Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1994 May 10;91(10):4514–4518. doi: 10.1073/pnas.91.10.4514

The Krüppel-associated box-A (KRAB-A) domain of zinc finger proteins mediates transcriptional repression.

R Witzgall 1, E O'Leary 1, A Leaf 1, D Onaldi 1, J V Bonventre 1
PMCID: PMC43816  PMID: 8183940

Abstract

We have previously reported the cloning, sequencing, and partial characterization of Kid-1, a zinc finger-encoding cDNA from the rat kidney. The Kid-1 protein and approximately one-third of all other zinc finger proteins contain a highly conserved region of approximately 75 amino acids at their NH2 terminus named Krüppel-associated box (KRAB), which is subdivided into A and B domains. The evolutionary conservation, wide distribution, and genomic organization of the KRAB domains suggest an important role of this region in the transcriptional regulatory function of zinc finger proteins. The functional significance of the KRAB domain was evaluated by studying transcriptional activities of yeast GAL4-rat Kid-1 fusion proteins containing various regions of the non-zinc-finger domain of Kid-1. Transcriptional repressor activity of GAL4-Kid-1 fusion proteins maps to the KRAB-A domain. The KRAB-A domain of another zinc finger protein, ZNF2, also has repressor activity. Site-directed mutagenesis of conserved amino acids in this motif results in decreased repressor activity. Thus, we have established a functional significance for the KRAB-A domain, a consensus sequence common in zinc finger proteins.

Full text

PDF
4514

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aiyar A., Leis J. Modification of the megaprimer method of PCR mutagenesis: improved amplification of the final product. Biotechniques. 1993 Mar;14(3):366–369. [PubMed] [Google Scholar]
  2. Bellefroid E. J., Poncelet D. A., Lecocq P. J., Revelant O., Martial J. A. The evolutionarily conserved Krüppel-associated box domain defines a subfamily of eukaryotic multifingered proteins. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3608–3612. doi: 10.1073/pnas.88.9.3608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Constantinou-Deltas C. D., Gilbert J., Bartlett R. J., Herbstreith M., Roses A. D., Lee J. E. The identification and characterization of KRAB-domain-containing zinc finger proteins. Genomics. 1992 Mar;12(3):581–589. doi: 10.1016/0888-7543(92)90451-w. [DOI] [PubMed] [Google Scholar]
  4. Cowell I. G., Skinner A., Hurst H. C. Transcriptional repression by a novel member of the bZIP family of transcription factors. Mol Cell Biol. 1992 Jul;12(7):3070–3077. doi: 10.1128/mcb.12.7.3070. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gashler A. L., Swaminathan S., Sukhatme V. P. A novel repression module, an extensive activation domain, and a bipartite nuclear localization signal defined in the immediate-early transcription factor Egr-1. Mol Cell Biol. 1993 Aug;13(8):4556–4571. doi: 10.1128/mcb.13.8.4556. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Han K., Manley J. L. Transcriptional repression by the Drosophila even-skipped protein: definition of a minimal repression domain. Genes Dev. 1993 Mar;7(3):491–503. doi: 10.1101/gad.7.3.491. [DOI] [PubMed] [Google Scholar]
  7. Jaynes J. B., O'Farrell P. H. Active repression of transcription by the engrailed homeodomain protein. EMBO J. 1991 Jun;10(6):1427–1433. doi: 10.1002/j.1460-2075.1991.tb07663.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Johansen F. E., Prywes R. Identification of transcriptional activation and inhibitory domains in serum response factor (SRF) by using GAL4-SRF constructs. Mol Cell Biol. 1993 Aug;13(8):4640–4647. doi: 10.1128/mcb.13.8.4640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Licht J. D., Grossel M. J., Figge J., Hansen U. M. Drosophila Krüppel protein is a transcriptional repressor. Nature. 1990 Jul 5;346(6279):76–79. doi: 10.1038/346076a0. [DOI] [PubMed] [Google Scholar]
  10. Mitchell P. J., Tjian R. Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science. 1989 Jul 28;245(4916):371–378. doi: 10.1126/science.2667136. [DOI] [PubMed] [Google Scholar]
  11. Pavletich N. P., Pabo C. O. Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science. 1991 May 10;252(5007):809–817. doi: 10.1126/science.2028256. [DOI] [PubMed] [Google Scholar]
  12. Rosati M., Marino M., Franzè A., Tramontano A., Grimaldi G. Members of the zinc finger protein gene family sharing a conserved N-terminal module. Nucleic Acids Res. 1991 Oct 25;19(20):5661–5667. doi: 10.1093/nar/19.20.5661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Shelley C. S., Arnaout M. A. The promoter of the CD11b gene directs myeloid-specific and developmentally regulated expression. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10525–10529. doi: 10.1073/pnas.88.23.10525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Witzgall R., O'Leary E., Gessner R., Ouellette A. J., Bonventre J. V. Kid-1, a putative renal transcription factor: regulation during ontogeny and in response to ischemia and toxic injury. Mol Cell Biol. 1993 Mar;13(3):1933–1942. doi: 10.1128/mcb.13.3.1933. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES