Skip to main content
Springer logoLink to Springer
. 2015 Feb 10;75(2):69. doi: 10.1140/epjc/s10052-015-3261-8

Search for resonant diboson production in the qq¯ final state in pp collisions at s=8 TeV with the ATLAS detector

ATLAS Collaboration180, G Aad 84, B Abbott 112, J Abdallah 152, S Abdel Khalek 116, O Abdinov 11, R Aben 106, B Abi 113, M Abolins 89, O S AbouZeid 159, H Abramowicz 154, H Abreu 153, R Abreu 30, Y Abulaiti 147, B S Acharya 165, L Adamczyk 38, D L Adams 25, J Adelman 177, S Adomeit 99, T Adye 130, T Agatonovic-Jovin 13, J A Aguilar-Saavedra 125, M Agustoni 17, S P Ahlen 22, F Ahmadov 64, G Aielli 134, H Akerstedt 147, T P A Åkesson 80, G Akimoto 156, A V Akimov 95, G L Alberghi 20, J Albert 170, S Albrand 55, M J Alconada Verzini 70, M Aleksa 30, I N Aleksandrov 64, C Alexa 26, G Alexander 154, G Alexandre 49, T Alexopoulos 10, M Alhroob 165, G Alimonti 90, L Alio 84, J Alison 31, B M M Allbrooke 18, L J Allison 71, P P Allport 73, J Almond 83, A Aloisio 103, A Alonso 36, F Alonso 70, C Alpigiani 75, A Altheimer 35, B Alvarez Gonzalez 89, M G Alviggi 103, K Amako 65, Y Amaral Coutinho 24, C Amelung 23, D Amidei 88, S P Amor Dos Santos 125, A Amorim 125, S Amoroso 48, N Amram 154, G Amundsen 23, C Anastopoulos 140, L S Ancu 49, N Andari 30, T Andeen 35, C F Anders 58, G Anders 30, K J Anderson 31, A Andreazza 90, V Andrei 58, X S Anduaga 70, S Angelidakis 9, I Angelozzi 106, P Anger 44, A Angerami 35, F Anghinolfi 30, A V Anisenkov 108, N Anjos 125, A Annovi 47, A Antonaki 9, M Antonelli 47, A Antonov 97, J Antos 145, F Anulli 133, M Aoki 65, L Aperio Bella 18, R Apolle 119, G Arabidze 89, I Aracena 144, Y Arai 65, J P Araque 125, A T H Arce 45, J-F Arguin 94, S Argyropoulos 42, M Arik 19, A J Armbruster 30, O Arnaez 30, V Arnal 81, H Arnold 48, M Arratia 28, O Arslan 21, A Artamonov 96, G Artoni 23, S Asai 156, N Asbah 42, A Ashkenazi 154, B Åsman 147, L Asquith 6, K Assamagan 25, R Astalos 145, M Atkinson 166, N B Atlay 142, B Auerbach 6, K Augsten 127, M Aurousseau 146, G Avolio 30, G Azuelos 94, Y Azuma 156, M A Baak 30, A E Baas 58, C Bacci 135, H Bachacou 137, K Bachas 155, M Backes 30, M Backhaus 30, J Backus Mayes 144, E Badescu 26, P Bagiacchi 133, P Bagnaia 133, Y Bai 33, T Bain 35, J T Baines 130, O K Baker 177, P Balek 128, F Balli 137, E Banas 39, Sw Banerjee 174, A A E Bannoura 176, V Bansal 170, H S Bansil 18, L Barak 173, S P Baranov 95, E L Barberio 87, D Barberis 50, M Barbero 84, T Barillari 100, M Barisonzi 176, T Barklow 144, N Barlow 28, B M Barnett 130, R M Barnett 15, Z Barnovska 5, A Baroncelli 135, G Barone 49, A J Barr 119, F Barreiro 81, J Barreiro Guimarães da Costa 57, R Bartoldus 144, A E Barton 71, P Bartos 145, V Bartsch 150, A Bassalat 116, A Basye 166, R L Bates 53, J R Batley 28, M Battaglia 138, M Battistin 30, F Bauer 137, H S Bawa 144, M D Beattie 71, T Beau 79, P H Beauchemin 162, R Beccherle 123, P Bechtle 21, H P Beck 17, K Becker 176, S Becker 99, M Beckingham 171, C Becot 116, A J Beddall 19, A Beddall 19, S Bedikian 177, V A Bednyakov 64, C P Bee 149, L J Beemster 106, T A Beermann 176, M Begel 25, K Behr 119, C Belanger-Champagne 86, P J Bell 49, W H Bell 49, G Bella 154, L Bellagamba 20, A Bellerive 29, M Bellomo 85, K Belotskiy 97, O Beltramello 30, O Benary 154, D Benchekroun 136, K Bendtz 147, N Benekos 166, Y Benhammou 154, E Benhar Noccioli 49, J A Benitez Garcia 160, D P Benjamin 45, J R Bensinger 23, K Benslama 131, S Bentvelsen 106, D Berge 106, E Bergeaas Kuutmann 167, N Berger 5, F Berghaus 170, J Beringer 15, C Bernard 22, P Bernat 77, C Bernius 78, F U Bernlochner 170, T Berry 76, P Berta 128, C Bertella 84, G Bertoli 147, F Bertolucci 123, C Bertsche 112, D Bertsche 112, M I Besana 90, G J Besjes 105, O Bessidskaia Bylund 147, M Bessner 42, N Besson 137, C Betancourt 48, S Bethke 100, W Bhimji 46, R M Bianchi 124, L Bianchini 23, M Bianco 30, O Biebel 99, S P Bieniek 77, K Bierwagen 54, J Biesiada 15, M Biglietti 135, J Bilbao De Mendizabal 49, H Bilokon 47, M Bindi 54, S Binet 116, A Bingul 19, C Bini 133, C W Black 151, J E Black 144, K M Black 22, D Blackburn 139, R E Blair 6, J-B Blanchard 137, T Blazek 145, I Bloch 42, C Blocker 23, W Blum 82, U Blumenschein 54, G J Bobbink 106, V S Bobrovnikov 108, S S Bocchetta 80, A Bocci 45, C Bock 99, C R Boddy 119, M Boehler 48, T T Boek 176, J A Bogaerts 30, A G Bogdanchikov 108, A Bogouch 91, C Bohm 147, J Bohm 126, V Boisvert 76, T Bold 38, V Boldea 26, A S Boldyrev 98, M Bomben 79, M Bona 75, M Boonekamp 137, A Borisov 129, G Borissov 71, M Borri 83, S Borroni 42, J Bortfeldt 99, V Bortolotto 135, K Bos 106, D Boscherini 20, M Bosman 12, H Boterenbrood 106, J Boudreau 124, J Bouffard 2, E V Bouhova-Thacker 71, D Boumediene 34, C Bourdarios 116, N Bousson 113, S Boutouil 136, A Boveia 31, J Boyd 30, I R Boyko 64, I Bozic 13, J Bracinik 18, A Brandt 8, G Brandt 15, O Brandt 58, U Bratzler 157, B Brau 85, J E Brau 115, H M Braun 176, S F Brazzale 165, B Brelier 159, K Brendlinger 121, A J Brennan 87, R Brenner 167, S Bressler 173, K Bristow 146, T M Bristow 46, D Britton 53, F M Brochu 28, I Brock 21, R Brock 89, C Bromberg 89, J Bronner 100, G Brooijmans 35, T Brooks 76, W K Brooks 32, J Brosamer 15, E Brost 115, J Brown 55, P A Bruckman de Renstrom 39, D Bruncko 145, R Bruneliere 48, S Brunet 60, A Bruni 20, G Bruni 20, M Bruschi 20, L Bryngemark 80, T Buanes 14, Q Buat 143, F Bucci 49, P Buchholz 142, R M Buckingham 119, A G Buckley 53, S I Buda 26, I A Budagov 64, F Buehrer 48, L Bugge 118, M K Bugge 118, O Bulekov 97, A C Bundock 73, H Burckhart 30, S Burdin 73, B Burghgrave 107, S Burke 130, I Burmeister 43, E Busato 34, D Büscher 48, V Büscher 82, P Bussey 53, C P Buszello 167, B Butler 57, J M Butler 22, A I Butt 3, C M Buttar 53, J M Butterworth 77, P Butti 106, W Buttinger 28, A Buzatu 53, M Byszewski 10, S Cabrera Urbán 168, D Caforio 20, O Cakir 4, P Calafiura 15, A Calandri 137, G Calderini 79, P Calfayan 99, R Calkins 107, L P Caloba 24, D Calvet 34, S Calvet 34, R Camacho Toro 49, S Camarda 42, D Cameron 118, L M Caminada 15, R Caminal Armadans 12, S Campana 30, M Campanelli 77, A Campoverde 149, V Canale 103, A Canepa 160, M Cano Bret 75, J Cantero 81, R Cantrill 125, T Cao 40, M D M Capeans Garrido 30, I Caprini 26, M Caprini 26, M Capua 37, R Caputo 82, R Cardarelli 134, T Carli 30, G Carlino 103, L Carminati 90, S Caron 105, E Carquin 32, G D Carrillo-Montoya 146, J R Carter 28, J Carvalho 125, D Casadei 77, M P Casado 12, M Casolino 12, E Castaneda-Miranda 146, A Castelli 106, V Castillo Gimenez 168, N F Castro 125, P Catastini 57, A Catinaccio 30, J R Catmore 118, A Cattai 30, G Cattani 134, J Caudron 82, V Cavaliere 166, D Cavalli 90, M Cavalli-Sforza 12, V Cavasinni 123, F Ceradini 135, B C Cerio 45, K Cerny 128, A S Cerqueira 24, A Cerri 150, L Cerrito 75, F Cerutti 15, M Cerv 30, A Cervelli 17, S A Cetin 19, A Chafaq 136, D Chakraborty 107, I Chalupkova 128, P Chang 166, B Chapleau 86, J D Chapman 28, D Charfeddine 116, D G Charlton 18, C C Chau 159, C A Chavez Barajas 150, S Cheatham 86, A Chegwidden 89, S Chekanov 6, S V Chekulaev 160, G A Chelkov 64, M A Chelstowska 88, C Chen 63, H Chen 25, K Chen 149, L Chen 33, S Chen 33, X Chen 146, Y Chen 66, Y Chen 35, H C Cheng 88, Y Cheng 31, A Cheplakov 64, R Cherkaoui El Moursli 136, V Chernyatin 25, E Cheu 7, L Chevalier 137, V Chiarella 47, G Chiefari 103, J T Childers 6, A Chilingarov 71, G Chiodini 72, A S Chisholm 18, R T Chislett 77, A Chitan 26, M V Chizhov 64, S Chouridou 9, B K B Chow 99, D Chromek-Burckhart 30, M L Chu 152, J Chudoba 126, J J Chwastowski 39, L Chytka 114, G Ciapetti 133, A K Ciftci 4, R Ciftci 4, D Cinca 53, V Cindro 74, A Ciocio 15, P Cirkovic 13, Z H Citron 173, M Citterio 90, M Ciubancan 26, A Clark 49, P J Clark 46, R N Clarke 15, W Cleland 124, J C Clemens 84, C Clement 147, Y Coadou 84, M Cobal 165, A Coccaro 139, J Cochran 63, L Coffey 23, J G Cogan 144, J Coggeshall 166, B Cole 35, S Cole 107, A P Colijn 106, J Collot 55, T Colombo 58, G Colon 85, G Compostella 100, P Conde Muiño 125, E Coniavitis 48, M C Conidi 12, S H Connell 146, I A Connelly 76, S M Consonni 90, V Consorti 48, S Constantinescu 26, C Conta 120, G Conti 57, F Conventi 103, M Cooke 15, B D Cooper 77, A M Cooper-Sarkar 119, N J Cooper-Smith 76, K Copic 15, T Cornelissen 176, M Corradi 20, F Corriveau 86, A Corso-Radu 164, A Cortes-Gonzalez 12, G Cortiana 100, G Costa 90, M J Costa 168, D Costanzo 140, D Côté 8, G Cottin 28, G Cowan 76, B E Cox 83, K Cranmer 109, G Cree 29, S Crépé-Renaudin 55, F Crescioli 79, W A Cribbs 147, M Crispin Ortuzar 119, M Cristinziani 21, V Croft 105, G Crosetti 37, C-M Cuciuc 26, T Cuhadar Donszelmann 140, J Cummings 177, M Curatolo 47, C Cuthbert 151, H Czirr 142, P Czodrowski 3, Z Czyczula 177, S D’Auria 53, M D’Onofrio 73, M J Da Cunha Sargedas De Sousa 125, C Da Via 83, W Dabrowski 38, A Dafinca 119, T Dai 88, O Dale 14, F Dallaire 94, C Dallapiccola 85, M Dam 36, A C Daniells 18, M Dano Hoffmann 137, V Dao 48, G Darbo 50, S Darmora 8, J A Dassoulas 42, A Dattagupta 60, W Davey 21, C David 170, T Davidek 128, E Davies 119, M Davies 154, O Davignon 79, A R Davison 77, P Davison 77, Y Davygora 58, E Dawe 143, I Dawson 140, R K Daya-Ishmukhametova 85, K De 8, R de Asmundis 103, S De Castro 20, S De Cecco 79, N De Groot 105, P de Jong 106, H De la Torre 81, F De Lorenzi 63, L De Nooij 106, D De Pedis 133, A De Salvo 133, U De Sanctis 150, A De Santo 150, J B De Vivie De Regie 116, W J Dearnaley 71, R Debbe 25, C Debenedetti 138, B Dechenaux 55, D V Dedovich 64, I Deigaard 106, J Del Peso 81, T Del Prete 123, F Deliot 137, C M Delitzsch 49, M Deliyergiyev 74, A Dell’Acqua 30, L Dell’Asta 22, M Dell’Orso 123, M Della Pietra 103, D della Volpe 49, M Delmastro 5, P A Delsart 55, C Deluca 106, S Demers 177, M Demichev 64, A Demilly 79, S P Denisov 129, D Derendarz 39, J E Derkaoui 136, F Derue 79, P Dervan 73, K Desch 21, C Deterre 42, P O Deviveiros 106, A Dewhurst 130, S Dhaliwal 106, A Di Ciaccio 134, L Di Ciaccio 5, A Di Domenico 133, C Di Donato 103, A Di Girolamo 30, B Di Girolamo 30, A Di Mattia 153, B Di Micco 135, R Di Nardo 47, A Di Simone 48, R Di Sipio 20, D Di Valentino 29, F A Dias 46, M A Diaz 32, E B Diehl 88, J Dietrich 42, T A Dietzsch 58, S Diglio 84, A Dimitrievska 13, J Dingfelder 21, C Dionisi 133, P Dita 26, S Dita 26, F Dittus 30, F Djama 84, T Djobava 51, M A B do Vale 24, A Do Valle Wemans 125, D Dobos 30, C Doglioni 49, T Doherty 53, T Dohmae 156, J Dolejsi 128, Z Dolezal 128, B A Dolgoshein 97, M Donadelli 24, S Donati 123, P Dondero 120, J Donini 34, J Dopke 130, A Doria 103, M T Dova 70, A T Doyle 53, M Dris 10, J Dubbert 88, S Dube 15, E Dubreuil 34, E Duchovni 173, G Duckeck 99, O A Ducu 26, D Duda 176, A Dudarev 30, F Dudziak 63, L Duflot 116, L Duguid 76, M Dührssen 30, M Dunford 58, H Duran Yildiz 4, M Düren 52, A Durglishvili 51, M Dwuznik 38, M Dyndal 38, J Ebke 99, W Edson 2, N C Edwards 46, W Ehrenfeld 21, T Eifert 144, G Eigen 14, K Einsweiler 15, T Ekelof 167, M El Kacimi 136, M Ellert 167, S Elles 5, F Ellinghaus 82, N Ellis 30, J Elmsheuser 99, M Elsing 30, D Emeliyanov 130, Y Enari 156, O C Endner 82, M Endo 117, R Engelmann 149, J Erdmann 177, A Ereditato 17, D Eriksson 147, G Ernis 176, J Ernst 2, M Ernst 25, J Ernwein 137, D Errede 166, S Errede 166, E Ertel 82, M Escalier 116, H Esch 43, C Escobar 124, B Esposito 47, A I Etienvre 137, E Etzion 154, H Evans 60, A Ezhilov 122, L Fabbri 20, G Facini 31, R M Fakhrutdinov 129, S Falciano 133, R J Falla 77, J Faltova 128, Y Fang 33, M Fanti 90, A Farbin 8, A Farilla 135, T Farooque 12, S Farrell 15, S M Farrington 171, P Farthouat 30, F Fassi 136, P Fassnacht 30, D Fassouliotis 9, A Favareto 50, L Fayard 116, P Federic 145, O L Fedin 122, W Fedorko 169, M Fehling-Kaschek 48, S Feigl 30, L Feligioni 84, C Feng 33, E J Feng 6, H Feng 88, A B Fenyuk 129, S Fernandez Perez 30, S Ferrag 53, J Ferrando 53, A Ferrari 167, P Ferrari 106, R Ferrari 120, D E Ferreira de Lima 53, A Ferrer 168, D Ferrere 49, C Ferretti 88, A Ferretto Parodi 50, M Fiascaris 31, F Fiedler 82, A Filipčič 74, M Filipuzzi 42, F Filthaut 105, M Fincke-Keeler 170, K D Finelli 151, M C N Fiolhais 125, L Fiorini 168, A Firan 40, A Fischer 2, J Fischer 176, W C Fisher 89, E A Fitzgerald 23, M Flechl 48, I Fleck 142, P Fleischmann 88, S Fleischmann 176, G T Fletcher 140, G Fletcher 75, T Flick 176, A Floderus 80, L R Flores Castillo 174, A C Florez Bustos 160, M J Flowerdew 100, A Formica 137, A Forti 83, D Fortin 160, D Fournier 116, H Fox 71, S Fracchia 12, P Francavilla 79, M Franchini 20, S Franchino 30, D Francis 30, L Franconi 118, M Franklin 57, S Franz 61, M Fraternali 120, S T French 28, C Friedrich 42, F Friedrich 44, D Froidevaux 30, J A Frost 28, C Fukunaga 157, E Fullana Torregrosa 82, B G Fulsom 144, J Fuster 168, C Gabaldon 55, O Gabizon 176, A Gabrielli 20, A Gabrielli 133, S Gadatsch 106, S Gadomski 49, G Gagliardi 50, P Gagnon 60, C Galea 105, B Galhardo 125, E J Gallas 119, V Gallo 17, B J Gallop 130, P Gallus 127, G Galster 36, K K Gan 110, J Gao 33, Y S Gao 144, F M Garay Walls 46, F Garberson 177, C García 168, J E García Navarro 168, M Garcia-Sciveres 15, R W Gardner 31, N Garelli 144, V Garonne 30, C Gatti 47, G Gaudio 120, B Gaur 142, L Gauthier 94, P Gauzzi 133, I L Gavrilenko 95, C Gay 169, G Gaycken 21, E N Gazis 10, P Ge 33, Z Gecse 169, C N P Gee 130, D A A Geerts 106, Ch Geich-Gimbel 21, K Gellerstedt 147, C Gemme 50, A Gemmell 53, M H Genest 55, S Gentile 133, M George 54, S George 76, D Gerbaudo 164, A Gershon 154, H Ghazlane 136, N Ghodbane 34, B Giacobbe 20, S Giagu 133, V Giangiobbe 12, P Giannetti 123, F Gianotti 30, B Gibbard 25, S M Gibson 76, M Gilchriese 15, T P S Gillam 28, D Gillberg 30, G Gilles 34, D M Gingrich 3, N Giokaris 9, M P Giordani 165, R Giordano 103, F M Giorgi 20, F M Giorgi 16, P F Giraud 137, D Giugni 90, C Giuliani 48, M Giulini 58, B K Gjelsten 118, S Gkaitatzis 155, I Gkialas 155, L K Gladilin 98, C Glasman 81, J Glatzer 30, P C F Glaysher 46, A Glazov 42, G L Glonti 64, M Goblirsch-Kolb 100, J R Goddard 75, J Godlewski 30, C Goeringer 82, S Goldfarb 88, T Golling 177, D Golubkov 129, A Gomes 125, L S Gomez Fajardo 42, R Gonçalo 125, J Goncalves Pinto Firmino Da Costa 137, L Gonella 21, S González de la Hoz 168, G Gonzalez Parra 12, S Gonzalez-Sevilla 49, L Goossens 30, P A Gorbounov 96, H A Gordon 25, I Gorelov 104, B Gorini 30, E Gorini 72, A Gorišek 74, E Gornicki 39, A T Goshaw 6, C Gössling 43, M I Gostkin 64, M Gouighri 136, D Goujdami 136, M P Goulette 49, A G Goussiou 139, C Goy 5, S Gozpinar 23, H M X Grabas 137, L Graber 54, I Grabowska-Bold 38, P Grafström 20, K-J Grahn 42, J Gramling 49, E Gramstad 118, S Grancagnolo 16, V Grassi 149, V Gratchev 122, H M Gray 30, E Graziani 135, O G Grebenyuk 122, Z D Greenwood 78, K Gregersen 77, I M Gregor 42, P Grenier 144, J Griffiths 8, A A Grillo 138, K Grimm 71, S Grinstein 12, Ph Gris 34, Y V Grishkevich 98, J-F Grivaz 116, J P Grohs 44, A Grohsjean 42, E Gross 173, J Grosse-Knetter 54, G C Grossi 134, J Groth-Jensen 173, Z J Grout 150, L Guan 33, J Guenther 127, F Guescini 49, D Guest 177, O Gueta 154, C Guicheney 34, E Guido 50, T Guillemin 116, S Guindon 2, U Gul 53, C Gumpert 44, J Guo 35, S Gupta 119, P Gutierrez 112, N G Gutierrez Ortiz 53, C Gutschow 77, N Guttman 154, C Guyot 137, C Gwenlan 119, C B Gwilliam 73, A Haas 109, C Haber 15, H K Hadavand 8, N Haddad 136, P Haefner 21, S Hageböeck 21, Z Hajduk 39, H Hakobyan 178, M Haleem 42, D Hall 119, G Halladjian 89, K Hamacher 176, P Hamal 114, K Hamano 170, M Hamer 54, A Hamilton 146, S Hamilton 162, G N Hamity 146, P G Hamnett 42, L Han 33, K Hanagaki 117, K Hanawa 156, M Hance 15, P Hanke 58, R Hannna 137, J B Hansen 36, J D Hansen 36, P H Hansen 36, K Hara 161, A S Hard 174, T Harenberg 176, F Hariri 116, S Harkusha 91, D Harper 88, R D Harrington 46, O M Harris 139, P F Harrison 171, F Hartjes 106, M Hasegawa 66, S Hasegawa 102, Y Hasegawa 141, A Hasib 112, S Hassani 137, S Haug 17, M Hauschild 30, R Hauser 89, M Havranek 126, C M Hawkes 18, R J Hawkings 30, A D Hawkins 80, T Hayashi 161, D Hayden 89, C P Hays 119, H S Hayward 73, S J Haywood 130, S J Head 18, T Heck 82, V Hedberg 80, L Heelan 8, S Heim 121, T Heim 176, B Heinemann 15, L Heinrich 109, J Hejbal 126, L Helary 22, C Heller 99, M Heller 30, S Hellman 147, D Hellmich 21, C Helsens 30, J Henderson 119, R C W Henderson 71, Y Heng 174, C Hengler 42, A Henrichs 177, A M Henriques Correia 30, S Henrot-Versille 116, C Hensel 54, G H Herbert 16, Y Hernández Jiménez 168, R Herrberg-Schubert 16, G Herten 48, R Hertenberger 99, L Hervas 30, G G Hesketh 77, N P Hessey 106, R Hickling 75, E Higón-Rodriguez 168, E Hill 170, J C Hill 28, K H Hiller 42, S Hillert 21, S J Hillier 18, I Hinchliffe 15, E Hines 121, M Hirose 158, D Hirschbuehl 176, J Hobbs 149, N Hod 106, M C Hodgkinson 140, P Hodgson 140, A Hoecker 30, M R Hoeferkamp 104, F Hoenig 99, J Hoffman 40, D Hoffmann 84, J I Hofmann 58, M Hohlfeld 82, T R Holmes 15, T M Hong 121, L Hooft van Huysduynen 109, W H Hopkins 115, Y Horii 102, J-Y Hostachy 55, S Hou 152, A Hoummada 136, J Howard 119, J Howarth 42, M Hrabovsky 114, I Hristova 16, J Hrivnac 116, T Hryn’ova 5, C Hsu 146, P J Hsu 82, S-C Hsu 139, D Hu 35, X Hu 88, Y Huang 42, Z Hubacek 30, F Hubaut 84, F Huegging 21, T B Huffman 119, E W Hughes 35, G Hughes 71, M Huhtinen 30, T A Hülsing 82, M Hurwitz 15, N Huseynov 64, J Huston 89, J Huth 57, G Iacobucci 49, G Iakovidis 10, I Ibragimov 142, L Iconomidou-Fayard 116, E Ideal 177, P Iengo 103, O Igonkina 106, T Iizawa 172, Y Ikegami 65, K Ikematsu 142, M Ikeno 65, Y Ilchenko 31, D Iliadis 155, N Ilic 159, Y Inamaru 66, T Ince 100, P Ioannou 9, M Iodice 135, K Iordanidou 9, V Ippolito 57, A Irles Quiles 168, C Isaksson 167, M Ishino 67, M Ishitsuka 158, R Ishmukhametov 110, C Issever 119, S Istin 19, J M Iturbe Ponce 83, R Iuppa 134, J Ivarsson 80, W Iwanski 39, H Iwasaki 65, J M Izen 41, V Izzo 103, B Jackson 121, M Jackson 73, P Jackson 1, M R Jaekel 30, V Jain 2, K Jakobs 48, S Jakobsen 30, T Jakoubek 126, J Jakubek 127, D O Jamin 152, D K Jana 78, E Jansen 77, H Jansen 30, J Janssen 21, M Janus 171, G Jarlskog 80, N Javadov 64, T Javůrek 48, L Jeanty 15, J Jejelava 51, G-Y Jeng 151, D Jennens 87, P Jenni 48, J Jentzsch 43, C Jeske 171, S Jézéquel 5, H Ji 174, J Jia 149, Y Jiang 33, M Jimenez Belenguer 42, S Jin 33, A Jinaru 26, O Jinnouchi 158, M D Joergensen 36, K E Johansson 147, P Johansson 140, K A Johns 7, K Jon-And 147, G Jones 171, R W L Jones 71, T J Jones 73, J Jongmanns 58, P M Jorge 125, K D Joshi 83, J Jovicevic 148, X Ju 174, C A Jung 43, R M Jungst 30, P Jussel 61, A Juste Rozas 12, M Kaci 168, A Kaczmarska 39, M Kado 116, H Kagan 110, M Kagan 144, E Kajomovitz 45, C W Kalderon 119, S Kama 40, A Kamenshchikov 129, N Kanaya 156, M Kaneda 30, S Kaneti 28, V A Kantserov 97, J Kanzaki 65, B Kaplan 109, A Kapliy 31, D Kar 53, K Karakostas 10, N Karastathis 10, M J Kareem 54, M Karnevskiy 82, S N Karpov 64, Z M Karpova 64, K Karthik 109, V Kartvelishvili 71, A N Karyukhin 129, L Kashif 174, G Kasieczka 58, R D Kass 110, A Kastanas 14, Y Kataoka 156, A Katre 49, J Katzy 42, V Kaushik 7, K Kawagoe 69, T Kawamoto 156, G Kawamura 54, S Kazama 156, V F Kazanin 108, M Y Kazarinov 64, R Keeler 170, R Kehoe 40, M Keil 54, J S Keller 42, J J Kempster 76, H Keoshkerian 5, O Kepka 126, B P Kerševan 74, S Kersten 176, K Kessoku 156, J Keung 159, F Khalil-zada 11, H Khandanyan 147, A Khanov 113, A Khodinov 97, A Khomich 58, T J Khoo 28, G Khoriauli 21, A Khoroshilov 176, V Khovanskiy 96, E Khramov 64, J Khubua 51, H Y Kim 8, H Kim 147, S H Kim 161, N Kimura 172, O Kind 16, B T King 73, M King 168, R S B King 119, S B King 169, J Kirk 130, A E Kiryunin 100, T Kishimoto 66, D Kisielewska 38, F Kiss 48, T Kittelmann 124, K Kiuchi 161, E Kladiva 145, M Klein 73, U Klein 73, K Kleinknecht 82, P Klimek 147, A Klimentov 25, R Klingenberg 43, J A Klinger 83, T Klioutchnikova 30, P F Klok 105, E-E Kluge 58, P Kluit 106, S Kluth 100, E Kneringer 61, E B F G Knoops 84, A Knue 53, D Kobayashi 158, T Kobayashi 156, M Kobel 44, M Kocian 144, P Kodys 128, P Koevesarki 21, T Koffas 29, E Koffeman 106, L A Kogan 119, S Kohlmann 176, Z Kohout 127, T Kohriki 65, T Koi 144, H Kolanoski 16, I Koletsou 5, J Koll 89, A A Komar 95, Y Komori 156, T Kondo 65, N Kondrashova 42, K Köneke 48, A C König 105, S König 82, T Kono 65, R Konoplich 109, N Konstantinidis 77, R Kopeliansky 153, S Koperny 38, L Köpke 82, A K Kopp 48, K Korcyl 39, K Kordas 155, A Korn 77, A A Korol 108, I Korolkov 12, E V Korolkova 140, V A Korotkov 129, O Kortner 100, S Kortner 100, V V Kostyukhin 21, V M Kotov 64, A Kotwal 45, C Kourkoumelis 9, V Kouskoura 155, A Koutsman 160, R Kowalewski 170, T Z Kowalski 38, W Kozanecki 137, A S Kozhin 129, V Kral 127, V A Kramarenko 98, G Kramberger 74, D Krasnopevtsev 97, M W Krasny 79, A Krasznahorkay 30, J K Kraus 21, A Kravchenko 25, S Kreiss 109, M Kretz 58, J Kretzschmar 73, K Kreutzfeldt 52, P Krieger 159, K Kroeninger 54, H Kroha 100, J Kroll 121, J Kroseberg 21, J Krstic 13, U Kruchonak 64, H Krüger 21, T Kruker 17, N Krumnack 63, Z V Krumshteyn 64, A Kruse 174, M C Kruse 45, M Kruskal 22, T Kubota 87, S Kuday 4, S Kuehn 48, A Kugel 58, A Kuhl 138, T Kuhl 42, V Kukhtin 64, Y Kulchitsky 91, S Kuleshov 32, M Kuna 133, J Kunkle 121, A Kupco 126, H Kurashige 66, Y A Kurochkin 91, R Kurumida 66, V Kus 126, E S Kuwertz 148, M Kuze 158, J Kvita 114, A La Rosa 49, L La Rotonda 37, C Lacasta 168, F Lacava 133, J Lacey 29, H Lacker 16, D Lacour 79, V R Lacuesta 168, E Ladygin 64, R Lafaye 5, B Laforge 79, T Lagouri 177, S Lai 48, H Laier 58, L Lambourne 77, S Lammers 60, C L Lampen 7, W Lampl 7, E Lançon 137, U Landgraf 48, M P J Landon 75, V S Lang 58, A J Lankford 164, F Lanni 25, K Lantzsch 30, S Laplace 79, C Lapoire 21, J F Laporte 137, T Lari 90, F Lasagni Manghi 20, M Lassnig 30, P Laurelli 47, W Lavrijsen 15, A T Law 138, P Laycock 73, O Le Dortz 79, E Le Guirriec 84, E Le Menedeu 12, T LeCompte 6, F Ledroit-Guillon 55, C A Lee 152, H Lee 106, J S H Lee 117, S C Lee 152, L Lee 1, G Lefebvre 79, M Lefebvre 170, F Legger 99, C Leggett 15, A Lehan 73, M Lehmacher 21, G Lehmann Miotto 30, X Lei 7, W A Leight 29, A Leisos 155, A G Leister 177, M A L Leite 24, R Leitner 128, D Lellouch 173, B Lemmer 54, K J C Leney 77, T Lenz 21, G Lenzen 176, B Lenzi 30, R Leone 7, S Leone 123, C Leonidopoulos 46, S Leontsinis 10, C Leroy 94, C G Lester 28, C M Lester 121, M Levchenko 122, J Levêque 5, D Levin 88, L J Levinson 173, M Levy 18, A Lewis 119, G H Lewis 109, A M Leyko 21, M Leyton 41, B Li 33, B Li 84, H Li 149, H L Li 31, L Li 45, L Li 33, S Li 45, Y Li 33, Z Liang 138, H Liao 34, B Liberti 134, P Lichard 30, K Lie 166, J Liebal 21, W Liebig 14, C Limbach 21, A Limosani 87, S C Lin 152, T H Lin 82, F Linde 106, B E Lindquist 149, J T Linnemann 89, E Lipeles 121, A Lipniacka 14, M Lisovyi 42, T M Liss 166, D Lissauer 25, A Lister 169, A M Litke 138, B Liu 152, D Liu 152, J B Liu 33, K Liu 33, L Liu 88, M Liu 45, M Liu 33, Y Liu 33, M Livan 120, S S A Livermore 119, A Lleres 55, J Llorente Merino 81, S L Lloyd 75, F Lo Sterzo 152, E Lobodzinska 42, P Loch 7, W S Lockman 138, T Loddenkoetter 21, F K Loebinger 83, A E Loevschall-Jensen 36, A Loginov 177, T Lohse 16, K Lohwasser 42, M Lokajicek 126, V P Lombardo 5, B A Long 22, J D Long 88, R E Long 71, L Lopes 125, D Lopez Mateos 57, B Lopez Paredes 140, I Lopez Paz 12, J Lorenz 99, N Lorenzo Martinez 60, M Losada 163, P Loscutoff 15, X Lou 41, A Lounis 116, J Love 6, P A Love 71, A J Lowe 144, F Lu 33, N Lu 88, H J Lubatti 139, C Luci 133, A Lucotte 55, F Luehring 60, W Lukas 61, L Luminari 133, O Lundberg 147, B Lund-Jensen 148, M Lungwitz 82, D Lynn 25, R Lysak 126, E Lytken 80, H Ma 25, L L Ma 33, G Maccarrone 47, A Macchiolo 100, J Machado Miguens 125, D Macina 30, D Madaffari 84, R Madar 48, H J Maddocks 71, W F Mader 44, A Madsen 167, M Maeno 8, T Maeno 25, A Maevskiy 98, E Magradze 54, K Mahboubi 48, J Mahlstedt 106, S Mahmoud 73, C Maiani 137, C Maidantchik 24, A A Maier 100, A Maio 125, S Majewski 115, Y Makida 65, N Makovec 116, P Mal 137, B Malaescu 79, Pa Malecki 39, V P Maleev 122, F Malek 55, U Mallik 62, D Malon 6, C Malone 144, S Maltezos 10, V M Malyshev 108, S Malyukov 30, J Mamuzic 13, B Mandelli 30, L Mandelli 90, I Mandić 74, R Mandrysch 62, J Maneira 125, A Manfredini 100, L Manhaes de Andrade Filho 24, J A Manjarres Ramos 160, A Mann 99, P M Manning 138, A Manousakis-Katsikakis 9, B Mansoulie 137, R Mantifel 86, L Mapelli 30, L March 146, J F Marchand 29, G Marchiori 79, M Marcisovsky 126, C P Marino 170, M Marjanovic 13, C N Marques 125, F Marroquim 24, S P Marsden 83, Z Marshall 15, L F Marti 17, S Marti-Garcia 168, B Martin 30, B Martin 89, T A Martin 171, V J Martin 46, B Martin dit Latour 14, H Martinez 137, M Martinez 12, S Martin-Haugh 130, A C Martyniuk 77, M Marx 139, F Marzano 133, A Marzin 30, L Masetti 82, T Mashimo 156, R Mashinistov 95, J Masik 83, A L Maslennikov 108, I Massa 20, L Massa 20, N Massol 5, P Mastrandrea 149, A Mastroberardino 37, T Masubuchi 156, P Mättig 176, J Mattmann 82, J Maurer 26, S J Maxfield 73, D A Maximov 108, R Mazini 152, L Mazzaferro 134, G Mc Goldrick 159, S P Mc Kee 88, A McCarn 88, R L McCarthy 149, T G McCarthy 29, N A McCubbin 130, K W McFarlane 56, J A Mcfayden 77, G Mchedlidze 54, S J McMahon 130, R A McPherson 170, J Mechnich 106, M Medinnis 42, S Meehan 31, S Mehlhase 99, A Mehta 73, K Meier 58, C Meineck 99, B Meirose 80, C Melachrinos 31, B R Mellado Garcia 146, F Meloni 17, A Mengarelli 20, S Menke 100, E Meoni 162, K M Mercurio 57, S Mergelmeyer 21, N Meric 137, P Mermod 49, L Merola 103, C Meroni 90, F S Merritt 31, H Merritt 110, A Messina 30, J Metcalfe 25, A S Mete 164, C Meyer 82, C Meyer 121, J-P Meyer 137, J Meyer 30, R P Middleton 130, S Migas 73, L Mijović 21, G Mikenberg 173, M Mikestikova 126, M Mikuž 74, A Milic 30, D W Miller 31, C Mills 46, A Milov 173, D A Milstead 147, D Milstein 173, A A Minaenko 129, Y Minami 156, I A Minashvili 64, A I Mincer 109, B Mindur 38, M Mineev 64, Y Ming 174, L M Mir 12, G Mirabelli 133, T Mitani 172, J Mitrevski 99, V A Mitsou 168, S Mitsui 65, A Miucci 49, P S Miyagawa 140, J U Mjörnmark 80, T Moa 147, K Mochizuki 84, S Mohapatra 35, W Mohr 48, S Molander 147, R Moles-Valls 168, K Mönig 42, C Monini 55, J Monk 36, E Monnier 84, J Montejo Berlingen 12, F Monticelli 70, S Monzani 133, R W Moore 3, N Morange 62, D Moreno 82, M Moreno Llácer 54, P Morettini 50, M Morgenstern 44, M Morii 57, S Moritz 82, A K Morley 148, G Mornacchi 30, J D Morris 75, L Morvaj 102, H G Moser 100, M Mosidze 51, J Moss 110, K Motohashi 158, R Mount 144, E Mountricha 25, S V Mouraviev 95, E J W Moyse 85, S Muanza 84, R D Mudd 18, F Mueller 58, J Mueller 124, K Mueller 21, T Mueller 28, T Mueller 82, D Muenstermann 49, Y Munwes 154, J A Murillo Quijada 18, W J Murray 130,171, H Musheghyan 54, E Musto 153, A G Myagkov 129, M Myska 127, O Nackenhorst 54, J Nadal 54, K Nagai 61, R Nagai 158, Y Nagai 84, K Nagano 65, A Nagarkar 110, Y Nagasaka 59, M Nagel 100, A M Nairz 30, Y Nakahama 30, K Nakamura 65, T Nakamura 156, I Nakano 111, H Namasivayam 41, G Nanava 21, R Narayan 58, T Nattermann 21, T Naumann 42, G Navarro 163, R Nayyar 7, H A Neal 88, P Yu Nechaeva 95, T J Neep 83, P D Nef 144, A Negri 120, G Negri 30, M Negrini 20, S Nektarijevic 49, C Nellist 116, A Nelson 164, T K Nelson 144, S Nemecek 126, P Nemethy 109, A A Nepomuceno 24, M Nessi 30, M S Neubauer 166, M Neumann 176, R M Neves 109, P Nevski 25, P R Newman 18, D H Nguyen 6, R B Nickerson 119, R Nicolaidou 137, B Nicquevert 30, J Nielsen 138, N Nikiforou 35, A Nikiforov 16, V Nikolaenko 129, I Nikolic-Audit 79, K Nikolics 49, K Nikolopoulos 18, P Nilsson 8, Y Ninomiya 156, A Nisati 133, R Nisius 100, T Nobe 158, L Nodulman 6, M Nomachi 117, I Nomidis 29, S Norberg 112, M Nordberg 30, O Novgorodova 44, S Nowak 100, M Nozaki 65, L Nozka 114, K Ntekas 10, G Nunes Hanninger 87, T Nunnemann 99, E Nurse 77, F Nuti 87, B J O’Brien 46, F O’grady 7, D C O’Neil 143, V O’Shea 53, F G Oakham 29, H Oberlack 100, T Obermann 21, J Ocariz 79, A Ochi 66, M I Ochoa 77, S Oda 69, S Odaka 65, H Ogren 60, A Oh 83, S H Oh 45, C C Ohm 15, H Ohman 167, W Okamura 117, H Okawa 25, Y Okumura 31, T Okuyama 156, A Olariu 26, A G Olchevski 64, S A Olivares Pino 46, D Oliveira Damazio 25, E Oliver Garcia 168, A Olszewski 39, J Olszowska 39, A Onofre 125, P U E Onyisi 31, C J Oram 160, M J Oreglia 31, Y Oren 154, D Orestano 135, N Orlando 72, C Oropeza Barrera 53, R S Orr 159, B Osculati 50, R Ospanov 121, G Otero y Garzon 27, H Otono 69, M Ouchrif 136, E A Ouellette 170, F Ould-Saada 118, A Ouraou 137, K P Oussoren 106, Q Ouyang 33, A Ovcharova 15, M Owen 83, V E Ozcan 19, N Ozturk 8, K Pachal 119, A Pacheco Pages 12, C Padilla Aranda 12, M Pagáčová 48, S Pagan Griso 15, E Paganis 140, C Pahl 100, F Paige 25, P Pais 85, K Pajchel 118, G Palacino 160, S Palestini 30, M Palka 38, D Pallin 34, A Palma 125, J D Palmer 18, Y B Pan 174, E Panagiotopoulou 10, J G Panduro Vazquez 76, P Pani 106, N Panikashvili 88, S Panitkin 25, D Pantea 26, L Paolozzi 134, Th D Papadopoulou 10, K Papageorgiou 155, A Paramonov 6, D Paredes Hernandez 34, M A Parker 28, F Parodi 50, J A Parsons 35, U Parzefall 48, E Pasqualucci 133, S Passaggio 50, A Passeri 135, F Pastore 135, Fr Pastore 76, G Pásztor 29, S Pataraia 176, N D Patel 151, J R Pater 83, S Patricelli 103, T Pauly 30, J Pearce 170, L E Pedersen 36, M Pedersen 118, S Pedraza Lopez 168, R Pedro 125, S V Peleganchuk 108, D Pelikan 167, H Peng 33, B Penning 31, J Penwell 60, D V Perepelitsa 25, E Perez Codina 160, M T Pérez García-Estañ 168, V Perez Reale 35, L Perini 90, H Pernegger 30, S Perrella 103, R Perrino 72, R Peschke 42, V D Peshekhonov 64, K Peters 30, R F Y Peters 83, B A Petersen 30, T C Petersen 36, E Petit 42, A Petridis 147, C Petridou 155, E Petrolo 133, F Petrucci 135, N E Pettersson 158, R Pezoa 32, P W Phillips 130, G Piacquadio 144, E Pianori 171, A Picazio 49, E Piccaro 75, M Piccinini 20, R Piegaia 27, D T Pignotti 110, J E Pilcher 31, A D Pilkington 77, J Pina 125, M Pinamonti 165, A Pinder 119, J L Pinfold 3, A Pingel 36, B Pinto 125, S Pires 79, M Pitt 173, C Pizio 90, L Plazak 145, M-A Pleier 25, V Pleskot 128, E Plotnikova 64, P Plucinski 147, S Poddar 58, F Podlyski 34, R Poettgen 82, L Poggioli 116, D Pohl 21, M Pohl 49, G Polesello 120, A Policicchio 37, R Polifka 159, A Polini 20, C S Pollard 45, V Polychronakos 25, K Pommès 30, L Pontecorvo 133, B G Pope 89, G A Popeneciu 26, D S Popovic 13, A Poppleton 30, X Portell Bueso 12, S Pospisil 127, K Potamianos 15, I N Potrap 64, C J Potter 150, C T Potter 115, G Poulard 30, J Poveda 60, V Pozdnyakov 64, P Pralavorio 84, A Pranko 15, S Prasad 30, R Pravahan 8, S Prell 63, D Price 83, J Price 73, L E Price 6, D Prieur 124, M Primavera 72, M Proissl 46, K Prokofiev 47, F Prokoshin 32, E Protopapadaki 137, S Protopopescu 25, J Proudfoot 6, M Przybycien 38, H Przysiezniak 5, E Ptacek 115, D Puddu 135, E Pueschel 85, D Puldon 149, M Purohit 25, P Puzo 116, J Qian 88, G Qin 53, Y Qin 83, A Quadt 54, D R Quarrie 15, W B Quayle 165, M Queitsch-Maitland 83, D Quilty 53, A Qureshi 160, V Radeka 25, V Radescu 42, S K Radhakrishnan 149, P Radloff 115, P Rados 87, F Ragusa 90, G Rahal 179, S Rajagopalan 25, M Rammensee 30, A S Randle-Conde 40, C Rangel-Smith 167, K Rao 164, F Rauscher 99, T C Rave 48, T Ravenscroft 53, M Raymond 30, A L Read 118, N P Readioff 73, D M Rebuzzi 120, A Redelbach 175, G Redlinger 25, R Reece 138, K Reeves 41, L Rehnisch 16, H Reisin 27, M Relich 164, C Rembser 30, H Ren 33, Z L Ren 152, A Renaud 116, M Rescigno 133, S Resconi 90, O L Rezanova 108, P Reznicek 128, R Rezvani 94, R Richter 100, M Ridel 79, P Rieck 16, J Rieger 54, M Rijssenbeek 149, A Rimoldi 120, L Rinaldi 20, E Ritsch 61, I Riu 12, F Rizatdinova 113, E Rizvi 75, S H Robertson 86, A Robichaud-Veronneau 86, D Robinson 28, J E M Robinson 83, A Robson 53, C Roda 123, L Rodrigues 30, S Roe 30, O Røhne 118, S Rolli 162, A Romaniouk 97, M Romano 20, E Romero Adam 168, N Rompotis 139, M Ronzani 48, L Roos 79, E Ros 168, S Rosati 133, K Rosbach 49, M Rose 76, P Rose 138, P L Rosendahl 14, O Rosenthal 142, V Rossetti 147, E Rossi 103, L P Rossi 50, R Rosten 139, M Rotaru 26, I Roth 173, J Rothberg 139, D Rousseau 116, C R Royon 137, A Rozanov 84, Y Rozen 153, X Ruan 146, F Rubbo 12, I Rubinskiy 42, V I Rud 98, C Rudolph 44, M S Rudolph 159, F Rühr 48, A Ruiz-Martinez 30, Z Rurikova 48, N A Rusakovich 64, A Ruschke 99, J P Rutherfoord 7, N Ruthmann 48, Y F Ryabov 122, M Rybar 128, G Rybkin 116, N C Ryder 119, A F Saavedra 151, S Sacerdoti 27, A Saddique 3, I Sadeh 154, H F-W Sadrozinski 138, R Sadykov 64, F Safai Tehrani 133, H Sakamoto 156, Y Sakurai 172, G Salamanna 135, A Salamon 134, M Saleem 112, D Salek 106, P H Sales De Bruin 139, D Salihagic 100, A Salnikov 144, J Salt 168, D Salvatore 37, F Salvatore 150, A Salvucci 105, A Salzburger 30, D Sampsonidis 155, A Sanchez 103, J Sánchez 168, V Sanchez Martinez 168, H Sandaker 14, R L Sandbach 75, H G Sander 82, M P Sanders 99, M Sandhoff 176, T Sandoval 28, C Sandoval 163, R Sandstroem 100, D P C Sankey 130, A Sansoni 47, C Santoni 34, R Santonico 134, H Santos 125, I Santoyo Castillo 150, K Sapp 124, A Sapronov 64, J G Saraiva 125, B Sarrazin 21, G Sartisohn 176, O Sasaki 65, Y Sasaki 156, G Sauvage 5, E Sauvan 5, P Savard 156, D O Savu 30, C Sawyer 119, L Sawyer 78, D H Saxon 53, J Saxon 121, C Sbarra 20, A Sbrizzi 20, T Scanlon 77, D A Scannicchio 164, M Scarcella 151, V Scarfone 37, J Schaarschmidt 173, P Schacht 100, D Schaefer 30, R Schaefer 42, S Schaepe 21, S Schaetzel 58, U Schäfer 82, A C Schaffer 116, D Schaile 99, R D Schamberger 149, V Scharf 58, V A Schegelsky 122, D Scheirich 128, M Schernau 164, M I Scherzer 35, C Schiavi 50, J Schieck 99, C Schillo 48, M Schioppa 37, S Schlenker 30, E Schmidt 48, K Schmieden 30, C Schmitt 82, S Schmitt 58, B Schneider 17, Y J Schnellbach 73, U Schnoor 44, L Schoeffel 137, A Schoening 58, B D Schoenrock 89, A L S Schorlemmer 54, M Schott 82, D Schouten 160, J Schovancova 25, S Schramm 159, M Schreyer 175, C Schroeder 82, N Schuh 82, M J Schultens 21, H-C Schultz-Coulon 58, H Schulz 16, M Schumacher 48, B A Schumm 138, Ph Schune 137, C Schwanenberger 83, A Schwartzman 144, T A Schwarz 88, Ph Schwegler 100, Ph Schwemling 137, R Schwienhorst 89, J Schwindling 137, T Schwindt 21, M Schwoerer 5, F G Sciacca 17, E Scifo 116, G Sciolla 23, W G Scott 130, F Scuri 123, F Scutti 21, J Searcy 88, G Sedov 42, E Sedykh 122, S C Seidel 104, A Seiden 138, F Seifert 127, J M Seixas 24, G Sekhniaidze 103, S J Sekula 40, K E Selbach 46, D M Seliverstov 122, G Sellers 73, N Semprini-Cesari 20, C Serfon 30, L Serin 116, L Serkin 54, T Serre 84, R Seuster 160, H Severini 112, T Sfiligoj 74, F Sforza 100, A Sfyrla 30, E Shabalina 54, M Shamim 115, L Y Shan 33, R Shang 166, J T Shank 22, M Shapiro 15, P B Shatalov 96, K Shaw 165, C Y Shehu 150, P Sherwood 77, L Shi 152, S Shimizu 66, C O Shimmin 164, M Shimojima 101, M Shiyakova 64, A Shmeleva 95, M J Shochet 31, D Short 119, S Shrestha 63, E Shulga 97, M A Shupe 7, S Shushkevich 42, P Sicho 126, O Sidiropoulou 155, D Sidorov 113, A Sidoti 133, F Siegert 44, Dj Sijacki 13, J Silva 125, Y Silver 154, D Silverstein 144, S B Silverstein 147, V Simak 127, O Simard 5, Lj Simic 13, S Simion 116, E Simioni 82, B Simmons 77, R Simoniello 90, M Simonyan 36, P Sinervo 159, N B Sinev 115, V Sipica 142, G Siragusa 175, A Sircar 78, A N Sisakyan 64, S Yu Sivoklokov 98, J Sjölin 147, T B Sjursen 14, H P Skottowe 57, K Yu Skovpen 108, P Skubic 112, M Slater 18, T Slavicek 127, K Sliwa 162, V Smakhtin 173, B H Smart 46, L Smestad 14, S Yu Smirnov 97, Y Smirnov 97, L N Smirnova 98, O Smirnova 80, K M Smith 53, M Smizanska 71, K Smolek 127, A A Snesarev 95, G Snidero 75, S Snyder 25, R Sobie 170, F Socher 44, A Soffer 154, D A Soh 152, C A Solans 30, M Solar 127, J Solc 127, E Yu Soldatov 97, U Soldevila 168, A A Solodkov 129, A Soloshenko 64, O V Solovyanov 129, V Solovyev 122, P Sommer 48, H Y Song 33, N Soni 1, A Sood 15, A Sopczak 127, B Sopko 127, V Sopko 127, V Sorin 12, M Sosebee 8, R Soualah 165, P Soueid 94, A M Soukharev 108, D South 42, S Spagnolo 72, F Spanò 76, W R Spearman 57, F Spettel 100, R Spighi 20, G Spigo 30, L A Spiller 87, M Spousta 128, T Spreitzer 159, B Spurlock 8, R D St Denis 53, S Staerz 44, J Stahlman 121, R Stamen 58, S Stamm 16, E Stanecka 39, R W Stanek 6, C Stanescu 135, M Stanescu-Bellu 42, M M Stanitzki 42, S Stapnes 118, E A Starchenko 129, J Stark 55, P Staroba 126, P Starovoitov 42, R Staszewski 39, P Stavina 145, P Steinberg 25, B Stelzer 143, H J Stelzer 30, O Stelzer-Chilton 160, H Stenzel 52, S Stern 100, G A Stewart 53, J A Stillings 21, M C Stockton 86, M Stoebe 86, G Stoicea 26, P Stolte 54, S Stonjek 100, A R Stradling 8, A Straessner 44, M E Stramaglia 17, J Strandberg 148, S Strandberg 147, A Strandlie 118, E Strauss 144, M Strauss 112, P Strizenec 145, R Ströhmer 175, D M Strom 115, R Stroynowski 40, A Strubig 105, S A Stucci 17, B Stugu 14, N A Styles 42, D Su 144, J Su 124, R Subramaniam 78, A Succurro 12, Y Sugaya 117, C Suhr 107, M Suk 127, V V Sulin 95, S Sultansoy 4, T Sumida 67, S Sun 57, X Sun 33, J E Sundermann 48, K Suruliz 140, G Susinno 37, M R Sutton 150, Y Suzuki 65, M Svatos 126, S Swedish 169, M Swiatlowski 144, I Sykora 145, T Sykora 128, D Ta 89, C Taccini 135, K Tackmann 42, J Taenzer 159, A Taffard 164, R Tafirout 160, N Taiblum 154, H Takai 25, R Takashima 68, H Takeda 66, T Takeshita 141, Y Takubo 65, M Talby 84, A A Talyshev 108, J Y C Tam 175, K G Tan 87, J Tanaka 156, R Tanaka 116, S Tanaka 132, S Tanaka 65, A J Tanasijczuk 143, B B Tannenwald 110, N Tannoury 21, S Tapprogge 82, S Tarem 153, F Tarrade 29, G F Tartarelli 90, P Tas 128, M Tasevsky 126, T Tashiro 67, E Tassi 37, A Tavares Delgado 125, Y Tayalati 136, F E Taylor 93, G N Taylor 87, W Taylor 160, F A Teischinger 30, M Teixeira Dias Castanheira 75, P Teixeira-Dias 76, K K Temming 48, H Ten Kate 30, P K Teng 152, J J Teoh 117, S Terada 65, K Terashi 156, J Terron 81, S Terzo 100, M Testa 47, R J Teuscher 159, J Therhaag 21, T Theveneaux-Pelzer 34, J P Thomas 18, J Thomas-Wilsker 76, E N Thompson 35, P D Thompson 18, P D Thompson 159, R J Thompson 83, A S Thompson 53, L A Thomsen 36, E Thomson 121, M Thomson 28, W M Thong 87, R P Thun 88, F Tian 35, M J Tibbetts 15, V O Tikhomirov 95, Yu A Tikhonov 108, S Timoshenko 97, E Tiouchichine 84, P Tipton 177, S Tisserant 84, T Todorov 5, S Todorova-Nova 128, B Toggerson 7, J Tojo 69, S Tokár 145, K Tokushuku 65, K Tollefson 89, E Tolley 57, L Tomlinson 83, M Tomoto 102, L Tompkins 31, K Toms 104, N D Topilin 64, E Torrence 115, H Torres 143, E Torró Pastor 168, J Toth 84, F Touchard 84, D R Tovey 140, H L Tran 116, T Trefzger 175, L Tremblet 30, A Tricoli 30, I M Trigger 160, S Trincaz-Duvoid 79, M F Tripiana 12, W Trischuk 159, B Trocmé 55, C Troncon 90, M Trottier-McDonald 15, M Trovatelli 135, P True 89, M Trzebinski 39, A Trzupek 39, C Tsarouchas 30, J C-L Tseng 119, P V Tsiareshka 91, D Tsionou 137, G Tsipolitis 10, N Tsirintanis 9, S Tsiskaridze 12, V Tsiskaridze 48, E G Tskhadadze 51, I I Tsukerman 96, V Tsulaia 15, S Tsuno 65, D Tsybychev 149, A Tudorache 26, V Tudorache 26, A N Tuna 121, S A Tupputi 20, S Turchikhin 98, D Turecek 127, I Turk Cakir 4, R Turra 90, P M Tuts 35, A Tykhonov 49, M Tylmad 147, M Tyndel 130, K Uchida 21, I Ueda 156, R Ueno 29, M Ughetto 84, M Ugland 14, M Uhlenbrock 21, F Ukegawa 161, G Unal 30, A Undrus 25, G Unel 164, F C Ungaro 48, Y Unno 65, C Unverdorben 99, D Urbaniec 35, P Urquijo 87, G Usai 8, A Usanova 61, L Vacavant 84, V Vacek 127, B Vachon 86, N Valencic 106, S Valentinetti 20, A Valero 168, L Valery 34, S Valkar 128, E Valladolid Gallego 168, S Vallecorsa 49, J A Valls Ferrer 168, W Van Den Wollenberg 106, P C Van Der Deijl 106, R van der Geer 106, H van der Graaf 106, R Van Der Leeuw 106, D van der Ster 30, N van Eldik 30, P van Gemmeren 6, J Van Nieuwkoop 143, I van Vulpen 106, M C van Woerden 30, M Vanadia 133, W Vandelli 30, R Vanguri 121, A Vaniachine 6, P Vankov 42, F Vannucci 79, G Vardanyan 178, R Vari 133, E W Varnes 7, T Varol 85, D Varouchas 79, A Vartapetian 8, K E Varvell 151, F Vazeille 34, T Vazquez Schroeder 54, J Veatch 7, F Veloso 125, S Veneziano 133, A Ventura 72, D Ventura 85, M Venturi 170, N Venturi 159, A Venturini 23, V Vercesi 120, M Verducci 133, W Verkerke 106, J C Vermeulen 106, A Vest 44, M C Vetterli 143, O Viazlo 80, I Vichou 166, T Vickey 146, O E Vickey Boeriu 146, G H A Viehhauser 119, S Viel 169, R Vigne 30, M Villa 20, M Villaplana Perez 90, E Vilucchi 47, M G Vincter 29, V B Vinogradov 64, J Virzi 15, I Vivarelli 150, F Vives Vaque 3, S Vlachos 10, D Vladoiu 99, M Vlasak 127, A Vogel 21, M Vogel 32, P Vokac 127, G Volpi 123, M Volpi 87, H von der Schmitt 100, H von Radziewski 48, E von Toerne 21, V Vorobel 128, K Vorobev 97, M Vos 168, R Voss 30, J H Vossebeld 73, N Vranjes 137, M Vranjes Milosavljevic 13, V Vrba 126, M Vreeswijk 106, T Vu Anh 48, R Vuillermet 30, I Vukotic 31, Z Vykydal 127, P Wagner 21, W Wagner 176, H Wahlberg 70, S Wahrmund 44, J Wakabayashi 102, J Walder 71, R Walker 99, W Walkowiak 142, R Wall 177, P Waller 73, B Walsh 177, C Wang 152, C Wang 45, F Wang 174, H Wang 15, H Wang 40, J Wang 42, J Wang 33, K Wang 86, R Wang 104, S M Wang 152, T Wang 21, X Wang 177, C Wanotayaroj 115, A Warburton 86, C P Ward 28, D R Wardrope 77, M Warsinsky 48, A Washbrook 46, C Wasicki 42, P M Watkins 18, A T Watson 18, I J Watson 151, M F Watson 18, G Watts 139, S Watts 83, B M Waugh 77, S Webb 83, M S Weber 17, S W Weber 175, J S Webster 31, A R Weidberg 119, P Weigell 100, B Weinert 60, J Weingarten 54, C Weiser 48, H Weits 106, P S Wells 30, T Wenaus 25, D Wendland 16, Z Weng 152, T Wengler 30, S Wenig 30, N Wermes 21, M Werner 48, P Werner 30, M Wessels 58, J Wetter 162, K Whalen 29, A White 8, M J White 1, R White 32, S White 123, D Whiteson 164, D Wicke 176, F J Wickens 130, W Wiedenmann 174, M Wielers 130, P Wienemann 21, C Wiglesworth 36, L A M Wiik-Fuchs 21, P A Wijeratne 77, A Wildauer 100, M A Wildt 42, H G Wilkens 30, J Z Will 99, H H Williams 121, S Williams 28, C Willis 89, S Willocq 85, A Wilson 88, J A Wilson 18, I Wingerter-Seez 5, F Winklmeier 115, B T Winter 21, M Wittgen 144, T Wittig 43, J Wittkowski 99, S J Wollstadt 82, M W Wolter 39, H Wolters 125, B K Wosiek 39, J Wotschack 30, M J Woudstra 83, K W Wozniak 39, M Wright 53, M Wu 55, M Wu 31, S L Wu 174, X Wu 49, Y Wu 88, E Wulf 35, T R Wyatt 83, B M Wynne 46, S Xella 36, M Xiao 137, D Xu 33, L Xu 33, B Yabsley 151, S Yacoob 146, R Yakabe 66, M Yamada 65, H Yamaguchi 156, Y Yamaguchi 117, A Yamamoto 65, K Yamamoto 63, S Yamamoto 156, T Yamamura 156, T Yamanaka 156, K Yamauchi 102, Y Yamazaki 66, Z Yan 22, H Yang 33, H Yang 174, U K Yang 83, Y Yang 110, S Yanush 92, L Yao 33, W-M Yao 15, Y Yasu 65, E Yatsenko 42, K H Yau Wong 21, J Ye 40, S Ye 25, I Yeletskikh 64, A L Yen 57, E Yildirim 42, M Yilmaz 4, R Yoosoofmiya 124, K Yorita 172, R Yoshida 6, K Yoshihara 156, C Young 144, C J S Young 30, S Youssef 22, D R Yu 15, J Yu 8, J M Yu 88, J Yu 113, L Yuan 66, A Yurkewicz 107, I Yusuff 28, B Zabinski 39, R Zaidan 62, A M Zaitsev 129, A Zaman 149, S Zambito 23, L Zanello 133, D Zanzi 100, C Zeitnitz 176, M Zeman 127, A Zemla 38, K Zengel 23, O Zenin 129, T Ženiš 145, D Zerwas 116, G Zevi della Porta 57, D Zhang 88, F Zhang 174, H Zhang 89, J Zhang 6, L Zhang 152, X Zhang 33, Z Zhang 116, Z Zhao 33, A Zhemchugov 64, J Zhong 119, B Zhou 88, L Zhou 35, N Zhou 164, C G Zhu 33, H Zhu 33, J Zhu 88, Y Zhu 33, X Zhuang 33, K Zhukov 95, A Zibell 175, D Zieminska 60, N I Zimine 64, C Zimmermann 82, R Zimmermann 21, S Zimmermann 21, S Zimmermann 48, Z Zinonos 54, M Ziolkowski 142, G Zobernig 174, A Zoccoli 20, M zur Nedden 16, G Zurzolo 103, V Zutshi 107, L Zwalinski 30
PMCID: PMC4376397  PMID: 25838792

Abstract

This paper reports on a search for narrow resonances in diboson production in the qq¯ final state using pp collision data corresponding to an integrated luminosity of 20 fb-1 collected at s=8 TeV with the ATLAS detector at the Large Hadron Collider. No significant excess of data events over the Standard Model expectation is observed. Upper limits at the 95 % confidence level are set on the production cross section times branching ratio for Kaluza–Klein gravitons predicted by the Randall–Sundrum model and for Extended Gauge Model W bosons. These results lead to the exclusion of mass values below 740 and 1590 GeV for the graviton and W boson respectively.

Introduction

This paper presents a search for narrow diboson resonances in the semileptonic decay channel ZW or ZZqq¯ (where stands for electron or muon) in pp collision data corresponding to an integrated luminosity of 20fb-1 recorded with the ATLAS detector at a centre-of-mass energy s=8 TeV at the Large Hadron Collider (LHC). This type of resonances appear in models such as Technicolor [13], Warped Extra Dimensions [46], and Grand Unified Theories [710]. The semileptonic decay channel has a relatively large branching ratio compared to the fully leptonic mode, while the requirement of the presence of two decay leptons can suppress the multijet background present in the fully hadronic mode. Additionally, the absence of neutrinos in the final state allows to reconstruct the invariant mass of the diboson system.

This analysis is optimized using two models with narrow resonances as benchmarks: spin-2 Kaluza–Klein (KK) gravitons (GZZ), and spin-1 W gauge bosons (WZW) of the Sequential Standard Model (SSM) with modified coupling to ZW, also referred to as the Extended Gauge Model (EGM) [11]. For both models, the W and Z bosons from resonance decays are longitudinally polarized over a pole mass range relevant to this analysis.

The KK graviton interpretation is based on an extended Randall–Sundrum (RS) model with a warped extra dimension in which the Standard Model (SM) fields can propagate [12]. This extended “bulk” RS model avoids constraints on the original RS model [4], referred to as RS1 hereafter, from limits on flavour-changing neutral currents and from electroweak precision tests. The bulk RS model is characterized by a dimensionless coupling constant k/M¯Pl1 where k is the curvature of the warped extra dimension and M¯Pl=MPl/8π is the reduced Planck mass. The width relative to the mass of the bulk RS graviton with k/M¯Pl=1 varies between 3 and 6 % within the pole mass range of 300–2000 GeV.

The EGM introduces W and Z bosons with SM couplings to fermions and with the coupling strength of the heavy W to WZ modified by a mixing factor ξ=c×(mW/mW)2 relative to the SM couplings, where mW and mW are the pole masses of the W and W bosons respectively, and c is a coupling scaling factor. In this scenario the partial width of the W boson to WZ scales linearly with mW, leading to a narrow resonance over the accessible mass range, in contrast to the SSM where the width grows rapidly as mW5. For the simulated EGM W samples used in the analysis, the natural W width is about 3 % at a pole mass of 300 GeV and increases slightly to 4 % at a pole mass of 2000 GeV.

Previous searches for diboson resonances have been carried out using pp¯ collision data at s=1.96 TeV at the Tevatron and pp collision data at s= 7–8 TeV at the LHC. The D0 Collaboration searched for resonances in WW and Z W production [13, 14] and excluded W bosons in the mass range of 180–690 GeV and RS1 gravitons in the mass interval 300–754 GeV at the 95 % confidence level (CL). The CDF experiment searched for resonances in the Z Z decay channel and set limits on the production cross section of RS1 gravitons in the mass range 300–1000 GeV at the 95 % CL [15]. The ATLAS Collaboration reported searches for resonant ZZ (, qq¯) [16], WW (νqq¯) [17] and WZ (νqq¯, ν) [17, 18] production, and searches for new phenomena in high-mass WW (νν) processes [19] using pp collision data recorded at s=7 TeV, except for the WZν search in Ref. [18], which used data recorded at s=8 TeV. Here stands for an electron or muon. These studies excluded EGM W bosons with masses up to 1.52 TeV for WZ final states, RS1 gravitons with masses up to 845 GeV for ZZ final states and up to 1.23 TeV for WW final states. The CMS Collaboration searched for Z Z and W W resonances in the semileptonic decay channel, setting exclusion limits on the production cross section of bulk RS gravitons [20]. In the fully hadronic channel, the CMS Collaboration excluded RS1 gravitons with k/M¯Pl = 0.1 for masses up to 1.2 TeV, and W bosons for masses up to 1.7 TeV [21]. Both of these searches implement jet substructure techniques to identify the event topology where the hadronic system from the decay of one or two gauge bosons is produced at high transverse momentum pT, resulting in a single reconstructed jet. In the analysis presented here, a similar technique has been used to identify hadronically decaying W or Z boson produced at high pT. This technique uses the characteristics of two cores (“subjets”) inside a single reconstructed jet and allows for a significant improvement in acceptance and selection efficiency for high mass states with boosted W and Z bosons over the previous analysis [16].

Analysis

In this study, three optimized sets of selection criteria classify ZW/ZZqq¯ events into distinct kinematic regions, namely the “low-pT resolved region” (LR), “high-pT resolved region” (HR) and “merged region” (MR), based on the pT of the dilepton and the hadronic system. In the LR and HR the hadronic boson decay is reconstructed as two distinct jets, whereas in the MR it is reconstructed as a single jet. In all three cases, the dilepton (hadronic system) mass is required to be consistent with the mass of the Z boson (W or Z boson). In the MR, additional jet substructure information, optimized for the identification of the hadronic decay of a longitudinally polarized high-pT boson, is used to improve the sensitivity. Finally, the qq¯ mass spectrum, reconstructed as the mass of the dilepton and the two-jet system in the LR and HR (mjj) or the dilepton and the single-jet system in the MR (mJ), is examined for excesses with respect to the expectation from SM processes (background).

Detector and data sample

The ATLAS detector [22] consists of an inner detector (ID) providing charged particle tracking for the pseudorapidity1 range |η|<2.5, surrounded by a superconducting solenoid, electromagnetic and hadronic calorimeters with a coverage of |η|<4.9, and a muon spectrometer (MS) with toroidal magnets that provides muon identification in the range |η|<2.7.

This study uses an integrated luminosity of 20.3fb-1 of pp collision data collected in 2012. The luminosity is derived from beam-separation scans [23] and has an uncertainty of 2.8 %. Events are selected with lepton triggers that require the presence of at least one lepton (electron or muon) with pT above 24 GeV. The trigger efficiency for signal events that pass the selection criteria described in Sect. 2.3 is approximately 92 % for the muon channel and greater than 99 % for the electron channel.

Simulated event samples

To model the acceptance and the reconstructed mass spectra for narrow resonances, benchmark signal samples are generated with pole masses between 300 and 2000 GeV, in 100 GeV steps. Additional samples are generated between 350 and 950 GeV for the bulk RS G signal so that the mass gap is reduced to 50 GeV, which is comparable to the detector resolution of the reconstructed qq¯ mass in this mass interval. The bulk RS G signal events are generated by CalcHEP  [24] with k/M¯Pl=1.0, and the W signal sample is generated with Pythia 8 [25], setting the coupling scale factor c=1. The factorization and renormalization scales are set to the resonance mass. The hadronisation and fragmentation are modelled with Pythia 8 in both cases, and the CTEQ6L1 [26] (MSTW2008LO [27]) parton distribution functions (PDFs) are used for the G (W) signal. The W production cross section is scaled to a next-to-next-to-leading-order (NNLO) calculation in αs by ZWprod [28]. Calculated production cross section times branching ratio values for different pole masses are given in Table 1.

Table 1.

Theoretical production cross section times branching ratio σG(ppG)·BR(GZZ) with k/M¯Pl=1.0 and σW(ppW)·BR(WZW) with c=1 for different pole masses of the resonances

Pole mass (GeV) σG·BR (fb) σW·BR (fb)
500 540 4100
800 23 540
1400 0.44 33

The main background sources are Z bosons produced in association with jets (Z+jets), followed by top-quark pair and non-resonant vector-boson pair production. The contribution from multijet events is negligible after the selection cuts described in Sect. 2.3. All background estimates are based on simulation. Additionally, the main background source, Z+jets, is estimated using constraints from data as described in Sect. 2.4. The Z+jets background is modelled by the Sherpa generator [29] with CT10 PDFs [30]. The top pair, s-channel single-top and Wt processes are modelled by the MC@NLO [3134] generator with CT10 PDFs, interfaced to Herwig [35, 36] for hadronisation and Jimmy [37] for modelling of the underlying event. The top pair production cross section is calculated at NNLO in QCD including resummation of next-to-next-to-leading logarithmic soft gluon terms with Top++2.0 [3843]. The t-channel single-top events are generated by AcerMC [44] with CTEQ6L1 PDFs and Pythia 6 [45] for hadronisation. The diboson events are produced with the Herwig generator and CTEQ6L1 PDFs. The diboson production cross sections are normalized to predictions at next-to-leading-order accuracy as calculated with [46]. Generated events are processed with the ATLAS detector simulation program [47] based on the GEANT4 package [48]. Effects from additional inelastic pp interactions (pile-up) occurring in the same bunch crossing are taken into account by overlaying minimum-bias events simulated by Pythia 8.

Object and event selection

Electron candidates are selected from energy clusters in the electromagnetic calorimeter according to the medium criteria of Ref. [49], which impose requirements on the shower profile and demand an associated ID track. Offline reconstructed electrons are required to have pT>25 GeV and |η| < 2.47. The transition region between the barrel and endcaps (1.37<|η|<1.52) exhibits degraded energy resolution and is therefore excluded.

Muon candidates are reconstructed by combining ID and MS tracks which have consistent position, charge and momentum measurements [50]. The muon candidates are required to have pT>25 GeV and |η|<2.4.

A primary vertex reconstructed from at least three well-reconstructed charged particle tracks, each with pT>400 MeV, is required in order to remove non-collision background. If an event contains more than one primary vertex candidate, the vertex with the highest ΣpT2 of the associated tracks is selected. To ensure that both electrons or muons originate from the primary vertex, it is required that the product of the longitudinal impact parameter (z0) and the sine of the polar angle of the candidate (θ) satisfies |z0sin(θ)|<0.5 mm, and that the ratio of the transverse impact parameter (d0) to its uncertainty (σd0) for electrons (muons) fulfils |d0|/σd0<6 (3.5). In addition, the lepton candidates are required to be isolated from other tracks and calorimetric activity. The scalar sum of the transverse momenta of tracks within a cone of size ΔR(Δη)2+(Δϕ)2=0.2 around the lepton track is required to be less than 15 % of the candidate pT. Similarly, the sum of transverse energy deposits in the calorimeter within a cone of size ΔR=0.2, excluding the transverse energy due to the lepton, and corrected for the expected pile-up contribution, is required to be less than 30 % of the candidate pT (calorimetric isolation).

To improve the acceptance for events with boosted Z bosons, with pT>800 GeV, the isolation method is modified for dilepton objects: a dilepton track isolation variable is calculated for each lepton of a like-flavour pair by subtracting the pT of the paired lepton from the pT sum described above if it falls inside the isolation cone of the lepton under consideration. The modified scalar sum pT variable for the dilepton isolation is required to be less than 15 % of the lepton pT, as in the standard track isolation. The calorimetric isolation requirements are dropped if ΔR()<0.25.

Jets are reconstructed from clusters of calorimeter cells using the anti-kt algorithm [51, 52] with a distance parameter R=0.4. Jets are required to be in the range |η|<2.1 and to have pT>30 GeV after correcting for energy losses in passive material, the non-compensating response of the calorimeter and extra energy due to event pile-up [53]. Furthermore, for jets with pT<50 GeV, the scalar sum pT of associated tracks from the primary vertex is required to be at least 50 % of the scalar sum pT of all associated tracks to suppress jets from pile-up interactions. The selected anti-kt jets are referred to as small-R jets and denoted by “j” hereafter.

For resonances with a mass above about 900 GeV, the qq¯ pair is often merged into a single jet and the fraction of merged qq¯ pairs increases with the resonance mass. Such jets are reconstructed with the Cambridge–Aachen jet clustering algorithm [54] with a distance parameter R=1.2. To exploit the characteristics of the decay of the massive boson into a qq¯ pair, these jets are further required to pass a splitting and filtering algorithm similar to the algorithm described in Ref. [55] but optimized for the identification of very high-pT boson decays [56]. These jets are required to be within |η|<1.2 and to have pT>100 GeV, and are referred to as large-R jets or “J” hereafter.

Events which contain exactly two electrons or muons satisfying the above criteria are selected if at least one is associated with a lepton trigger candidate. To select lepton pairs originating from a Z boson decay, the dilepton invariant mass (m) is required to be in the range 66GeV<m<116 GeV. The m cut range is chosen to be wide to enhance the signal sensitivity, given that the dominant background is from the Z+jets processes and a narrower cut would not provide additional discrimination power. Muon-pair events are further required to have muons of opposite charge. The opposite charge requirement is not required for electron-pair events because of a higher charge misidentification rate for high-pT electrons.

The three selection regions are differentiated by the pT ranges for the leptonic Z decay candidate (pT) and hadronic jet system, namely pT>400 GeV and pTJ>400 GeV for the large-R jet in the MR, and pT>100 (250) GeV and pTjj>100 (250) GeV for the two small-R jets at low (high) pT in the LR (HR). The mass of the hadronic jet system is required to be in the range 70 GeV <mjj/J<110 GeV for both the hadronic W and Z decay candidates in all three regions. In the MR, the large-R jet is split into subjets using an algorithm described in Ref. [55]. However, in contrast to the configuration used in Ref. [55], the mass relation between the large-R jet and subjets, the mass drop, is not imposed. A subjet momentum balance variable is defined as yf=min(pTj1,pTj2)ΔR12/m12, where pTj1 and pTj2 are the transverse momenta of the two leading subjets, ΔR12 is their separation and m12 is their mass. To suppress jets from gluon radiation and splitting, the subjet momentum balance is required to be yf>0.45. Events are classified by sequentially applying the criteria for the MR, HR, and LR, thus assigning each event exclusively to one region. Overall, the signal acceptance times efficiency after all selection requirements increases from 5 to 10 % at mG= 300 GeV to a plateau of 30–35 % above mG= 500 GeV for a signal sample of GZZqq¯. The improvement in acceptance compared to the previous analysis [16] ranges up to a factor of five for masses above 1.5 TeV.

Background and event yield

The simulation of the main background source (Z+jets) is corrected using data. The normalization and mjj/J shape corrections of the simulated Z+jets background sample is determined from data in a control region defined by all selection cuts but with an inverted cut on mjj/J, namely mjj/J<70 GeV or mjj/J>110 GeV, in the resolved and merged regions, respectively. The normalization corrections, obtained as the ratio of event yields in the data and Z+jets simulated samples for the electron and muon channel, after removing contributions from subdominant backgrounds from the data spectrum, range between 2 and 10 %. The mjj/J shape correction is well reproduced with a linear fit to the ratio of data to Z+jets background, derived for each signal region after combining the electron and muon channels. This results in bin-by-bin corrections of up to 7 % in the LR, 3 % in the HR, and 22 % in the MR. The other backgrounds, from diboson and top production, are taken from simulation without applying corrections from data control regions.

The event yield in the three signal regions is summarized in Table 2. The total event yield with combined statistical and systematic uncertainties is given before and after the simultaneous fit to the three signal regions (cf. Sect. 3).

Table 2.

Event yields in signal regions for data, expected backgrounds, and G and W signals. The statistical and systematic uncertainties are given separately (in this order), except for the total background where the combined statistical and systematic uncertainty before (unconstrained) and after (constrained) the fit to the data in the signal regions is shown. The signal mass points correspond to 500 (LR), 800 (HR), 1400 (MR) GeV

Sample LR HR MR
Z+jets 9460 ± 40 ± 660 591 ± 4 ± 15 20.9 ± 0.3 ± 2.3
WW/WZ/ZZ 234 ± 4 ± 22 20.6 ± 0.3 ± 1.4 1.38 ± 0.02 ± 0.13
tt¯ + Single t 175.3 ± 9.2 ± 9.9
Total (unconstrained) 9870 ± 690 612 ± 17 22.3 ± 2.5
Total (constrained) 9730 ± 98 608.8 ± 3.8 21.80 ± 0.46
Data 9728 619 25
G signal 1097 ± 17 ± 63 14.27 ± 0.19 ± 0.76 0.0995 ± 0.0013 ± 0.0059
W signal 1950 ± 40 ± 140 145.0 ± 2.3 ± 8.1 3.64 ± 0.06 ± 0.31

Systematic uncertainties

The main systematic uncertainty on the mjj/J spectrum comes from the uncertainty in the Z+jets background modelling. The normalization uncertainty of the Z+jets background is estimated from the relative difference between the normalization corrections derived from the nominal control region (mjj/J<70 GeV or >110 GeV) and either the lower or higher mass region, taking the larger of the two as an estimate of the systematic uncertainty. If the resulting uncertainty is smaller than the statistical uncertainty of the normalization correction from the nominal control region, the latter is used as the systematic uncertainty. The uncertainty of the shape correction is estimated from the uncertainty on the slope parameter of the linear fit and is treated as uncorrelated with respect to the normalization uncertainty. The combined normalization and shape uncertainties vary as a function of mjj/J and range from 6 to 9 % in the LR, 2 to 8 % in the HR, and 11 to 47 % in the MR. For all simulated samples, detector performance-related systematic uncertainties including the small-R jet energy scale and resolution, large-R jet energy, mass and momentum-balance scales and resolutions, the lepton reconstruction and identification efficiencies, and lepton momentum scales and resolutions are also considered. The large-R jet energy and mass scale uncertainties are evaluated by comparing the ratio of calorimeter-based to track-based measurements in dijet data and simulated events, and are validated using a data sample of high-pT W bosons produced in association with jets. A Kolmogorov–Smirnov (KS) test [57] is then performed between the nominal and systematically varied distributions for a given systematic uncertainty source to determine if it has a sizeable effect on the shape of background and signal estimations. Only significant systematic effects are retained in the analysis by requiring a KS probability of less then 10 %. For the normalization, if the event yield changes by more than half the statistical uncertainty of the nominal yield, the systematic uncertainty is included.

Uncertainties on signal acceptance due to PDF sets, renormalization and factorization scale choices, initial- and final-state gluon radiation (ISR/FSR) modelling, and LHC beam energy uncertainty are also considered. The PDF uncertainties are estimated by taking the acceptance difference between CTEQL1 and MSTW2008LO PDFs and adding it in quadrature to the difference between MSTW2008LO error sets. The uncertainties due to the scale and ISR/FSR modelling are estimated by varying relevant parameters in Pythia 8 by a factor of 2.0 and 0.5. The beam energy systematic uncertainty is assessed with simulation by varying the beam energy within the measured uncertainty of 0.66 % [58], leading to at most a 1 % effect on acceptance. The dominant uncertainty comes from ISR/FSR modelling and is approximately 5 %.

Results

The invariant mass of the diboson system is reconstructed from the jj or J system. The reconstructed mjj/J distributions for data and simulated background events in the three signal regions are shown in Fig. 1 for the combined electron and muon channels. Good agreement is observed between the data and the background predictions, with p value2 ranging from 0.98 to 0.10, and the results are presented as 95 % confidence level upper limits on the production cross section times branching ratio for the G and W models. The upper limits are determined using the CLS modified frequentist formalism [59] with a profile likelihood test statistic [60]. The test statistic is evaluated with a maximum likelihood fit of signal models and background predictions to the reconstructed mjj/J spectra shown in Fig. 1. Systematic uncertainties and their correlations are taken into account as nuisance parameters with Gaussian constraints. The likelihood fit, which takes into account correlations between the systematic uncertainties, is performed for signal pole masses ranging between 300 and 850 GeV for the LR, 550 and 1800 GeV for the HR and 800 and 2000 GeV for the MR. Overlapping regions are fit simultaneously.

Fig. 1.

Fig. 1

Reconstructed jj or J mass distributions in the data and for background after all the selection cuts are applied in the three kinematic regions referred to as the LR (top), HR (middle) and MR (bottom) in the text. The shaded regions show the full background uncertainty obtained by adding statistical and systematic uncertainties in quadrature, including the constraints on the background from the data control regions and before the fit to the data in the signal regions (cf. unconstrained case in Table 2). Also shown are the G signal yields expected for masses of 500, 800 and 1400 GeV with the production cross sections scaled by a factor 10

Figure 2 shows 95 % CL upper limits on the production cross section times branching fraction into ZZ or ZW as a function of the resonance pole mass. The theoretical predictions for the EGM W and the bulk RS G with two different values of the coupling constant, shown in the figure, allow the extraction of observed (expected) lower mass limits of 1590 (1540) GeV for the W, and 740 and 540 (700 and 490) GeV for the G with k/M¯Pl=1.0 and 0.5 respectively. The most powerful search regions are the LR for masses below 550 GeV, the HR from 500 to 850 GeV and the MR for higher masses.

Fig. 2.

Fig. 2

Observed and expected 95 % CL upper limits on the cross section times branching fraction as a function of the resonance pole mass for the G (top) and EGM W (bottom). The LO (NNLO) theoretical cross sections for G (EGM W) production with k/M¯Pl=0.5 and 1.0 (c=1) are also shown. The band around the W cross section represents the theoretical uncertainty on the NNLO calculation. The inner and outer bands on the expected limits represent ±1σ and ±2σ variations respectively

Conclusion

In summary, a search for narrow, heavy resonances produced in pp collisions and decaying to diboson final states at the Large Hadron Collider has been performed. The data sample analysed, corresponding to an integrated luminosity of 20 fb-1 at s=8 TeV, was recorded with the ATLAS detector. No significant excess over the Standard Model background expectation was found. Upper limits on the production cross section times branching ratio and mass exclusion limits are derived for W bosons in the theoretical framework of an Extended Gauge Model and for gravitons in warped extra dimensions in the context of the bulk Randall–Sundrum model. The results represent a significant improvement over previously reported limits by ATLAS [16] due to increased pp collision energy and data set size as well as the development of new techniques to analyse heavily boosted decays of bosons.

Acknowledgments

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, UK; DOE and NSF, USA. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Footnotes

1

ATLAS uses a right-handed coordinate system with the z-axis along the beam pipe. The x-axis points to the centre of the LHC ring, and the y-axis points upward. Cylindrical coordinates (R, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as η=-ln(tan(θ/2)).

2

The p value is the probability that the background can produce a fluctuation greater than or equal to the excess observed in data.

References

  • 1.Eichten E, Lane K. Phys. Lett. B. 2008;669:235. doi: 10.1016/j.physletb.2008.09.047. [DOI] [Google Scholar]
  • 2.Catterall S, Del Debbio L, Giedt J, Keegan L. Phys. Rev. D. 2012;85:094501. doi: 10.1103/PhysRevD.85.094501. [DOI] [Google Scholar]
  • 3.Andersen J, et al. Eur. Phys. J. Plus. 2011;126:81. doi: 10.1140/epjp/i2011-11081-1. [DOI] [Google Scholar]
  • 4.Randall L, Sundrum R. Phys. Rev. Lett. 1999;83:3370. doi: 10.1103/PhysRevLett.83.3370. [DOI] [Google Scholar]
  • 5.Randall L, Sundrum R. Phys. Rev. Lett. 1999;83:4690. doi: 10.1103/PhysRevLett.83.4690. [DOI] [Google Scholar]
  • 6.Davoudiasl H, Hewett JL, Rizzo TG. Phys. Rev. D. 2001;63:075004. doi: 10.1103/PhysRevD.63.075004. [DOI] [PubMed] [Google Scholar]
  • 7.Pati JC, Salam A. Phys. Rev. D. 1974;10:275. doi: 10.1103/PhysRevD.10.275. [DOI] [Google Scholar]
  • 8.Georgi H, Glashow S. Phys. Rev. Lett. 1974;32:438. doi: 10.1103/PhysRevLett.32.438. [DOI] [Google Scholar]
  • 9.Georgi H. AIP Conf. Proc. 1975;23:575. doi: 10.1063/1.2947450. [DOI] [Google Scholar]
  • 10.Fritzsch H, Minkowski P. Ann. Phys. 1975;93:193. doi: 10.1016/0003-4916(75)90211-0. [DOI] [Google Scholar]
  • 11.G. Altarelli, B. Mele, M. Ruiz-Altaba, Z. Phys. C 45, 109 (1989). [Erratum-ibid C 47, 676 (1990)]
  • 12.Agashe K, et al. Phys. Rev. D. 2007;76:036006. doi: 10.1103/PhysRevD.76.036006. [DOI] [Google Scholar]
  • 13.V.M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 104, 061801 (2010). arXiv:0912.0715
  • 14.V.M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 107, 011801 (2011). arXiv:1011.6278
  • 15.T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 85, 12008 (2012). arXiv:1111.3432
  • 16.ATLAS Collaboration, Phys. Lett. B 712, 331 (2012). arXiv:1203.0718
  • 17.ATLAS Collaboration, Phys. Rev. D 87, 112006 (2013). arXiv:1305.0125
  • 18.ATLAS Collaboration, Phys. Lett. B. arXiv:1406.4456 [hep-ex]
  • 19.ATLAS Collaboration, Phys. Lett. B 718, 860 (2013). arXiv:1208.2880
  • 20.CMS Collaboration, J. High Energy Phys. arXiv:1405.3447 [hep-ex]
  • 21.CMS Collaboration, J. High Energy Phys. arXiv:1405.1994 [hep-ex]
  • 22.ATLAS Collaboration, JINST 3, S08003 (2008)
  • 23.ATLAS Collaboration, Eur. Phys. J. C 73, 2518 (2013). arXiv:1302.4393 [DOI] [PMC free article] [PubMed]
  • 24.A. Belyaev, N. Christensen, A. Pukhov, Comput. Phys. Commun. 184, 1729 (2013). arXiv:1207.6082. [CalcHEP 3.4.3; with the overestimate of the Randall–Sundrum graviton production cross section by a factor of four corrected as reported in http://cp3-origins.dk/research/units/ed-tools (2013)]
  • 25.Sjostrand T, Mrenna S, Skands P. J. High Energy Phys. 2006;0605:026. doi: 10.1088/1126-6708/2006/05/026. [DOI] [Google Scholar]
  • 26.Pumplin J, et al. J. High Energy Phys. 2002;0207:012. doi: 10.1088/1126-6708/2002/07/012. [DOI] [Google Scholar]
  • 27.Martin AD, Stirling WJ, Thorne RS, Watt G. Eur. Phys. J. C. 2009;63:189. doi: 10.1140/epjc/s10052-009-1072-5. [DOI] [Google Scholar]
  • 28.Hamberg R, van Neerven WL, Matsuura T. Nucl. Phys. B. 1991;359:343. doi: 10.1016/0550-3213(91)90064-5. [DOI] [Google Scholar]
  • 29.Gleisberg T, et al. J. High Energy Phys. 2009;0902:007. doi: 10.1088/1126-6708/2009/02/007. [DOI] [Google Scholar]
  • 30.Lai H-L, et al. Phys. Rev. D. 2010;82:074024. doi: 10.1103/PhysRevD.82.074024. [DOI] [Google Scholar]
  • 31.Frixione S, Webber BR. J. High Energy Phys. 2002;0206:029. doi: 10.1088/1126-6708/2002/06/029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Frixione S, Nason P, Webber BR. J. High Energy Phys. 2003;0308:007. doi: 10.1088/1126-6708/2003/08/007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.S. Frixione, E. Laenen, P. Motylinski, B.R. Webber, J. High Energy Phys. 0603, 092 (2006). arXiv:hep-ph/0512250
  • 34.Frixione S, Laenen E, Motylinski P, Webber BR, White CD. J. High Energy Phys. 2008;0807:029. doi: 10.1088/1126-6708/2008/07/029. [DOI] [Google Scholar]
  • 35.Marchesini G, Webber BR, Abbiendi G, Knowles IG, Seymour MH, Stanco L. Comput. Phys. Commun. 1992;67:465. doi: 10.1016/0010-4655(92)90055-4. [DOI] [Google Scholar]
  • 36.Corcella G, Knowles IG, Marchesini G, Moretti S, Odagiri K, Richardson P, Seymour MH, Webber BR. J. High Energy Phys. 2001;0101:010. doi: 10.1088/1126-6708/2001/01/010. [DOI] [Google Scholar]
  • 37.J. Butterworth, J. Forshaw, M. Seymour, Z. Phys. C 72, 637 (1996). hep-ph/9601371
  • 38.Cacciari M, Czakon M, Mangano ML, Mitov A, Nason P. Phys. Lett. B. 2012;710:612. doi: 10.1016/j.physletb.2012.03.013. [DOI] [Google Scholar]
  • 39.Bärnreuther P, Czakon M, Mitov A. Phys. Rev. Lett. 2012;109:132001. doi: 10.1103/PhysRevLett.109.132001. [DOI] [PubMed] [Google Scholar]
  • 40.Czakon M, Mitov A. J. High Energy Phys. 2012;1212:054. doi: 10.1007/JHEP12(2012)054. [DOI] [Google Scholar]
  • 41.Czakon M, Mitov A. J. High Energy Phys. 2013;1301:080. doi: 10.1007/JHEP01(2013)080. [DOI] [Google Scholar]
  • 42.Czakon M, Fiedler P, Mitov A. Phys. Rev. Lett. 2013;110:252004. doi: 10.1103/PhysRevLett.110.252004. [DOI] [PubMed] [Google Scholar]
  • 43.Czakon M, Mitov A. Comput. Phys. Commun. 2014;185:2930. doi: 10.1016/j.cpc.2014.06.021. [DOI] [Google Scholar]
  • 44.Kersevan BP, Richter-Was E. Comput. Phys. Commun. 2013;184:919. doi: 10.1016/j.cpc.2012.10.032. [DOI] [Google Scholar]
  • 45.Sjostrand T, Eden P, Friberg C, Lonnblad L, Miu G, Mrenna S, Norrbin E. Comput. Phys. Commun. 2001;135:238. doi: 10.1016/S0010-4655(00)00236-8. [DOI] [Google Scholar]
  • 46.Campbell JM, Ellis RK. Phys. Rev. D. 1999;60:113006. doi: 10.1103/PhysRevD.60.113006. [DOI] [Google Scholar]
  • 47.ATLAS Collaboration, Eur. Phys. J. C 70, 823, (2010). arXiv:1005.4568
  • 48.S. Agostinelli et al. (GEANT4 Collaboration), Nucl. Instrum. Methods A 506, 250 (2003)
  • 49.ATLAS Collaboration, Eur. Phys. J. C 74 2941 (2014). arXiv:1404.2240 [DOI] [PMC free article] [PubMed]
  • 50.ATLAS Collaboration, Eur. Phys. J. C. arXiv:1404.4562
  • 51.Cacciari M, Salam GP, Soyez G. J. High Energy Phys. 2008;0804:063. doi: 10.1088/1126-6708/2008/04/063. [DOI] [Google Scholar]
  • 52.Cacciari M, Salam GP. Phys. Lett. B. 2006;641:57. doi: 10.1016/j.physletb.2006.08.037. [DOI] [Google Scholar]
  • 53.ATLAS Collaboration, Eur. Phys. J. C 73 2304 (2013). arXiv:1112.6426
  • 54.Yu.L. Dokshitzer, G.D. Leder, S. Moretti, B.R. Webber, J. High Energy Phys. 9708, 001 (1997). arXiv:hep-ph/9707323. (M. Wobisch, T. Wengler. arXiv:hep-ph/9907280)
  • 55.Butterworth JM, Davison AR, Rubin M, Salam GP. Phys. Rev. Lett. 2008;100:242001. doi: 10.1103/PhysRevLett.100.242001. [DOI] [PubMed] [Google Scholar]
  • 56.ATLAS Collaboration, ATL-PHYS-PUB-2014-004 (2014). http://cdsweb.cern.ch/record/1690048. Accessed Sept 2014
  • 57.F.E. James, in Statistical Methods in Experimental Physics, 2nd edn. (World Scientific Publishing Co., 2006), pp. 316–317
  • 58.J. Wenninger, Report CERN-ATS-2013-040 (2013). http://cdsweb.cern.ch/record/1546734. Accessed Sept 2014
  • 59.Read A. J. Phys. G. 2002;28:2693. doi: 10.1088/0954-3899/28/10/313. [DOI] [Google Scholar]
  • 60.Cowan G, Cranmer K, Gross E, Vitells O. Eur. Phys. J. C. 2011;71:1554. doi: 10.1140/epjc/s10052-011-1554-0. [DOI] [Google Scholar]

Articles from The European Physical Journal. C, Particles and Fields are provided here courtesy of Springer

RESOURCES