Abstract
Abscisic acid (ABA), a plant hormone whose production is stimulated by water stress, reduces the apertures of stomatal pores in the leaf surface, thereby lessening transpirational water loss. It has been thought that inhibition of stomatal opening and promotion of stomatal closure by ABA are initiated by the binding of extracellular ABA to a receptor located in the guard-cell plasma membrane. However, in the present research, we employ three distinct experimental approaches to demonstrate that ABA can act from within guard cells to regulate stomatal apertures. (i) The extent to which ABA inhibits stomatal opening and promotes stomatal closure in Commelina communis L. is proportional to the extent of ABA uptake, as assayed with [3H]ABA. (ii) Direct microinjection of ABA into the cytoplasm of Commelina guard cells precipitates stomatal closure. (iii) Application of ABA to the cytosol of Vicia faba L. guard-cell protoplasts via patch-clamp techniques inhibits inward K+ currents, an effect sufficient to inhibit stomatal opening. These results demonstrate an intracellular locus of phytohormone action and imply that the search for hormone receptor proteins should be extended to include intracellular compartments.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ackerson R. C. Synthesis and movement of abscisic Acid in water-stressed cotton leaves. Plant Physiol. 1982 Mar;69(3):609–613. doi: 10.1104/pp.69.3.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Assmann S. M., Schwartz A. Synergistic effect of light and fusicoccin on stomatal opening : epidermal peel and patch clamp experiments. Plant Physiol. 1992 Apr;98(4):1349–1355. doi: 10.1104/pp.98.4.1349. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bianco-Colomas J., Barthe P., Orlandini M., Le Page-Degivry M. T. Carrier-Mediated Uptake of Abscisic Acid by Suspension-Cultured Amaranthus tricolor Cells. Plant Physiol. 1991 Apr;95(4):990–996. doi: 10.1104/pp.95.4.990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blatt M. R. Ion channel gating in plants: physiological implications and integration for stomatal function. J Membr Biol. 1991 Nov;124(2):95–112. doi: 10.1007/BF01870455. [DOI] [PubMed] [Google Scholar]
- Blatt M. R. K+ channels of stomatal guard cells. Characteristics of the inward rectifier and its control by pH. J Gen Physiol. 1992 Apr;99(4):615–644. doi: 10.1085/jgp.99.4.615. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cornish K., Zeevaart J. A. Abscisic Acid Accumulation by in Situ and Isolated Guard Cells of Pisum sativum L. and Vicia faba L. in Relation to Water Stress. Plant Physiol. 1986 Aug;81(4):1017–1021. doi: 10.1104/pp.81.4.1017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cornish K., Zeevaart J. A. Abscisic Acid Metabolism in Relation to Water Stress and Leaf Age in Xanthium strumarium. Plant Physiol. 1984 Dec;76(4):1029–1035. doi: 10.1104/pp.76.4.1029. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fairley-Grenot K., Assmann S. M. Evidence for G-Protein Regulation of Inward K+ Channel Current in Guard Cells of Fava Bean. Plant Cell. 1991 Sep;3(9):1037–1044. doi: 10.1105/tpc.3.9.1037. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gilroy S., Fricker M. D., Read N. D., Trewavas A. J. Role of Calcium in Signal Transduction of Commelina Guard Cells. Plant Cell. 1991 Apr;3(4):333–344. doi: 10.1105/tpc.3.4.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guiltinan M. J., Marcotte W. R., Jr, Quatrano R. S. A plant leucine zipper protein that recognizes an abscisic acid response element. Science. 1990 Oct 12;250(4978):267–271. doi: 10.1126/science.2145628. [DOI] [PubMed] [Google Scholar]
- Harris M. J., Outlaw W. H., Mertens R., Weiler E. W. Water-stress-induced changes in the abscisic acid content of guard cells and other cells of Vicia faba L. leaves as determined by enzyme-amplified immunoassay. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2584–2588. doi: 10.1073/pnas.85.8.2584. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harris M. J., Outlaw W. H. Rapid adjustment of guard-cell abscisic Acid levels to current leaf-water status. Plant Physiol. 1991 Jan;95(1):171–173. doi: 10.1104/pp.95.1.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaiser W. M., Hartung W. Uptake and Release of Abscisic Acid by Isolated Photoautotrophic Mesophyll Cells, Depending on pH Gradients. Plant Physiol. 1981 Jul;68(1):202–206. doi: 10.1104/pp.68.1.202. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lemtiri-Chlieh F., MacRobbie E. A. Role of calcium in the modulation of Vicia guard cell potassium channels by abscisic acid: a patch-clamp study. J Membr Biol. 1994 Jan;137(2):99–107. doi: 10.1007/BF00233479. [DOI] [PubMed] [Google Scholar]
- Schroeder J. I., Hagiwara S. Repetitive increases in cytosolic Ca2+ of guard cells by abscisic acid activation of nonselective Ca2+ permeable channels. Proc Natl Acad Sci U S A. 1990 Dec;87(23):9305–9309. doi: 10.1073/pnas.87.23.9305. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schroeder J. I., Keller B. U. Two types of anion channel currents in guard cells with distinct voltage regulation. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):5025–5029. doi: 10.1073/pnas.89.11.5025. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thiel G., MacRobbie E. A., Blatt M. R. Membrane transport in stomatal guard cells: the importance of voltage control. J Membr Biol. 1992 Feb;126(1):1–18. doi: 10.1007/BF00233456. [DOI] [PubMed] [Google Scholar]
- Tucker J. E., Mauzerall D., Tucker E. B. Symplastic Transport of Carboxyfluorescein in Staminal Hairs of Setcreasea purpurea Is Diffusive and Includes Loss to the Vacuole. Plant Physiol. 1989 Jul;90(3):1143–1147. doi: 10.1104/pp.90.3.1143. [DOI] [PMC free article] [PubMed] [Google Scholar]