Abstract
Whole-cell patch-clamp recordings were made from isolated cells of the retinal pigment epithelium (RPE) of neonatal rats. After 24 hr in cell culture, RPE cells developed a transient, voltage-activated inward current that was never observed in acutely isolated cells. The kinetics, voltage-dependence, and reversal potential of the current and its dependence on external sodium demonstrated that the current was due to the expression of voltage-activated Na+ channels in cultured RPE cells. The current was partly blocked by tetrodotoxin at low concentrations (< 100 nM), but a second component of Na+ current was unblocked by tetrodotoxin at concentrations up to 10 microM. Na+ channels were present in cultured RPE cells at sufficient density to support regenerative action potentials in voltage recordings. Both the epithelial cells of the RPE and the neurons of the retina derive embryonically from neural origin, and it is known that under certain circumstances, nonmammalian RPE cells retain the ability to take on neuronal characteristics. The development of voltage-activated Na+ channels and the presence of action potentials demonstrate that neonatal mammalian RPE cells are also capable of expressing neuronal characteristics in cell culture.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Coulombre J. L., Coulombre A. J. Regeneration of neural retina from the pigmented epithelium in the chick embryo. Dev Biol. 1965 Aug;12(1):79–92. doi: 10.1016/0012-1606(65)90022-9. [DOI] [PubMed] [Google Scholar]
- HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hyatt G. A., Schmitt E. A., Marsh-Armstrong N. R., Dowling J. E. Retinoic acid-induced duplication of the zebrafish retina. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):8293–8297. doi: 10.1073/pnas.89.17.8293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaneda M., Kaneko A. Voltage-gated sodium currents in isolated retinal ganglion cells of the cat: relation between the inactivation kinetics and the cell type. Neurosci Res. 1991 Sep;11(4):261–275. doi: 10.1016/0168-0102(91)90009-n. [DOI] [PubMed] [Google Scholar]
- Kostyuk P. G., Veselovsky N. S., Tsyndrenko A. Y. Ionic currents in the somatic membrane of rat dorsal root ganglion neurons-I. Sodium currents. Neuroscience. 1981;6(12):2423–2430. doi: 10.1016/0306-4522(81)90088-9. [DOI] [PubMed] [Google Scholar]
- Krafte D. S., Goldin A. L., Auld V. J., Dunn R. J., Davidson N., Lester H. A. Inactivation of cloned Na channels expressed in Xenopus oocytes. J Gen Physiol. 1990 Oct;96(4):689–706. doi: 10.1085/jgp.96.4.689. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li L. X., Turner J. E. Transplantation of retinal pigment epithelial cells to immature and adult rat hosts: short- and long-term survival characteristics. Exp Eye Res. 1988 Nov;47(5):771–785. doi: 10.1016/0014-4835(88)90044-9. [DOI] [PubMed] [Google Scholar]
- Lipton S. A., Tauck D. L. Voltage-dependent conductances of solitary ganglion cells dissociated from the rat retina. J Physiol. 1987 Apr;385:361–391. doi: 10.1113/jphysiol.1987.sp016497. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mandel G. Tissue-specific expression of the voltage-sensitive sodium channel. J Membr Biol. 1992 Feb;125(3):193–205. doi: 10.1007/BF00236433. [DOI] [PubMed] [Google Scholar]
- Neill J. M., Barnstable C. J. Expression of the cell surface antigens RET-PE2 and N-CAM by rat retinal pigment epithelial cells during development and in tissue culture. Exp Eye Res. 1990 Nov;51(5):573–583. doi: 10.1016/0014-4835(90)90088-c. [DOI] [PubMed] [Google Scholar]
- Park C. M., Hollenberg M. J. Basic fibroblast growth factor induces retinal regeneration in vivo. Dev Biol. 1989 Jul;134(1):201–205. doi: 10.1016/0012-1606(89)90089-4. [DOI] [PubMed] [Google Scholar]
- Pittack C., Jones M., Reh T. A. Basic fibroblast growth factor induces retinal pigment epithelium to generate neural retina in vitro. Development. 1991 Oct;113(2):577–588. doi: 10.1242/dev.113.2.577. [DOI] [PubMed] [Google Scholar]
- Roy M. L., Narahashi T. Differential properties of tetrodotoxin-sensitive and tetrodotoxin-resistant sodium channels in rat dorsal root ganglion neurons. J Neurosci. 1992 Jun;12(6):2104–2111. doi: 10.1523/JNEUROSCI.12-06-02104.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- STONE L. S., STEINITZ H. Regeneration of neural retina and lens from retina pigment cell grafts in adult newts. J Exp Zool. 1957 Jul;135(2):301–317. doi: 10.1002/jez.1401350206. [DOI] [PubMed] [Google Scholar]
- Stühmer W., Methfessel C., Sakmann B., Noda M., Numa S. Patch clamp characterization of sodium channels expressed from rat brain cDNA. Eur Biophys J. 1987;14(3):131–138. doi: 10.1007/BF00253837. [DOI] [PubMed] [Google Scholar]
- Wen R., Lui G. M., Steinberg R. H. Whole-cell K+ currents in fresh and cultured cells of the human and monkey retinal pigment epithelium. J Physiol. 1993 Jun;465:121–147. doi: 10.1113/jphysiol.1993.sp019669. [DOI] [PMC free article] [PubMed] [Google Scholar]