Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1994 May 10;91(10):4120–4124. doi: 10.1073/pnas.91.10.4120

Reversal of resistance to Bacillus thuringiensis in Plutella xylostella.

B E Tabashnik 1, N Finson 1, F R Groeters 1, W J Moar 1, M W Johnson 1, K Luo 1, M J Adang 1
PMCID: PMC43736  PMID: 8183881

Abstract

Continued success of the most widely used biopesticide, Bacillus thuringiensis, is threatened by development of resistance in pests. Experiments with Plutella xylostella (diamondback moth), the first insect with field populations resistant to B. thuringiensis, revealed factors that promote reversal of resistance. In strains of P. xylostella with 25- to 2800-fold resistance to B. thuringiensis compared with unselected strains, reversal of resistance occurred when exposure to B. thuringiensis was stopped for many generations. Reversal of resistance was associated with restoration of binding of B. thuringiensis toxin CryIA(c) to brush-border membrane vesicles and with increased biotic fitness. Compared with susceptible colonies, revertant colonies had a higher proportion of extremely resistant individuals. Revertant colonies responded rapidly to reselection for resistance. Understanding reversal of resistance will help to design strategies for extending the usefulness of this environmentally benign insecticide.

Full text

PDF
4120

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ferré J., Real M. D., Van Rie J., Jansens S., Peferoen M. Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in a midgut membrane receptor. Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5119–5123. doi: 10.1073/pnas.88.12.5119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Garczynski S. F., Crim J. W., Adang M. J. Identification of putative insect brush border membrane-binding molecules specific to Bacillus thuringiensis delta-endotoxin by protein blot analysis. Appl Environ Microbiol. 1991 Oct;57(10):2816–2820. doi: 10.1128/aem.57.10.2816-2820.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Gill S. S., Cowles E. A., Pietrantonio P. V. The mode of action of Bacillus thuringiensis endotoxins. Annu Rev Entomol. 1992;37:615–636. doi: 10.1146/annurev.en.37.010192.003151. [DOI] [PubMed] [Google Scholar]
  4. Gould F., Martinez-Ramirez A., Anderson A., Ferre J., Silva F. J., Moar W. J. Broad-spectrum resistance to Bacillus thuringiensis toxins in Heliothis virescens. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):7986–7990. doi: 10.1073/pnas.89.17.7986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hama H., Sakurai T., Kasuya Y., Fujiki M., Masaki T., Goto K. Action of endothelin-1 on rat astrocytes through the ETB receptor. Biochem Biophys Res Commun. 1992 Jul 15;186(1):355–362. doi: 10.1016/s0006-291x(05)80815-0. [DOI] [PubMed] [Google Scholar]
  6. Höfte H., Whiteley H. R. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev. 1989 Jun;53(2):242–255. doi: 10.1128/mr.53.2.242-255.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. MacIntosh S. C., Stone T. B., Jokerst R. S., Fuchs R. L. Binding of Bacillus thuringiensis proteins to a laboratory-selected line of Heliothis virescens. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):8930–8933. doi: 10.1073/pnas.88.20.8930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. McGaughey W. H., Whalon M. E. Managing Insect Resistance to Bacillus thuringiensis Toxins. Science. 1992 Nov 27;258(5087):1451–1455. doi: 10.1126/science.258.5087.1451. [DOI] [PubMed] [Google Scholar]
  9. Munson P. J., Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem. 1980 Sep 1;107(1):220–239. doi: 10.1016/0003-2697(80)90515-1. [DOI] [PubMed] [Google Scholar]
  10. Rosenheim J., Tabashnik B. E. Evolution of pesticide resistance: interactions between generation time and genetic, ecological, and operational factors. J Econ Entomol. 1990 Aug;83(4):1184–1193. doi: 10.1093/jee/83.4.1184. [DOI] [PubMed] [Google Scholar]
  11. Tabashnik B. E., Finson N., Johnson M. W., Moar W. J. Resistance to Toxins from Bacillus thuringiensis subsp. kurstaki Causes Minimal Cross-Resistance to B. thuringiensis subsp. aizawai in the Diamondback Moth (Lepidoptera: Plutellidae). Appl Environ Microbiol. 1993 May;59(5):1332–1335. doi: 10.1128/aem.59.5.1332-1335.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Van Rie J., McGaughey W. H., Johnson D. E., Barnett B. D., Van Mellaert H. Mechanism of insect resistance to the microbial insecticide Bacillus thuringiensis. Science. 1990 Jan 5;247(4938):72–74. doi: 10.1126/science.2294593. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES