Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1994 May 10;91(10):4466–4470. doi: 10.1073/pnas.91.10.4466

Ion transport and methane production in Methanobacterium thermoautotrophicum.

F D Sauer 1, B A Blackwell 1, J K Kramer 1
PMCID: PMC43806  PMID: 11607473

Abstract

In Methanobacterium thermoautotrophicum, the protonmotive force for the H+-translocating ATPase consists mainly of a transmembrane electrical gradient (Deltapsi). These cells do not establish a significant transmembrane pH gradient (inside alkaline) and, in fact, if the suspending medium is of pH >/= 7.0, the pH gradient may be reversed-i.e., inside acid with respect to the extracellular pH. These studies show by both 23Na NMR and 22Na+ distribution that Na+ extrusion with the generation of Deltapsi precedes methanogenesis in Mb. thermoautotrophicum. It is calculated that the newly established Na+ gradients increase Deltapsi by approximately 50 mV (inside negative). There is no detectable H+ extrusion during methane synthesis; instead there is a high rate of H+ consumption for methane synthesis and an increase in internal pH. This was supported by 31P NMR experiments, which showed an internal pH shift from 6.8 to 7.6. With the cells maintained at an external pH of 7.2, the initial transmembrane pH gradient of -0.4 (inside acid) at 60 degrees C is equivalent to Deltapsi of + 27 mV (inside positive); after 20 min of incubation, the transmembrane pH gradient is + 0.4 (inside alkaline), which at 60 degrees C is equivalent to Deltapsi of -27 mV (inside negative). Actively respiring cells generated a protonmotive force of -198 mV. It is proposed that energy for CO2 reduction to the level of formaldehyde (the first step in methane synthesis) in Mb. thermoautotrophicum is derived from the Deltapsi generated by electrogenic Na+ extrusion. The protonmotive force required for ATP synthesis consists primarily of Deltapsi and appears to be the result of both an electrogenic Na+ extrusion and a pH gradient (inside alkaline) which develops during methanogenesis.

Full text

PDF
4466

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Becher B., Müller V., Gottschalk G. N5-methyl-tetrahydromethanopterin:coenzyme M methyltransferase of Methanosarcina strain Gö1 is an Na(+)-translocating membrane protein. J Bacteriol. 1992 Dec;174(23):7656–7660. doi: 10.1128/jb.174.23.7656-7660.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Castle A. M., Macnab R. M., Shulman R. G. Coupling between the sodium and proton gradients in respiring Escherichia coli cells measured by 23Na and 31P nuclear magnetic resonance. J Biol Chem. 1986 Jun 15;261(17):7797–7806. [PubMed] [Google Scholar]
  3. Castle A. M., Macnab R. M., Shulman R. G. Measurement of intracellular sodium concentration and sodium transport in Escherichia coli by 23Na nuclear magnetic resonance. J Biol Chem. 1986 Mar 5;261(7):3288–3294. [PubMed] [Google Scholar]
  4. Deamer D. W., Nichols J. W. Proton-hydroxide permeability of liposomes. Proc Natl Acad Sci U S A. 1983 Jan;80(1):165–168. doi: 10.1073/pnas.80.1.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Deppenmeier U., Blaut M., Mahlmann A., Gottschalk G. Reduced coenzyme F420: heterodisulfide oxidoreductase, a proton- translocating redox system in methanogenic bacteria. Proc Natl Acad Sci U S A. 1990 Dec 1;87(23):9449–9453. doi: 10.1073/pnas.87.23.9449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jones R. W. The role of the membrane-bound hydrogenase in the energy-conserving oxidation of molecular hydrogen by Escherichia coli. Biochem J. 1980 May 15;188(2):345–350. doi: 10.1042/bj1880345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kaesler B., Schönheit P. Methanogenesis and ATP synthesis in methanogenic bacteria at low electrochemical proton potentials. An explanation for the apparent uncoupler insensitivity of ATP synthesis. Eur J Biochem. 1988 May 16;174(1):189–197. doi: 10.1111/j.1432-1033.1988.tb14081.x. [DOI] [PubMed] [Google Scholar]
  8. Kaesler B., Schönheit P. The role of sodium ions in methanogenesis. Formaldehyde oxidation to CO2 and 2H2 in methanogenic bacteria is coupled with primary electrogenic Na+ translocation at a stoichiometry of 2-3 Na+/CO2. Eur J Biochem. 1989 Sep 1;184(1):223–232. doi: 10.1111/j.1432-1033.1989.tb15010.x. [DOI] [PubMed] [Google Scholar]
  9. Kaesler B., Schönheit P. The sodium cycle in methanogenesis. CO2 reduction to the formaldehyde level in methanogenic bacteria is driven by a primary electrochemical potential of Na+ generated by formaldehyde reduction to CH4. Eur J Biochem. 1989 Dec 8;186(1-2):309–316. doi: 10.1111/j.1432-1033.1989.tb15210.x. [DOI] [PubMed] [Google Scholar]
  10. Laubinger W., Dimroth P. Characterization of the ATP synthase of Propionigenium modestum as a primary sodium pump. Biochemistry. 1988 Sep 20;27(19):7531–7537. doi: 10.1021/bi00419a053. [DOI] [PubMed] [Google Scholar]
  11. Michel H., Oesterhelt D. Electrochemical proton gradient across the cell membrane of Halobacterium halobium: effect of N,N'-dicyclohexylcarbodiimide, relation to intracellular adenosine triphosphate, adenosine diphosphate, and phosphate concentration, and influence of the potassium gradient. Biochemistry. 1980 Sep 30;19(20):4607–4614. doi: 10.1021/bi00561a011. [DOI] [PubMed] [Google Scholar]
  12. Mountfort D. O. Evidence from ATP synthesis driven by a proton gradient in Methanosarcina barkeri. Biochem Biophys Res Commun. 1978 Dec 29;85(4):1346–1351. doi: 10.1016/0006-291x(78)91151-8. [DOI] [PubMed] [Google Scholar]
  13. Müller V., Winner C., Gottschalk G. Electron-transport-driven sodium extrusion during methanogenesis from formaldehyde and molecular hydrogen by Methanosarcina barkeri. Eur J Biochem. 1988 Dec 15;178(2):519–525. doi: 10.1111/j.1432-1033.1988.tb14478.x. [DOI] [PubMed] [Google Scholar]
  14. Nozaki Y., Tanford C. Proton and hydroxide ion permeability of phospholipid vesicles. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4324–4328. doi: 10.1073/pnas.78.7.4324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Pan J. W., Macnab R. M. Steady-state measurements of Escherichia coli sodium and proton potentials at alkaline pH support the hypothesis of electrogenic antiport. J Biol Chem. 1990 Jun 5;265(16):9247–9250. [PubMed] [Google Scholar]
  16. Rottenberg H. The measurement of membrane potential and deltapH in cells, organelles, and vesicles. Methods Enzymol. 1979;55:547–569. doi: 10.1016/0076-6879(79)55066-6. [DOI] [PubMed] [Google Scholar]
  17. Sauer F. D., Blackwell B. A., Kramer J. K., Marsden B. J. Structure of a novel cofactor containing N-(7-mercaptoheptanoyl)-O-3-phosphothreonine. Biochemistry. 1990 Aug 21;29(33):7593–7600. doi: 10.1021/bi00485a008. [DOI] [PubMed] [Google Scholar]
  18. Sauer F. D., Erfle J. D., Mahadevan S. Evidence for an internal electrochemical proton gradient in Methanobacterium thermoautotrophicum. J Biol Chem. 1981 Oct 10;256(19):9843–9848. [PubMed] [Google Scholar]
  19. Tokuda H., Unemoto T. Characterization of the respiration-dependent Na+ pump in the marine bacterium Vibrio alginolyticus. J Biol Chem. 1982 Sep 10;257(17):10007–10014. [PubMed] [Google Scholar]
  20. Tokuda H., Unemoto T. Na+ is translocated at NADH:quinone oxidoreductase segment in the respiratory chain of Vibrio alginolyticus. J Biol Chem. 1984 Jun 25;259(12):7785–7790. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES