bar {t}$\end{document}τ had + jets) to be 0.098 ± 0.002 [1]. The efficiency is corrected for a 13 % difference between MC simulation and data in the trigger and b-tagging efficiencies [26]. The method used for obtaining the uncertainty on the cross section is detailed in Sect. 7.

The cross section is measured to be \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sigma_{t\bar{t}}= 194 \pm 18~(\mbox{stat}.) \pm 46~(\mbox{syst}.)~\mbox{pb}$\end{document}.

Systematic uncertainties

A summary of all systematic uncertainties on the cross section is given in Table 2.

Table 2.

Systematic uncertainties on the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\bar {t}$\end{document} cross section

Source of uncertainty Relative uncertainty
ISR/FSR 15 %
Event generator 11 %
Hadronisation model 6 %
PDFs 2 %
Pile-up 1 %
b-jet tagging efficiency 9 %
Jet energy scale 5 %
\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E_{\mathrm {T}}^{\mathrm {miss}}$\end{document} significance mismodelling 5 %
b-jet trigger efficiency 3 %
Jet energy resolution 2 %
Fit systematic uncertainties 4 %
Luminosity 4 %
Total uncertainty 24 %

The uncertainty on the selection efficiency due to the choice of the configuration for the MC simulation is estimated by using alternative MC samples and reweighting procedures. The difference in the efficiency obtained from various configurations is taken as the uncertainty. The uncertainty on the modelling of the ISR/FSR is taken into account by using AcerMC [31] samples with specific tunes aimed at conservatively varying the amount of parton showering [32]. The uncertainty due to the choice of the matrix element event generator is estimated by comparing \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\bar {t}$\end{document} samples generated using MC@NLO, Powheg [3335], and Alpgen [36]. To study the impact of different hadronization models, events generated using Powheg are processed with two different hadronization programs: Herwig and Pythia. The uncertainty of the choice of PDFs is estimated using a number of current PDF sets [37].

Uncertainties on the simulation of the detector response are taken into account using dedicated studies of the reconstructed physics objects (electrons, muons, jets, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E_{\mathrm {T}}^{\mathrm {miss}}$\end{document}). The uncertainties considered are associated with the jet energy scale, jet energy resolution, b-tagging efficiency, trigger efficiency and the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E_{\mathrm {T}}^{\mathrm {miss}}$\end{document} calculation [25, 26]. The uncertainty due to mismodelling of the lepton veto is estimated using the uncertainties on the muon and electron reconstruction efficiencies determined from independent data samples, and is found to be negligible.

To obtain the uncertainty on the fit results, variations are applied to the templates to describe various systematic effects. As the tau/electron template is taken directly from MC-simulated \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\bar {t}$\end{document} events, the systematic uncertainties on this template are taken from estimates of the mismodelling of the simulation. The dominant contributions come from variations in the amount of ISR/FSR in the simulation (1 %), the modelling of the pile-up (1 %), and the statistical uncertainties (1 %). Uncertainties on the track reconstruction efficiency, jet energy scale, and the ratio of τ had to electrons are found to be negligible. The quark-jet template is obtained from a μ+jets control sample of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\bar {t}$\end{document} events in data. The dominant contributions to the uncertainty come from the statistical uncertainties (4 %), the difference in shape between the μ+jets template and the expected quark-jet distribution, estimated from MC samples (2 %), and the MC-based subtraction of the dilepton contribution (1 %). The uncertainty on the MC-based kinematic correction is found to be negligible. The gluon-jet template is derived from a background-dominated sideband region with small values of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S_{E_{\mathrm{T}}^{\mathrm{miss}}}$\end{document}. The two sources of uncertainties are the dependence of the template on the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S_{E_{\mathrm{T}}^{\mathrm{miss}}}$\end{document} criterion of the control region, obtained by varying the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S_{E_{\mathrm{T}}^{\mathrm{miss}}}$\end{document} requirement (1 %), and the statistical uncertainty of the control region (1 %). The total systematic uncertainty on the fit is found to be 4 %.

The uncertainty on the luminosity is calculated to be 3.7 % as described in Ref. [38]. The total systematic uncertainty on the cross section is 24 %.

Conclusions

This letter presents a measurement of the top quark pair production cross section in the final state corresponding to the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\bar{t} \rightarrow [b \tau_{\mathrm{had}} \nu_{\tau}][bqq]$\end{document} decay. The measurement uses a dataset corresponding to an integrated luminosity of 1.67 fb−1 of proton–proton collision data at a centre-of-mass energy of 7 TeV recorded by the ATLAS experiment at the LHC. The signal has been extracted by fitting the number of tracks associated with tau lepton candidates using templates derived from simulation for the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\bar{t}$\end{document} signal and from the data for the backgrounds.

The \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\bar {t}$\end{document} production cross section is measured to be \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sigma_{t\bar{t}}= 194 \pm 18\ (\mbox{stat}.) \pm 46\ (\mbox{syst}.)~\mbox{pb}$\end{document}. This result is compatible with the highest precision ATLAS measurements [39, 40], and with the result of 186 ± 13 (stat.) ± 20 (syst.) ± 7 (lum.) pb obtained in the complementary tau + lepton (electron or muon) channel [6]. It is also in good agreement with the theoretical prediction of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$167_{-18}^{+17}~\mbox{pb}$\end{document}.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Open Access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Footnotes

1

ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r,ϕ) are used in the transverse (x, y) plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as η=−lntan(θ/2). The variable ΔR is used to evaluate the distance between objects, and is defined as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta R = \sqrt{(\Delta\phi)^{2} + (\Delta\eta)^{2}}$\end{document}.

References

  • 1.Beringer J., Particle Data Group et al. Phys. Rev. D. 2012;86:010001. doi: 10.1103/PhysRevD.86.010001. [DOI] [Google Scholar]
  • 2.Gunion J.F., Haber H.E., Kane G., Dawson S. The Higgs Hunter’s Guide. Reading: Addison-Wesley; 1990. [Google Scholar]
  • 3. J.F. Gunion, H.E. Haber, G. Kane, S. Dawson, Errata for “The Higgs hunter’s guide”. Preprint SCIPP-92-58 (1993)
  • 4.Gunion J.F., Haber H.E. Nucl. Phys. B. 1986;272:1. doi: 10.1016/0550-3213(86)90340-8. [DOI] [Google Scholar]
  • 5.ATLAS Collaboration J. High Energy Phys. 2012;1206:039. [Google Scholar]
  • 6. ATLAS Collaboration, Phys. Lett. B 717 (2012)
  • 7.Abazov V.M., D0 Collaboration et al. Phys. Rev. D. 2010;82:071102. doi: 10.1103/PhysRevD.82.071102. [DOI] [Google Scholar]
  • 8. T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. (2012). doi:10.1103/PhysRevLett.109.192001. arXiv:1208.5720 [hep-ex] [DOI] [PubMed]
  • 9.ATLAS Collaboration J. Instrum. 2008;3:S08003. doi: 10.1088/1748-0221/3/08/S08003. [DOI] [Google Scholar]
  • 10.ATLAS Collaboration Eur. Phys. J. C. 2012;72:1849. doi: 10.1140/epjc/s10052-011-1849-1. [DOI] [Google Scholar]
  • 11.Frixione S., Webber B.R. J. High Energy Phys. 2002;06:029. doi: 10.1088/1126-6708/2002/06/029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Lai H.L., et al. Phys. Rev. D. 2010;82:074024. doi: 10.1103/PhysRevD.82.074024. [DOI] [Google Scholar]
  • 13.Aliev M., Lacker H., Langenfeld U., Moch S., Uwer P., Wiedermann M. Comput. Phys. Commun. 2011;182:1034. doi: 10.1016/j.cpc.2010.12.040. [DOI] [Google Scholar]
  • 14.Martin A., Stirling W., Thorne R., Watt G. Eur. Phys. J. C. 2009;63:189. doi: 10.1140/epjc/s10052-009-1072-5. [DOI] [Google Scholar]
  • 15.Martin A., Stirling W., Thorne R., Watt G. Eur. Phys. J. C. 2009;64:653. doi: 10.1140/epjc/s10052-009-1164-2. [DOI] [Google Scholar]
  • 16.Cacciari M., Czakon M., Mangano M.L., Mitov A., Nason P. Phys. Lett. B. 2012;710:612. doi: 10.1016/j.physletb.2012.03.013. [DOI] [Google Scholar]
  • 17. M. Czakon, A. Mitov, arXiv:1112.5675 [hep-ph] (2011)
  • 18.Jadach S., Wąs Z., Decker R., Kühn J.H. Comput. Phys. Commun. 1993;76:361. doi: 10.1016/0010-4655(93)90061-G. [DOI] [Google Scholar]
  • 19.ATLAS Collaboration Eur. Phys. J. C. 2011;71:1577. doi: 10.1140/epjc/s10052-011-1577-6. [DOI] [Google Scholar]
  • 20.Agostinelli S., et al. Nucl. Instrum. Methods A. 2003;506:250. doi: 10.1016/S0168-9002(03)01368-8. [DOI] [Google Scholar]
  • 21.ATLAS Collaboration Eur. Phys. J. C. 2010;70:823. doi: 10.1140/epjc/s10052-010-1429-9. [DOI] [Google Scholar]
  • 22. ATLAS Collaboration, Calorimeter clustering algorithms: Description and performance. ATL-LARG-PUB-2008-002. http://cdsweb.cern.ch/record/1099735
  • 23.Cacciari M., Salam G.P. Phys. Lett. B. 2006;641:57. doi: 10.1016/j.physletb.2006.08.037. [DOI] [Google Scholar]
  • 24.Cacciari M., Salam G.P., Soyez G. J. High Energy Phys. 2008;0804:063. doi: 10.1088/1126-6708/2008/04/063. [DOI] [Google Scholar]
  • 25. ATLAS Collaboration, Eur. Phys. J. (2012 submitted). arXiv:1112.6426 [hep-ex]
  • 26. ATLAS Collaboration, Commissioning of the ATLAS high-performance b-tagging algorithms in the 7 TeV collision data. ATLAS-CONF-2011-102. http://cdsweb.cern.ch/record/1369219
  • 27.ATLAS Collaboration Phys. Lett. B. 2012;706:276. doi: 10.1016/j.physletb.2011.11.057. [DOI] [Google Scholar]
  • 28.ATLAS Collaboration Eur. Phys. J. C. 2012;72:1909. doi: 10.1140/epjc/s10052-012-1909-1. [DOI] [Google Scholar]
  • 29. ATLAS Collaboration, Muon reconstruction efficiency in reprocessed 2010 LHC proton–proton collision data recorded with the ATLAS detector. ATLAS-CONF-2011-063. http://cdsweb.cern.ch/record/1345743
  • 30. ATLAS Collaboration, Performance of the reconstruction and identification of hadronic tau decays in ATLAS with 2011 data. ATLAS-COM-CONF-2012-080. http://cdsweb.cern.ch/record/1450096
  • 31. B.P. Kersevan, E. Richter-Was, arXiv:hep-ph/0405247 (2004)
  • 32. ATLAS Collaboration, Expected performance of the ATLAS experiment—detector, trigger and physics. CERN-OPEN-2008-020. http://cdsweb.cern.ch/record/1125884
  • 33.Nason P. J. High Energy Phys. 2004;11:040. doi: 10.1088/1126-6708/2004/11/040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Frixione S., Nason P., Oleari C. J. High Energy Phys. 2007;11:070. doi: 10.1088/1126-6708/2007/11/070. [DOI] [Google Scholar]
  • 35.Alioli S., Nason P., Oleari C., Re E. J. High Energy Phys. 2010;06:043. doi: 10.1007/JHEP06(2010)043. [DOI] [Google Scholar]
  • 36.Mangano M.L., Moretti M., Piccinini F., Pittau R., Polosa A.D. J. High Energy Phys. 2003;07:001. doi: 10.1088/1126-6708/2003/07/001. [DOI] [Google Scholar]
  • 37. M. Botje et al., arXiv:1101.0538 [hep-ph] (2011)
  • 38. ATLAS Collaboration, Luminosity determination in pp collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s} = 7~\mbox{TeV}$\end{document} using the ATLAS detector in 2011. ATLAS-CONF-2011-116. http://cdsweb.cern.ch/record/1376384
  • 39.ATLAS Collaboration J. High Energy Phys. 2012;1205:059. [Google Scholar]
  • 40.ATLAS Collaboration Phys. Lett. B. 2012;711:244. doi: 10.1016/j.physletb.2012.03.083. [DOI] [Google Scholar]

Articles from The European Physical Journal. C, Particles and Fields are provided here courtesy of Springer

RESOURCES