Abstract
Objectives
We tested a model in which Helicobacter pylori seropositivity (Hps) predicted iron status, which in turn acted as a predictor for markers of 1-C metabolism that were then allowed to predict antioxidant status.
Methods
National Health and Nutrition Examination Surveys (NHANES 1999–2000) cross-sectional data among adults aged 20–85 y were analyzed (n = 3,055). Markers of Hps, iron status (serum ferritin and transferrin saturation (TS)); 1-C metabolism (serum folate (FOLserum), B-12, total homocysteine (tHcy), methylmalonic acid (MMA)) and antioxidant status (vitamins A and E) were entered into a structural equations model (SEM).
Results
Predictors of Hps included older age, lower education and income, racial/ethnic groups (lowest among Non-Hispanic Whites), and lifetime cigarette smoking. SEM modeling indicated that Hps had a direct inverse relationship with iron status (combining serum ferritin and TS) which in turn was positively related to 1-C metabolites (higher serum folate, B-12 or lower tHcy/MMA) that were positively associated with antioxidant status (combining serum vitamins A and E). Another pathway that was found bypassed 1-C metabolites (Hps → Iron_st → Antiox). The sum of all indirect effects from Hps combining both pathways and the other indirect pathways in the model (Hps → Iron_st → OneCarbon; Hps →OneCarbon →Antiox) was estimated at β = -0.006±0.003, p<0.05.
Conclusions
In sum, of the total effect of H. pylori seropositivity on antioxidant status, two significant indirect pathways through Iron status and 1-Carbon metabolites were found. Randomized controlled trials should be conducted to uncover the concomitant causal effect of H. pylori eradication on improving iron status, folate, B-12 and antioxidant status among H. pylori seropositive individuals.
Introduction
Helicobacter pylori (H. pylori), a curved gram-negative bacterium found in ∼50% of human gastric mucosa, is one of the most common infectious agents worldwide.[1] While sometimes incident in children, the infection can become chronic during adulthood if untreated.[2] Indeed, H. pylori seroprevalence increases markedly with age, with low iron stores potentially protecting against chronic infection state, thus the iron deficiency anemia observed during acute infection.[3] H. pylori infection is linked to chronic-active gastritis,[4] and accounts for 70–90% of primary duodenal ulcers.[5] Chronic H. pylori infection compounded by early onset age can trigger gastric carcinoma[6] and mucosal-associated lymphoid tumor.[7] Evidence suggests that gastric mucosal damage by H. pylori [8] is mediated through excessive reactive oxygen species synthesis and apoptosis,[9] combined with deficiencies in 1-C (One Carbon) metabolites such as folate and vitamin B-12 and antioxidants. This potentially links H. pylori seropositivity to extra-digestive disorders, including atherosclerosis,[10] hypertension, stroke[11] and even Alzheimer’s Disease.[12, 13]
However, it remains unclear whether H. pylori is associated with serum biomarkers previously linked to atherosclerosis, stroke, Alzheimer’s Disease and metabolic disorders (e.g. iron status, 1-C metabolism and antioxidant status).[14–18] Nevertheless, H. pylori accute infection was directly related to iron deficiency anemia [19–22] and to poor B-vitamin status (e.g. serum folate (FOLserum) and vitamin B-12) [23–25]. Furthermore, lower (FOLserum) and B-12 status, often co-occurring with iron deficiency anemia caused by Hps,[26, 27] are linked to higher serum concentrations of total homocysteine (tHcy) and methylmalonic acid (MMA).[18, 28, 29] Finally, both 1-C metabolism markers (FOLserum, B-12, tHcy and MMA) are measures of either increased (tHcy, MMA) or decreased (FOLserum, B-12) oxidative stress and thus may alter antioxidant status (e.g. serum vitamins A and E).[30–32]
We used national data to test a theoretical model for Hp s’s association with markers of iron status, which would then alter 1-C metabolism biomarkers (FOLserum, B-12,tHcy and MMA), with the latter possibly affecting markers of antioxidant status (vitamins A and E). Given the stronger evidence of a direct association between Hps and iron deficiency anemia, we hypothesize that the putative association between Hps and 1-C metabolism and between Hps and antioxidant status are completely mediated through iron status. This would imply that erradicating H. pylori would directly and positively affect iron status which in turn would have an influence a positive influence on 1-C metabolism and antioxidant status.
Materials and Methods
Database and study participants
The National Health and Nutrition Examination Surveys (NHANES) consist of cross-sectional surveys providing nationally representative data on U.S. civilian population’s health and nutritional status. Initiated in the 1970s by the National Center for Health Statistics (NCHS) at the Centers for Disease Control (CDC), NHANES had non-continuous waves of data before 1999, becoming a continuous survey afterwards. Sampling followed a stratified, multistage probability cluster design. It includes an in-home interview for basic health and demographic information completed by trained staff, and subsequently a health examination in a mobile examination center completed by physicians, medical/health technicians, and dietary and health interviewers.(33) NHANES followed guidelines established by the Declaration of Helsinki, and the Institutional Review Board of the National Center for Health Statistics at the Centers for Disease Control approved all procedures involving human subjects/patients. Written or verbal informed consent was obtained from all participants; verbal consent was witnessed and formally recorded.[33]
We selected adults (20–85y) from the 1999–2000 wave with data on H. pylori seropositivity (Hp s) and biomarkers of interest. Among 4,880 adults (2,269 men; 2,611 women, Sample 1), 3,107 participants had complete data on diet, physical activity, smoking status, supplement use, weight, height, systolic blood pressure, medical conditions, and serum cholesterol (Sample 2). Within Sample 2, complete data on biomarkers of interest were available for 3,055 participants (Sample 3). Sample 3 participants selected from Sample 1 were younger, more likely to be Mexican-American, above 200% of the federal poverty line, and to have greater than high school education level compared to those excluded from Sample 1. In the statistical analysis section, we describe adjustment for this selection bias, specifically the 2-stage Heckman selection model.
H. pylori antibody measurement
H. pylori IgG Enzyme-Linked Immunosorbent Assays (ELISA) was conducted by the Wampole Laboratories (Wampole). Intended for detection and qualitative determination of IgG antibodies to H. pylori in human serum, this ELISA test has comparable sensitivity, specificity and reproducibility to other serological tests for antibody, such as immunofluorescence, complement fixation, hemagglutination, and radioimmunoassays.[34]
Markers of iron status
Ferritin was measured with the Bio-Rad Laboratories’s QuantImune Ferritin IRMA kit. Serum iron and total iron-binding capacity (TIBC) were measured by a modification of the automated AAII-25 colorimetric method. The transferrin percent saturation value or TS was calculated as (iron/TIBC) × 100%.[35]
Markers of 1-C metabolism
Serum folate and B-12
Both serum folate and vitamin B-12 were measured by using the Bio-Rad Laboratories’s Quantaphase II Folate/vitamin B12 radioassay kit.[36] Standard curves were prepared by using the pre-calibrated folate/B12 criteria in a human serum albumin base. Serum folate and vitamin B-12 concentrations were calculated from the standard curve.[37]
Total homocysteine
Total homocysteine (tHcy) was measured via a fluorescence polarization immunoassay from Abbott Diagnostics performed on the Abbott IMX analyzer.[38] Total homocysteine in plasma was measured by the Abbott Homocysteine assay, a fully automated FPIA method. Plasma total homocysteine concentrations were calculated by the Abbott IMx Immunoassay Analyzer using a machine-stored calibration curve.[39]
MMA
MMA was extracted from plasma or serum along with an added internal standard using a commercially available strong anion exchange resin. Results were quantitated by internal calibration using peak area ratios of MMA and the internal standard (d3MMA).[40]
Markers of antioxidant status: Vitamins A and E
Serum vitamin E concentrations (α- and γ-tocopherol) and vitamin A (retinol) were measured using high performance liquid chromatography (HPLC) with photodiode array detection. Quantitation was accomplished by comparing the unknown analyte’s peak height with the peak height of a known amount of the same analyte in a calibrator solution. In particular, α- and γ-tocopherol were compared with retinyl butyrate at 300 nm.[41]
Covariates
Potentially confounding covariates included: Age, sex, race/ethnicity (1 = Non-Hispanic White, 2 = Non-Hispanic Black, 3 = Mexican-American, 4 = Other race/multi-racial or Other Hispanic), education (continuous), poverty income ratio (<100%, 100–200%, >200%), cigarette smoking status (smoked at least 100 cigarettes in lifetime, 0 = No, 1 = Yes), physical activity (Vigorous and moderate activity over past 30 days), total energy intake, alcohol, caffeine, saturated fat (% energy), sodium, fiber (based on the 1 24-hr recall), use of any dietary supplement in the past 30 days (0, 1, 2+), Body mass index (BMI, measured weight(kg) divided by height2 (m2)). Total serum cholesterol was measured enzymatically,[42] while systolic blood pressure (mm Hg.) was measured by averaging three blood pressure determinations using a mercury sphygmomanometer.[43]
Finally, an index of individuals’ histories of chronic conditions was computed by summing across 16 conditions (0 = no, 1 = yes): (1) Asthma, (2) Anemia, (3) Arthritis (Rheumatoid & osteoarthritis), (4) Congestive heart failure, (5) Coronary heart disease, (6) Angina, (7) Heart attack, (8) Stroke, (9) Emphysema, (10) Goiter, (11) Thyroid disease, (12) Overweight, (13) Chronic bronchitis, (14) Liver condition, (15) Stomach/duodenal/peptic ulcer; (16) Cancer/malignancy.(42)
Statistical analysis
Stata survey commands[44] were used to account for sampling design complexity.[45] First, means and proportions of sample characteristics were estimated, taking into account sampling design complexity. The main part of the analysis was sub-divided into a principal components analysis (PCA) step and SEM. The PCA model defines the component scores to be estimated whereas the SEM defines relationships amongst those component scores and between the component scores and other key measured variables (Hps) and covariates (W) in the model. In the PCA step, a score on a manifest variable j obtained by an individual i can be written as a function of the mean score on manifest variable j, a set of variables zil called component scores (in our case one common component score per model (e.g. TS is a measure of iron status and not 1-C metabolism)) with its corresponding component loading, and a residual portion eij. Worth of noting that zil (e.g. Iron st, OneCarb and Antiox) are determinate and can be estimated more accurately as opposed to factor analysis, the residual factors eij are correlated, and the PCA model yields better fit than factor analysis to the raw data and the variances of the manifest variables included in the model; (Table 1). [46–48]
Table 1. Data reduction and structural equations model.
Principal components analysis: data reduction step | |
Eq. A.1 | |
Eq. A.2 | |
Eq. B.1. | |
Eq. B.2. | |
Eq. B.3. | |
Eq. B.4. | |
Eq. C.1. | |
Eq. C.2. | |
Structural Equations Model | |
Eq. 1. | |
Eq. 2. | |
Eq. 3 | |
Eq. 4 |
We then constructed the SEM to test a pathway by which Loge transformed Hps (z-score) is associated with Iron st (component score from PCA model with Loge transformed TS and serum ferritin, z-score with mean zero and standard deviation of 1) which was allowed to predict OneCarb (the component score from PCA model with Loge transformed serum folate, B-12 and inversely coded (×-1) Loge transformed tHcy and MMA, also a z-score), which in turn were allowed to predict Antiox, the component score (z-score) reflecting antioxidant status as measured by Loge transformed vitamin A and vitamin E. Direct effects between Hps and (OneCarb; Antiox), Iron st and Antiox were also retained and tested for significance at a type I error of 0.05. In all equations, covariates ‘W’ (age, sex, socio-economic status, dietary factors etc.) were entered as exogenous variables and were also tested for significance at a type I error of 0.05. In one set of models, the total number of chronic medical conditions was entered while in another set of models (sensitivity analysis), each type of condition was entered separately as a covariate. A complete list and description of ‘W’ is found under the “Covariates” sub-heading of the methods section.
SEM fit was tested using the coefficient of determination (CD) and the standardized root mean squared residual (SRMR), the only two measures available for SEM accounting for sampling design complexity (i.e. svy:sem). The latter measure reflects how close we come to reproducing each correlation between all variables included in the SEM, on average. SRMR<0.08 for a close fit is recommended, assuming weak to moderate correlation between variables.[49] Moreover, direct, indirect and total effects were estimated from the model with indirect effects of Hp s being of most interest.
Furthermore, we constructed a two-stage Heckman selection model[50], to account for potential selection bias. A probit model was conducted in which the main selection variable (i.e., within Sample 3 vs. not, among those in Sample 1) was modeled against complete sociodemographic variables (i.e., Sample 1), namely age, sex, race/ethnicity, education and poverty income ratio. From this model, the conditional selection probability was predicted. An inverse mills ratio, a function of that probability, was computed and entered as a covariate into the main models.[50]
Results
Study sample characteristics
Table 2 shows the characteristics of the selected sample, with means and proportion taking into account sampling design complexity. Overall, participants had a mean age of 43.8 with SE of 0.4, and around 52.1% were women. The majority of the participants were Non-Hispanic White (72.5%), with a large proportion >200% of the poverty line (65%), and around 24% reporting being a college graduate or higher. Around 48.5% of participants were smokers over the lifetime, and vigorous and moderate activity was reported by 38% and 45% of participants, respectively. In addition to estimated mean dietary intakes with corresponding SE, mean BMI was estimated at around 28 kg.m-2, total cholesterol at 203 mg/dL and systolic blood pressure at 122 mmg Hg. The mean number of chronic conditions were 1.10 with SE = 0.04. The most common chronic condition was overweight (29.7%), closely followed by arthritis (19.2%), asthma (12.6%), and stomach/duodenal/peptic ulcer (9.8%). Table 2also shows estimates of dietary intakes of specific nutrients and of total energy intakes. Importantly, the mean value of Loge transformed H. pylori is also shown here along with the key nutritional biomarkers of interest in this study.
Table 2. Study sample characteristics, NHANES 1999–2000 (N = 3,055).
Socio-demographic, lifestyle and health-related factors | |
% Women | 52.1±0.9 |
Age (years), Mean±SE | 43.8±0.4 |
Race/ethnicity, %±SE | |
Non-Hispanic White | 72.5±2.9 |
Non-Hispanic black | 9.7±1.7 |
Mexican-American | 6.2±1.5 |
Others | 11.6±3.0 |
Poverty income ratio,%±SEP | |
0–100% | 13.9±1.6 |
>100–200% | 21.1±2.1 |
>200% | 65.0±3.2 |
Education (years), %±SE | |
<9th grade | 5.8±0.8 |
9–11th grade | 15.2±1.0 |
12th grade | 26.2±2.0 |
Some college | 29.3±1.0 |
College grad or higher | 23.5±2.4 |
Smoking status,%±SEP | |
<100 cigarettes over lifetime | 51.5±1.7 |
100+ cigarettes over lifetime | 48.5±1.7 |
Vigorous activity,%±SE | |
No | 62.4±2.1 |
Yes | 37.6±2.1 |
Moderate activity,%±SE | |
No | 54.7±2.5 |
Yes | 45.2±2.5 |
Energy intake, kcal/d, Mean±SE | 2,217±28 |
Alcohol, g/d, Mean±SE | 9.6±0.8 |
Caffeine, g/d, Mean±SE | 215.7±8.4 |
Saturated fat (% energy), Mean±SE | 11.0±0.2 |
Sodium, mg/d, Mean±SE | 3,478±61.6 |
Fiber, g/d, Mean±SE | 15.6±0.4 |
Dietary supplement use, %±SEP | |
None | 46.8±1.4 |
1 | 24.4±0.9 |
2+ | 28.8±1.3 |
BMI, kg.m -2 , Mean±SE | 28.0±0.2 |
Total cholesterol, mg/dL, Mean±SE | 202.8±1.2 |
Systolic blood pressure, Mean±SE | 122.0±0.8 |
Number of chronic conditions, Mean±SE | 1.10±0.04 |
Type of chronic condition, %±SE | |
Asthma | 12.6±0.8 |
Anemia | 2.6±0.3 |
Arthritis | 19.2±1.1 |
Congestive heart failure | 1.6±0.2 |
Coronary heart disease | 2.8±1.8 |
Angina | 2.6±0.5 |
Heart attack | 3.0±0.4 |
Stroke | 1.7±0.2 |
Emphysema | 1.3±0.3 |
Goiter | 0.9±0.2 |
Thyroid disease | 6.3±0.5 |
Overweight | 29.7±1.4 |
Chronic bronchitis | 7.3±0.7 |
Liver condition | 2.8±0.5 |
Stomach/duodenal/peptic ulcer | 9.8±0.8 |
Cancer/malignancy | 6.0±0.5 |
Biomarkers (Log e scale), Mean±SE | |
H. pylori seropositivity (Hp s ) | -0.80±0.07 |
Ferritin, ng/mL | +4.33±0.04 |
TS, (%) | +3.14±0.02 |
Vitamin B-12, pg/mL | +6.12±0.01 |
Folate, ng/mL | +2.60±0.03 |
Homocysteine, μmol/L | +2.01±0.01 |
Methylmalonic acid, μmol/L | -2.01±0.01 |
Vitamin E, μg/dL | +7.07±0.01 |
Vitamin A, μg/dL | +4.03±0.01 |
Predictors of H. pylori seropositivity
In Table 3 and based on a multiple ordinary least square regression models, age was positively and independently associated with Hps. Other independent predictors included non-White race/ethnicity, lower poverty income ratio, lower level of education, being a smoker, and not using dietary supplements. None of the individual medical co-morbid conditions had a significant and independent association with Hps based on model 2.
Table 3. Hp s (Loge transformed) in relation to selected factors, ordinary least squares multiple regression models: NHANES 1999–2000 (N = 3,055).
Model 1 | Model 2 | |
---|---|---|
β±SEE | β±SEE | |
Women vs. Men | -0.04±0.04 | -0.04±0.05 |
Age (years) | +0.01±0.00*** | +0.01±0.00*** |
Race/ethnicity | ||
Non-Hispanic White | __ | ___ |
Non-Hispanic black | +0.71±0.08*** | +0.69±0.08*** |
Mexican-American | +0.77±0.10*** | +0.76±0.10*** |
Others | +0.72±0.09*** | +0.72±0.09*** |
Poverty income ratio | ||
0–100% | __ | __ |
>100–200% | -0.21±0.12 | -0.22±0.11 |
>200% | -0.26±0.07** | -0.26±0.07*** |
Education (years) | ||
<9th grade | __ | __ |
9–11th grade | -0.38±0.11** | -0.40±0.12** |
12th grade | -0.49±0.09*** | -0.51±0.09*** |
Some college | -0.67±0.11*** | -0.69±0.11*** |
College grad or higher | -0.80±0.12*** | -0.82±0.12*** |
Smoking status | ||
<100 cigarettes over lifetime | __ | |
100+ cigarettes over lifetime | +0.21±0.04** | 0.22±0.05** |
Vigorous activity | ||
Yes vs. No | -0.01±0.05 | -0.00±0.05 |
Moderate activity | ||
Yes vs. No | -0.01±0.03 | -0.01±0.03 |
Energy intake, kcal/d | -0.00±0.00 | -0.00±0.00 |
Alcohol, g/d | -0.00±0.00 | -0.00±0.00 |
Caffeine, g/d | +0.00±0.00 | +0.00±0.00 |
Saturated fat (% energy) | -0.01±0.01 | -0.01±0.01 |
Sodium, mg/d | +0.00±0.00 | 0.00±0.00 |
Fiber, g/d | -0.00±0.00 | -0.01±0.00 |
Dietary supplement use | ||
None | __ | __ |
1 | -0.12±0.05* | -0.12±0.05* |
2+ | -0.08±0.07 | -0.10±0.07 |
BMI, kg.m -2 | -0.01±0.01 | -0.01±0.01 |
Total cholesterol, mg/dL, | -0.00±0.00 | -0.00±0.00 |
Systolic blood pressure, mg Hg | +0.00±0.02 | +0.00±0.00 |
Number of chronic conditions | -0.01±0.02 | |
Type of chronic condition | ||
Asthma | -0.01±0.06 | |
Anemia | +0.31±0.15 | |
Arthritis | -0.07±0.07 | |
Congestive heart failure | -0.14±0.16 | |
Coronary heart disease | +0.15±0.22 | |
Angina | +0.20±0.13 | |
Heart attack | +0.08±0.19 | |
Stroke | -0.07±0.17 | |
Emphysema | -0.15±0.09 | |
Goiter | -0.32±0.18 | |
Thyroid disease | -0.03±0.10 | |
Overweight | +0.02±0.06 | |
Chronic bronchitis | -0.07±0.12 | |
Liver condition | -0.12±0.10 | |
Stomach/duodenal/peptic ulcer | +0.15±0.08 | |
Cancer/malignancy | -0.17±0.11 |
*p <0.05
**p<0.01
***p<0.001
Model 1 included the number of chronic conditions, whereas Model 2 included type of chronic conditions as a covariate. All other covariates were entered into the ordinary least square models (1 and 2) simultaneously.
Pathways linking H. pylori positivity to antioxidant status: findings for structural equations model
Fig. 1 shows that SEM findings in the total population. Despite the lack of a direct association between Hp s and Antiox, there were two pathways linking those biomarkers which can be summarize as: [1] Hp s → Iron_st (-) → OneCarbon(+) → Antiox (+); [2] Hp s → Iron_st (-) → Antiox (+). Both pathways indicate an indirect inverse relationship between Hp s and Antiox, even though the total effect was non-significant, given that two other pathways: (one direct (Hps → Antiox) and one indirect (Hps → OneCarbon → Antiox)), were non-significant. In general, the model had a close fit with an SRMR<0.001 and a CD of 0.76. In a sensitivity analysis whereby the total number of chronic medical conditions was replaced with each condition separately, the results remained unaltered, particularly with respect to the key associations of interest.
Direct, indirect and total effects were also estimated, particularly for Hp s (Table 4). Most notably, the indirect effects of Hp s through the two main pathways described earlier along with the other indirect pathway from Hps (Hps →OneCarbon →Antiox) leading to Antiox was estimated at β = -0.006±0.003, p<0.05. Moreover, Hp s had significant indirect effects on other biomarkers: inverse effect on OneCarbon through Iron_st (β = -0.004±0.002, P<0.05). Hps had also an inverse direct effect on Iron_st (β = -0.05±0.03, p<0.05). On the other hand, Iron_st had both an indirect and direct effects on Antiox that were both significant and positive. As shown earlier, the total effect (also direct effect) of OneCarbon on Antiox was positive and significant (β = +0.07±0.02, p<0.01).
Table 4. Total, direct and indirect effects of Hps on iron status, 1-C metabolites and antioxidant status (N = 3,057): NHANES 1999–00.
Iron_st | OneCarbon | Antiox | ||||
---|---|---|---|---|---|---|
β±SEE | P | β±SEE | P | β±SEE | P | |
X = Hp s | ||||||
Total effect | -0.05±0.03* | 0.049 | -0.02±0.03 | 0.47 | -0.00±0.02 | 0.94 |
Direct effect | -0.05±0.03* | 0.049 | -0.02±0.03 | 0.55 | +0.01±0.02 | 0.76 |
Indirect effect | __ | -0.004±0.002* | 0.049 | -0.006±0.003* | 0.035 | |
X = Iron_st | ||||||
Total effect | __ | +0.07±0.03* | 0.019 | +0.10±0.02*** | <0.001 | |
Direct effect | __ | +0.07±0.03* | 0.019 | +0.10±0.01*** | <0.001 | |
Indirect effect | __ | __ | +0.005±0.002* | 0.019 | ||
X = OneCarbon | ||||||
Total effect | __ | __ | +0.07±0.02** | 0.006 | ||
Direct effect | __ | __ | +0.07±0.02** | 0.006 | ||
Indirect effect | __ | __ | __ |
Discussion
Helicobacter pylori seropositivity is implicated in both digestive and extra-digestive chronic diseases. However, its link to the mediating biomarkers is largely unknown. To our knowledge, this was the first study using nationally representative data to test a model with Hp s predicting various biomarkers of iron status, 1-C metabolism and antioxidant status to explain its relationship with the various chronic diseases studied. Among our key findings, SEM modeling indicated that Hp s had a direct inverse relationship with iron status (as measured by serum ferritin and TS) which in turn was positively related to 1-C metabolites (higher serum folate, B-12 and lower tHcy or MMA) that were positively associated with antioxidant status (as measured by serum vitamins A and E). In addition, another pathway that was found bypassed 1-C metabolites (Hps → Iron_st → Antiox). The overall model had a close fit for the total population.
Micronutrient status in various tissues such as plasma fluctuates considerably depending on various conditions, including after meals and physical exercise, though the most marked changes are observed during the inflammatory processes of an infection.[51] In particular, serum iron’s liability to infection is evidenced by many studies examining the relationship between various infectious diseases and levels of ferritin and TS among others. Biologically speaking, most microbes require iron in order to infect the human body, thus reducing the level of circulating iron in the blood. [51] In the specific case of H. pylori, earlier reports suggest that among a group of anemic children, iron deficiency anemia is not corrected until H. pylori infection is completely eradicated.[19] Among older children, a placebo-controlled double-blind trial shows that the eradication of H. pylori infection could lead to the resolution of iron deficiency anemia [20] Among adults, when 30 iron deficient patients coupled with H. pylori infection were treated for H. pylori, the majority of them recovered from iron deficiency anemia.[21] A new study includes 16 randomized controlled trials (N = 956 patients) comparing anti-H. pylori+oral iron to oral iron alone which were selected for a meta-analysis. The meta-analysis indicates that that the standardized mean difference (SMD) from baseline to endpoint of hemoglobin, serum iron, and serum ferritin are statistically significant between the two treatment groups (SMD, Hemoglobin: 1.48; 95% CI, 0.96, 2.00; p<0.00001; Serum iron: 1.15; 95% CI, 0.87, 1.43; p<0.00001; Serum ferritin: 1.84; 95% CI, 1.20, 2.48; p<0.00001, respectively). [22] All these results are concordant with our finding that H. pylori seropositivity was inversely related to ferritin and TS in serum.
In the current study, we found an indirect inverse association between H. Pylori seropositivity and indicators of 1-C metabolism (higher folate/B-12 or lower tHcy/MMA), through iron status. A recent systematic review suggests that H. Pylori infection is related to reduced levels of vitamin B-12 and that eradication of H. Pylori infection is accompanied by an increase in cobalamin levels. However, although an overall negative association between H. Pylori infection and folate status is observed in the meta-analysis, this association does not reach statistical significance, as results from the reviewed studies are mixed.[52] The current study lended additional support to the notion that H. Pylori is associated with vitamin B-12 status, and was supportive of an association between H. Pylori and folate status. Additionally, the current study had considerably more statistical power than previous investigations of H. Pylori and B-vitamin status, enabling detection of small effect sizes. Nevertheless, this study also indicated that this effect between H. pylori seropositivity and B-vitamin status was completely mediated by iron status.
It is proposed that reduced gastric acid secretion and concomitant hypochlorhydria through gastric gland atrophy leading to increased pH is the primary proposed mechanism by which H. Pylori may affect absorption of cobalamin and folate.[24, 52] Additionally, a reduction in levels of ascorbic acid observed in H. Pylori patients is a suggested mechanism linking H. Pylori to reduced folate levels.[52, 53] These hypotheses are supported by the fact that individuals treated with proton pump inhibitors may develop reduced circulating cobalamin levels.[54]
Moreover, TS<20% is often used as a confirmatory test for iron deficiency anemia, particularly when serum ferritin>100 ng/mL and symptoms of iron deficiency anemia are persistent. The normal range for serum ferritin commonly used are 18–270 ng/mL for men and 18–160 ng/mL for women.[55] TS is also used as a diagnostic test for iron overload, with TS cut-offs used ranging from 45–55%.[56]
Iron overload as measured by elevated TS (≥50% vs. <50%) was previously linked to poor health outcomes, including increased risk of type 2 diabetes,[57] cancer[58] and all-cause mortality.[59] However, two recent studies conducted on earlier NHANES waves indicate that while ferritin had no net effect on mortality, particularly CVD mortality,[60] TS was inversely related to all-cause, CVD and cancer mortality among men and post-menopausal women.[61]
Ferritin is generally positively associated with vitamin B-12 status [26, 27]. There is also a strong association between hyperhomocysteinemia and inadequate intake of B-vitamins, particularly B-12 and folate levels.[62] Several studies, but not all, have demonstrated that chronic H. pylori infection has an inverse relationship with serum levels of vitamin B12 and folate.[63] In fact, vitamin B-12 serves as the cofactor for 5-Methyl tetrahydrofolate to provide the transfer of the methyl group for the conversion of Hcy to methionine. Vitamin B-12 deficiency prevents this reaction leading to folate leakage from cells.[64] Tetrahydrofolate (THF) participates in homocysteine but not methylmalonic acid (MMA) metabolism therefore both serum tHcy and MMA are markedly elevated in 96.2% of vitamin B-12 deficient patients, but MMA is elevated in only 12.2% of folate-deficient patients.[65]
Nevertheless, our key finding from those models indicated that Hp s had inverse indirect relationship with antioxidant status through two main pathways: [1] Hp s → Iron_st(-) → OneCarbon(+) → Antiox (+); [2] Hp s → Iron_st (-) → Antiox (+). High ROS levels due to neutrophil infiltration and increased oxidative DNA damage have been reported in H. pylori-infected patients.[9, 66] Lower plasma levels of vitamins A, C and E have been detected in subjects with chronic atrophic gastritis[67] and among men with gastric dysplasia,[68] whereas large cross-sectional studies show an increased risk of gastric cancer in association with low plasma vitamin-E.[69]
To our knowledge, this is the first study to test a theoretical model for the associations between Hp s and markers of iron status, 1-C metabolism biomarkers as well as markers of antioxidant (vitamins A and E) status using a structural equations modeling approach and nationally representative data. We obtained estimates of standardized path coefficients, adjusted for a number of potential confounders, while further correcting the analyses for sampling design complexity and selection bias. Despite its strengths, our present study has some limitations including the cross-sectional and observational nature of the data which precludes ascertainment of temporality and causal relationships. In fact, we have tested the most likely mechanism based on previous literature on biological mechanisms involved, given the stronger evidence of a direct association between H. pyori seropositivity and iron deficiency anemia. However, we do not rule out that other pathways are plausible. Nevertheless, a longitudinal study in which Hp status is linked to over-time change in the biomarkers in a sequential manner would help better verify the temporality of those associations. Nevertheless, the use of theory from previous studies and biological relationships among markers allowed us to construct a model that had a close fit to our data.
In sum, of the total effect of H. pylori seropositivity on antioxidant status, two significant indirect pathways through Iron status and 1-Carbon metabolites were found. Randomized controlled trials should be conducted to uncover the concomitant causal effect of H. pylori eradication on improving iron status, folate, B-12 and antioxidant status among H. pylori seropositive individuals.
Acknowledgments
The authors would like to thank Dr. Jessica McNeely and Dr. Mauli Shah for internal review of the manuscript.
Data Availability
The study is based on publicly available data and the main repository is found at: http://www.cdc.gov/nchs/nhanes.htm.
Funding Statement
This research was supported entirely by the Intramural Research Program of the NIH, National Institute on Aging. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
References
- 1. Marshall BJ, Warren JR. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet. 1984;1(8390):1311–5. Epub 1984/06/16. PubMed PMID: [DOI] [PubMed] [Google Scholar]
- 2. Lacy BE, Rosemore J. Helicobacter pylori: ulcers and more: the beginning of an era. The Journal of nutrition. 2001;131(10):2789S– 93S. PubMed PMID: [DOI] [PubMed] [Google Scholar]
- 3. DiGirolamo AM, Perry GS, Gold BD, Parkinson A, Provost EM, Parvanta I, et al. Helicobacter pylori, anemia, and iron deficiency: relationships explored among Alaska native children. Pediatr Infect Dis J. 2007;26(10):927–34. Epub 2007/09/29. 10.1097/INF.0b013e31812e52cd PubMed [DOI] [PubMed] [Google Scholar]
- 4. Kudo M, Asaka M, Kato M, Katagiri M, Kagaya H, Nishikawa K, et al. Role of Helicobacter pylori in chronic gastritis: a prospective study. Journal of clinical gastroenterology. 1995;21 Suppl 1:S174–8. PubMed [PubMed] [Google Scholar]
- 5. Kate V, Ananthakrishnan N, Tovey FI. Is Helicobacter pylori Infection the Primary Cause of Duodenal Ulceration or a Secondary Factor? A Review of the Evidence. Gastroenterology research and practice. 2013;2013:425840 10.1155/2013/425840 PubMed [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6. Pandey R, Misra V, Misra SP, Dwivedi M, Kumar A, Tiwari BK. Helicobacter pylori and gastric cancer. Asian Pacific journal of cancer prevention: APJCP. 2010;11(3):583–8. PubMed [PubMed] [Google Scholar]
- 7. Bayerdorffer E, Neubauer A, Rudolph B, Thiede C, Lehn N, Eidt S, et al. Regression of primary gastric lymphoma of mucosa-associated lymphoid tissue type after cure of Helicobacter pylori infection. MALT Lymphoma Study Group. Lancet. 1995;345(8965):1591–4. PubMed [DOI] [PubMed] [Google Scholar]
- 8. Davies GR, Simmonds NJ, Stevens TR, Sheaff MT, Banatvala N, Laurenson IF, et al. Helicobacter pylori stimulates antral mucosal reactive oxygen metabolite production in vivo. Gut. 1994;35(2):179–85. Epub 1994/02/01. PubMed [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9. Ding S-Z, Minohara Y, Fan XJ, Wang J, Reyes VE, Patel J, et al. Helicobacter pylori Infection Induces Oxidative Stress and Programmed Cell Death in Human Gastric Epithelial Cells. Infection and Immunity. 2007;75(8):4030–9. 10.1128/iai.00172-07 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10. Xu Q, Schett G, Perschinka H, Mayr M, Egger G, Oberhollenzer F, et al. Serum soluble heat shock protein 60 is elevated in subjects with atherosclerosis in a general population. Circulation. 2000;102(1):14–20. Epub 2000/07/06. PubMed [DOI] [PubMed] [Google Scholar]
- 11. Sawayama Y, Ariyama I, Hamada M, Otaguro S, Machi T, Taira Y, et al. Association between chronic Helicobacter pylori infection and acute ischemic stroke: Fukuoka Harasanshin Atherosclerosis Trial (FHAT). Atherosclerosis. 2005;178(2):303–9. Epub 2005/02/08. S0021-9150(04)00458-7 [pii] 10.1016/j.atherosclerosis.2004.08.025 PubMed [DOI] [PubMed] [Google Scholar]
- 12. Kountouras J, Tsolaki M, Gavalas E, Boziki M, Zavos C, Karatzoglou P, et al. Relationship between Helicobacter pylori infection and Alzheimer disease. Neurology. 2006;66(6):938–40. 10.1212/01.wnl.0000203644.68059.5f PubMed [DOI] [PubMed] [Google Scholar]
- 13. Beydoun MA, Beydoun HA, Shroff MR, Kitner-Triolo MH, Zonderman AB. Helicobacter pylori seropositivity and cognitive performance among US adults: evidence from a large national survey. Psychosomatic medicine. 2013;75(5):486–96. 10.1097/PSY.0b013e31829108c3 PubMed [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14. Beydoun MA, Shroff MR, Chen X, Beydoun HA, Wang Y, Zonderman AB. Serum antioxidant status is associated with metabolic syndrome among U.S. adults in recent national surveys. The Journal of nutrition. 2011;141(5):903–13. 10.3945/jn.110.136580 PubMed [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15. Van Dam F, Van Gool WA. Hyperhomocysteinemia and Alzheimer's disease: A systematic review. Archives of gerontology and geriatrics. 2009;48(3):425–30. 10.1016/j.archger.2008.03.009 PubMed [DOI] [PubMed] [Google Scholar]
- 16. Hasan N, McColgan P, Bentley P, Edwards RJ, Sharma P. Towards the identification of blood biomarkers for acute stroke in humans: a comprehensive systematic review. British journal of clinical pharmacology. 2012;74(2):230–40. 10.1111/j.1365-2125.2012.04212.x PubMed [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17. Cheng HL, Bryant C, Cook R, O'Connor H, Rooney K, Steinbeck K. The relationship between obesity and hypoferraemia in adults: a systematic review. Obesity reviews: an official journal of the International Association for the Study of Obesity. 2012;13(2):150–61. 10.1111/j.1467-789X.2011.00938.x PubMed [DOI] [PubMed] [Google Scholar]
- 18. Manolescu BN, Oprea E, Farcasanu IC, Berteanu M, Cercasov C. Homocysteine and vitamin therapy in stroke prevention and treatment: a review. Acta biochimica Polonica. 2010;57(4):467–77. PubMed [PubMed] [Google Scholar]
- 19. Dufour C, Brisigotti M, Fabretti G, Luxardo P, Mori PG, Barabino A. Helicobacter pylori gastric infection and sideropenic refractory anemia. Journal of pediatric gastroenterology and nutrition. 1993;17(2):225–7. PubMed [DOI] [PubMed] [Google Scholar]
- 20. Choe YH, Kim SK, Son BK, Lee DH, Hong YC, Pai SH. Randomized placebo-controlled trial of Helicobacter pylori eradication for iron-deficiency anemia in preadolescent children and adolescents. Helicobacter. 1999;4(2):135–9. PubMed [DOI] [PubMed] [Google Scholar]
- 21. Annibale B, Marignani M, Monarca B, Antonelli G, Marcheggiano A, Martino G, et al. Reversal of iron deficiency anemia after Helicobacter pylori eradication in patients with asymptomatic gastritis. Annals of internal medicine. 1999;131(9):668–72. PubMed [DOI] [PubMed] [Google Scholar]
- 22. Yuan W, Li Y, Yang K, Ma B, Guan Q, Wang D, et al. Iron deficiency anemia in Helicobacter pylori infection: meta-analysis of randomized controlled trials. Scandinavian journal of gastroenterology. 2010;45(6):665–76. 10.3109/00365521003663670 PubMed [DOI] [PubMed] [Google Scholar]
- 23. Santarelli L, Gabrielli M, Cremonini F, Santoliquido A, Candelli M, Nista EC, et al. Atrophic gastritis as a cause of hyperhomocysteinaemia. Aliment Pharmacol Ther. 2004;19(1):107–11. Epub 2003/12/23. 1820 [pii]. PubMed [DOI] [PubMed] [Google Scholar]
- 24. Epplein M, Signorello LB, Zheng W, Cai Q, Hargreaves MK, Michel A, et al. Helicobacter pylori prevalence and circulating micronutrient levels in a low-income United States population. Cancer prevention research. 2011;4(6):871–8. 10.1158/1940-6207.CAPR-10-0398 PubMed [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25. Stettin D, Waldmann A, Strohle A, Hahn A. Association between Helicobacter pylori-infection, C-reactive protein and status of B vitamins. Advances in medical sciences. 2008;53(2):205–13. PubMed [DOI] [PubMed] [Google Scholar]
- 26. de Azevedo Paiva A, Rondo PH, Guerra-Shinohara EM, Silva CS. The influence of iron, vitamin B(12), and folate levels on soluble transferrin receptor concentration in pregnant women. Clinica chimica acta; international journal of clinical chemistry. 2003;334(1–2):197–203. PubMed [DOI] [PubMed] [Google Scholar]
- 27. Hershko C, Ronson A, Souroujon M, Maschler I, Heyd J, Patz J. Variable hematologic presentation of autoimmune gastritis: age-related progression from iron deficiency to cobalamin depletion. Blood. 2006;107(4):1673–9. 10.1182/blood-2005-09-3534 PubMed [DOI] [PubMed] [Google Scholar]
- 28. Bottiglieri T. Homocysteine and folate metabolism in depression. Progress in neuro-psychopharmacology & biological psychiatry. 2005;29(7):1103–12. 10.1016/j.pnpbp.2005.06.021 PubMed [DOI] [PubMed] [Google Scholar]
- 29. Klee GG. Cobalamin and folate evaluation: measurement of methylmalonic acid and homocysteine vs vitamin B(12) and folate. Clinical chemistry. 2000;46(8 Pt 2):1277–83. PubMed [PubMed] [Google Scholar]
- 30. Papatheodorou L, Weiss N. Vascular oxidant stress and inflammation in hyperhomocysteinemia. Antioxidants & redox signaling. 2007;9(11):1941–58. 10.1089/ars.2007.1750 PubMed [DOI] [PubMed] [Google Scholar]
- 31. Tchantchou F. Homocysteine metabolism and various consequences of folate deficiency. Journal of Alzheimer's disease: JAD. 2006;9(4):421–7. PubMed [DOI] [PubMed] [Google Scholar]
- 32. Singh U, Devaraj S, Jialal I. Vitamin E, oxidative stress, and inflammation. Annual review of nutrition. 2005;25:151–74. 10.1146/annurev.nutr.24.012003.132446 PubMed [DOI] [PubMed] [Google Scholar]
- 33.(CDC) CfDCaP. National Health and Nutrition Examination Survey [cited 2014 September 1st]. Available from: http://www.cdc.gov/nchs/nhanes.htm.
- 34.Centers for Disease Control and Prevention NCfHS. Helicobacter pylori IgG antibodies in Serum by Enzyme Immunoassay. 2008.
- 35.(CDC) CfDCaP. National Health and Nutrition Examination Survey: 1999–2000 Data Documentation, Codebook, and Frequencies: Nutritional Biochemistries (LAB06) [cited 2014 September 1st]. Available from: http://wwwn.cdc.gov/nchs/nhanes/1999-2000/LAB06.htm.
- 36. Instruction Manual, Bio-Rad Quantaphase II Folate Radioassay Kit. Hercules, CA: Bio-Rad Laboratories; 1993. [Google Scholar]
- 37.Centers for Disease Control and Prevention. Laboratory Procedure Manual: Folate/Vitamin B12 [cited 2013 December 6]. Available from: http://www.cdc.gov/nchs/data/nhanes/nhanes_99_00/lab06_met_folate_b12.pdf.
- 38. Shipchandler MT, Moore EG. Rapid, fully automated measurement of plasma homocyst (e) ine with the Abbott IMx analyzer. Clinical chemistry. 1995;41(7):991–4. [PubMed] [Google Scholar]
- 39.Centers for Disease Control and Prevention. Laboratory Procedure Manual: Total Homocysteine (tHcy) [cited 2013 December 6]. Available from: http://www.cdc.gov/nchs/data/nhanes/nhanes_99_00/lab06_met_homocysteine.pdf.
- 40.Centers for Disease Control and Prevention. Laboratory Procedure Manual: Methylmalonic Acid (MMA) [cited 2013 December 6]. Available from: http://www.cdc.gov/nchs/data/nhanes/nhanes_99_00/lab06_met_methylmalonic_acid.pdf.
- 41.Centers for Disease Control and Prevention. Laboratory Procedure Manual: Fat Soluble Micronutrients (Vitamins A, E, and Carotenoids) [cited 2013 December 6]. Available from: http://www.cdc.gov/nchs/data/nhanes/nhanes_99_00/lab06_met_aecar.pdf.
- 42.Centers for Disease Control and Prevention NCfHS. 1999–2000 Data Documentation, Codebook, and Frequencies: Total Cholesterol and HDL (Lab13) 2010.
- 43. Perloff D, Grim C, Flack J, Frohlich ED, Hill M, McDonald M, et al. Human blood pressure determination by sphygmomanometry. Circulation. 1993;88(5 Pt 1):2460–70. PubMed [DOI] [PubMed] [Google Scholar]
- 44. STATA. Statistics/Data Analysis: Release 13.0. Texas: Stata Corporation; 2013. [Google Scholar]
- 45.Lohr SL. Sampling: Design and Analysis, 2nd Edition 2010.
- 46. McCallum R. Factor Analysis, PSYC 236 coursepack. UNC Student Stores, 2004. [Google Scholar]
- 47. Mueller CW, Kim JO. Factor Analysis: Statistical Methods and Practical Issues. Uslaner EM, editor. London: Sage Publications; 1978. [Google Scholar]
- 48. Sharma S. Applied multivariate techniques USA: Wiley; 1996. [Google Scholar]
- 49. Acock AC. Discovering Structural Equation Modeling using Stata. 1st ed. College Station, Texas: StataCorp LP; 2013. [Google Scholar]
- 50. Heckman JJ. Sample selection bias as a specification error. Econometrica. 1979;47:153–61. [Google Scholar]
- 51. Tomkins A. Assessing micronutrient status in the presence of inflammation. The Journal of nutrition. 2003;133(5 Suppl 2):1649S–55S. PubMed [DOI] [PubMed] [Google Scholar]
- 52. Lahner E, Persechino S, Annibale B. Micronutrients (Other than iron) and Helicobacter pylori infection: a systematic review. Helicobacter. 2012;17(1):1–15. 10.1111/j.1523-5378.2011.00892.x PubMed [DOI] [PubMed] [Google Scholar]
- 53. Salgueiro J, Zubillaga M, Goldman C, Barrado A, Martinez Sarrasague M, Leonardi N, et al. Review article: is there a link between micronutrient malnutrition and Helicobacter pylori infection? Alimentary pharmacology & therapeutics. 2004;20(10):1029–34. 10.1111/j.1365-2036.2004.02265.x PubMed . [DOI] [PubMed] [Google Scholar]
- 54. Howden CW. Vitamin B12 levels during prolonged treatment with proton pump inhibitors. Journal of clinical gastroenterology. 2000;30(1):29–33. PubMed . [DOI] [PubMed] [Google Scholar]
- 55.Ferritin WebMD; [cited 2013 12 December].
- 56. Szoke D, Panteghini M. Diagnostic value of transferrin. Clinica chimica acta; international journal of clinical chemistry. 2012;413(15–16):1184–9. 10.1016/j.cca.2012.04.021 PubMed [DOI] [PubMed] [Google Scholar]
- 57. Ellervik C, Mandrup-Poulsen T, Andersen HU, Tybjaerg-Hansen A, Frandsen M, Birgens H, et al. Elevated transferrin saturation and risk of diabetes: three population-based studies. Diabetes care. 2011;34(10):2256–8. 10.2337/dc11-0416 PubMed [DOI] [PMC free article] [PubMed] [Google Scholar]
- 58. Ellervik C, Tybjaerg-Hansen A, Nordestgaard BG. Risk of cancer by transferrin saturation levels and haemochromatosis genotype: population-based study and meta-analysis. Journal of internal medicine. 2012;271(1):51–63. 10.1111/j.1365-2796.2011.02404.x PubMed [DOI] [PubMed] [Google Scholar]
- 59. Ellervik C, Tybjaerg-Hansen A, Nordestgaard BG. Total mortality by transferrin saturation levels: two general population studies and a metaanalysis. Clinical chemistry. 2011;57(3):459–66. 10.1373/clinchem.2010.156802 PubMed [DOI] [PubMed] [Google Scholar]
- 60. Sempos CT, Looker AC, Gillum RE, McGee DL, Vuong CV, Johnson CL. Serum ferritin and death from all causes and cardiovascular disease: the NHANES II Mortality Study. National Health and Nutrition Examination Study. Annals of epidemiology. 2000;10(7):441–8. PubMed . [DOI] [PubMed] [Google Scholar]
- 61. Kim KS, Son HG, Hong NS, Lee DH. Associations of serum ferritin and transferrin % saturation with all-cause, cancer, and cardiovascular disease mortality: Third National Health and Nutrition Examination Survey follow-up study. Journal of preventive medicine and public health = Yebang Uihakhoe chi. 2012;45(3):196–203. 10.3961/jpmph.2012.45.3.196 PubMed [DOI] [PMC free article] [PubMed] [Google Scholar]
- 62. Stampfer MJ, Malinow MR, Willett WC, Newcomer LM, Upson B, Ullmann D, et al. A prospective study of plasma homocyst(e)ine and risk of myocardial infarction in US physicians. JAMA: the journal of the American Medical Association. 1992;268(7):877–81. Epub 1992/08/19. PubMed . [PubMed] [Google Scholar]
- 63. Rasool S, Abid S, Iqbal MP, Mehboobali N, Haider G, Jafri W. Relationship between vitamin B12, folate and homocysteine levels and H. pylori infection in patients with functional dyspepsia: a cross-section study. BMC Res Notes. 2012;5:206 Epub 2012/05/02. 10.1186/1756-0500-5-206 PubMed [DOI] [PMC free article] [PubMed] [Google Scholar]
- 64. Ozer B, Serin E, Gumurdulu Y, Kayaselcuk F, Anarat R, Gur G, et al. Helicobacter pylori eradication lowers serum homocysteine level in patients without gastric atrophy. World J Gastroenterol. 2005;11(18):2764–7. Epub 2005/05/11. PubMed . [DOI] [PMC free article] [PubMed] [Google Scholar]
- 65. Savage DG, Lindenbaum J, Stabler SP, Allen RH. Sensitivity of serum methylmalonic acid and total homocysteine determinations for diagnosing cobalamin and folate deficiencies. Am J Med. 1994;96(3):239–46. Epub 1994/03/01. 10.1016/0002-9343(94)90149-X. PubMed . [DOI] [PubMed] [Google Scholar]
- 66. Sezikli M, Çetinkaya ZA, Sezikli H, Güzelbulut F, Tiftikçi A, Tüzün İnce A, et al. Oxidative Stress in Helicobacter pylori Infection: Does Supplementation with Vitamins C and E Increase the Eradication Rate? Helicobacter. 2009;14(4):280–5. 10.1111/j.1523-5378.2009.00686.x [DOI] [PubMed] [Google Scholar]
- 67. Jaskiewicz K, Van Helden PD, Wiid IJ, Steenkamp HJ, Van Wyk MJ. Chronic atrophic gastritis, gastric pH, nitrites and micronutrient levels in a population at risk for gastric carcinoma. Anticancer research. 1990;10(3):833–6. Epub 1990/05/01. PubMed . [PubMed] [Google Scholar]
- 68. Haenszel W, Correa P, Lopez A, Cuello C, Zarama G, Zavala D, et al. Serum micronutrient levels in relation to gastric pathology. International journal of cancer Journal international du cancer. 1985;36(1):43–8. Epub 1985/07/15. PubMed . [DOI] [PubMed] [Google Scholar]
- 69. Knekt P, Aromaa A, Maatela J, Aaran RK, Nikkari T, Hakama M, et al. Vitamin E and cancer prevention. Am J Clin Nutr. 1991;53(1 Suppl):283S–6S. Epub 1991/01/01. PubMed . [DOI] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Data Availability Statement
The study is based on publicly available data and the main repository is found at: http://www.cdc.gov/nchs/nhanes.htm.