Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jan 10;71(Pt 2):o88–o89. doi: 10.1107/S2056989014028175

Crystal structure of 1-(2-amino­phen­yl)-3-phenyl­urea

Joel T Mague a, Shaaban K Mohamed b,c, Mehmet Akkurt d, Omran A Omran e, Mustafa R Albayati f,*
PMCID: PMC4384537  PMID: 25878886

Abstract

In the title compound, C13H13N3O, the phenyl ring makes a dihedral angle of 47.0 (1)° with the mean plane of the –NC(=O)N– unit, while the dihedral angle between the latter mean plane and the amino­phenyl ring is 84.43 (7)°. In the crystal, mol­ecules are linked via N—H⋯O hydrogen bonds involving the central –NHC(=O)NH– units, forming chains running parallel to the b axis. These chains associate with one another via N—H⋯O and N—H⋯N hydrogen bonds, from the pendant amino groups to the –NHC(=O)NH– units of adjacent mol­ecules, forming columns propagating along [010]. The structure was refined as a two-component twin with a 0.933 (3):0.067 (3) domain ratio.

Keywords: crystal structure, urea derivatives, N—H⋯N hydrogen bonds, N—H⋯O hydrogen bonds, twinned structure

Related literature  

For industrial applications of urea-containing compounds, see: Kapuscinska & Nowak (2014); Doyle & Jacobsen (2007); Helm et al. (1989). For the wide spectrum of biological activities of urea scaffold compounds, see: Upadhayaya et al. (2009); Khan et al. (2008), Seth et al. (2004); Kaymakçıoğlu et al. (2005); Yip & Yang (1986). For details of the use of the TWINROTMAT routine in PLATON, see: Spek (2009).graphic file with name e-71-00o88-scheme1.jpg

Experimental  

Crystal data  

  • C13H13N3O

  • M r = 227.26

  • Monoclinic, Inline graphic

  • a = 16.1742 (4) Å

  • b = 4.5667 (1) Å

  • c = 16.3259 (4) Å

  • β = 106.548 (1)°

  • V = 1155.93 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.69 mm−1

  • T = 150 K

  • 0.20 × 0.12 × 0.09 mm

Data collection  

  • Bruker D8 VENTURE PHOTON 100 CMOS diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2014) T min = 0.89, T max = 0.94

  • 21843 measured reflections

  • 2282 independent reflections

  • 2084 reflections with I > 2σ(I)

  • R int = 0.035

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.136

  • S = 1.11

  • 2282 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989014028175/su5051sup1.cif

e-71-00o88-sup1.cif (640.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014028175/su5051Isup2.hkl

e-71-00o88-Isup2.hkl (125.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989014028175/su5051Isup3.cml

. DOI: 10.1107/S2056989014028175/su5051fig1.tif

The mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

c . DOI: 10.1107/S2056989014028175/su5051fig2.tif

A view along the c axis of the crystal packing of the title compound. The N—H⋯O and N—H⋯N hydrogen bonds are shown by blue and violet dashed lines, respectively (see Table 1 for details).

CCDC reference: 1041048

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N2H2AO1i 0.91 2.13 2.932(2) 147
N1H1AO1i 0.91 1.94 2.771(2) 151
N3H3AN3ii 0.91 2.19 3.057(3) 160
N3H3BO1ii 0.91 2.24 3.004(2) 141

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

supplementary crystallographic information

S1. Comment

Compounds bearing a urea linkage have attracted the interest of many researchers due to the variety of their applications in both of medicinal and industrial fields. One of the most important class of compounds that are used in the cosmetic industry are urea-containing compounds due to their effective moisturizing properties (Kapuscinska & Nowak, 2014). Urea-linked glycosides serve as small-molecule H-bond donors in asymmetric catalysis (Doyle & Jacobsen, 2007), and are currently employed in the forestry product industry, for example as adhesive mixtures to reduce the level of toxic phenol in furniture and building materials (Helm et al., 1989). Some urea derivatives possess valuable antituberculosis, antibacterial and anticonvulsant properties (Upadhayaya et al., 2009; Khan et al., 2008, Sett et al., 2004; Koçyiğit-Kaymakçıoğlu et al., 2005). Compounds such as Thidiazuron have mimicked the effect of benzyladenine (BA) in the Ca2+ and cytokinin systems (Yip et al., 1986). Based on such findings we report in this study the synthesis and crystal structure of the title compound.

The phenyl ring makes a dihedral angle of 47.0 (1)° with the mean plane of atoms N1/N2/C7/O1 while the dihedral angle between the latter unit and the aminophenyl ring is 84.43 (7)°.

In the crystal, N1—H1A···O1i and N2—H2a···O1i hydrogen bonds link chains of molecules running parallel to the b axis (Fig. 2 and Table 1). Pairs of chains are further associated through N3—H3A···N3ii and N3—H3B···O1ii hydrogen bonds (Table 1 and Fig. 2), forming columns propagating along [010].

S2. Experimental

A mixture of 0.01 mol (2.06 g m) of N-phenylmorpholine-4-carboxamide and 0.01 mol (1.08 g m) benzene-1,2-diamine in 20 ml of ethanol was heated under reflux for 10 h. On cooling, the resulting solid product was collected by filtration, washed with a little cold ethanol and dried under vacuum. Colourless crystals suitable for X-ray diffraction were obtained by recrystallization of the product from ethanol (m.p.: 495 K; yield: 73%).

S3. Refinement

The C-bound H atoms were placed in calculated positions (C—H = 0.95 Å) while those attached to nitrogen were placed in locations derived from a difference Fourier map and their parameters adjusted to give N—H = 0.91 Å. They were all treated as riding atoms with Uiso(H) = 1.2Ueq(N,C). In the final stages of the refinement, analysis of the data with the TWINROTMAT routine in PLATON (Spek, 2009) indicated the presence of a minor twin component rotated by approximately 180° about [101] and the data were finally refined as a 2-component twin (BASF = 0.067).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A view along the c axis of the crystal packing of the title compound. The N—H···O and N—H···N hydrogen bonds are shown by blue and violet dashed lines, respectively (see Table 1 for details).

Crystal data

C13H13N3O F(000) = 480
Mr = 227.26 Dx = 1.306 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.54178 Å
a = 16.1742 (4) Å Cell parameters from 9955 reflections
b = 4.5667 (1) Å θ = 3.4–72.4°
c = 16.3259 (4) Å µ = 0.69 mm1
β = 106.548 (1)° T = 150 K
V = 1155.93 (5) Å3 Column, colourless
Z = 4 0.20 × 0.12 × 0.09 mm

Data collection

Bruker D8 VENTURE PHOTON 100 CMOS diffractometer 2282 independent reflections
Radiation source: INCOATEC IµS micro–focus source 2084 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.035
Detector resolution: 10.4167 pixels mm-1 θmax = 72.5°, θmin = 2.8°
ω scans h = −19→17
Absorption correction: multi-scan (SADABS; Bruker, 2014) k = −5→5
Tmin = 0.89, Tmax = 0.94 l = −20→20
21843 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: mixed
wR(F2) = 0.136 H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.054P)2 + 0.8485P] where P = (Fo2 + 2Fc2)/3
2282 reflections (Δ/σ)max < 0.001
155 parameters Δρmax = 0.30 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)are estimated using the full covariance matrix. The cell e.s.d.'s are takeninto account individually in the estimation of e.s.d.'s in distances, anglesand torsion angles; correlations between e.s.d.'s in cell parameters are onlyused when they are defined by crystal symmetry. An approximate (isotropic)treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 Å) while those attached to nitrogen were placed in locations derived from a difference map and their parameters adjusted to give N—H = 0.91 Å. All were included as riding contributions with isotropic displacement parameters 1.2 times those of the attached atoms. In the final stages of the refinement, analysis of the data with the TWINROTMAT routine in PLATON (Spek, 2014) indicated the presence of a minor twin component rotated by approximately 180° about b and the data were finally refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.44188 (9) 0.4790 (3) 0.32769 (9) 0.0300 (3)
N1 0.48770 (11) 0.0380 (4) 0.29093 (11) 0.0309 (4)
H1A 0.4911 −0.1584 0.3007 0.037*
N2 0.40020 (11) 0.0618 (3) 0.38000 (10) 0.0277 (4)
H2A 0.3974 −0.1368 0.3754 0.033*
N3 0.22413 (12) 0.1572 (4) 0.29992 (12) 0.0413 (5)
H3A 0.2521 0.0112 0.2807 0.050*
H3B 0.1655 0.1521 0.2808 0.050*
C1 0.53488 (14) 0.1492 (4) 0.23655 (13) 0.0305 (4)
C2 0.49906 (16) 0.3542 (5) 0.17311 (13) 0.0383 (5)
H2 0.4428 0.4293 0.1667 0.046*
C3 0.5467 (2) 0.4474 (6) 0.11924 (16) 0.0510 (7)
H3 0.5235 0.5916 0.0770 0.061*
C4 0.6271 (2) 0.3331 (6) 0.12642 (18) 0.0551 (7)
H4 0.6587 0.3957 0.0886 0.066*
C5 0.66188 (18) 0.1280 (6) 0.18846 (17) 0.0499 (6)
H5 0.7171 0.0472 0.1929 0.060*
C6 0.61656 (15) 0.0386 (5) 0.24462 (15) 0.0396 (5)
H6 0.6415 −0.0982 0.2885 0.048*
C7 0.44317 (12) 0.2076 (4) 0.33236 (11) 0.0255 (4)
C8 0.34822 (13) 0.2198 (4) 0.42286 (12) 0.0269 (4)
C9 0.38565 (15) 0.3407 (5) 0.50231 (13) 0.0371 (5)
H9 0.4453 0.3114 0.5294 0.045*
C10 0.33681 (18) 0.5047 (6) 0.54293 (15) 0.0464 (6)
H10 0.3628 0.5887 0.5974 0.056*
C11 0.25015 (18) 0.5444 (5) 0.50347 (16) 0.0464 (6)
H11 0.2164 0.6563 0.5310 0.056*
C12 0.21204 (15) 0.4233 (5) 0.42441 (15) 0.0412 (5)
H12 0.1521 0.4522 0.3982 0.049*
C13 0.26029 (13) 0.2584 (5) 0.38210 (13) 0.0317 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0377 (8) 0.0201 (7) 0.0356 (7) −0.0009 (6) 0.0158 (6) 0.0009 (5)
N1 0.0379 (9) 0.0210 (8) 0.0393 (9) 0.0002 (7) 0.0199 (8) 0.0012 (7)
N2 0.0328 (9) 0.0195 (7) 0.0337 (8) −0.0002 (6) 0.0139 (7) 0.0009 (7)
N3 0.0359 (10) 0.0442 (11) 0.0404 (10) 0.0007 (8) 0.0052 (8) −0.0010 (9)
C1 0.0385 (11) 0.0244 (9) 0.0318 (10) −0.0071 (8) 0.0154 (9) −0.0064 (8)
C2 0.0501 (13) 0.0326 (11) 0.0342 (11) 0.0000 (10) 0.0153 (10) −0.0020 (9)
C3 0.083 (2) 0.0362 (12) 0.0401 (12) −0.0022 (13) 0.0283 (13) 0.0036 (10)
C4 0.0785 (19) 0.0447 (14) 0.0600 (16) −0.0137 (13) 0.0486 (15) −0.0063 (12)
C5 0.0494 (14) 0.0487 (14) 0.0619 (16) −0.0061 (12) 0.0327 (13) −0.0065 (12)
C6 0.0407 (12) 0.0385 (12) 0.0431 (12) −0.0007 (10) 0.0174 (10) −0.0010 (10)
C7 0.0259 (9) 0.0230 (9) 0.0269 (9) −0.0003 (7) 0.0065 (7) 0.0004 (7)
C8 0.0330 (10) 0.0206 (9) 0.0297 (9) 0.0011 (8) 0.0131 (8) 0.0035 (7)
C9 0.0405 (12) 0.0368 (11) 0.0336 (11) −0.0022 (9) 0.0099 (9) −0.0012 (9)
C10 0.0632 (16) 0.0434 (13) 0.0363 (11) −0.0043 (12) 0.0199 (11) −0.0097 (10)
C11 0.0632 (16) 0.0364 (12) 0.0520 (14) 0.0065 (11) 0.0361 (13) −0.0019 (11)
C12 0.0373 (12) 0.0406 (13) 0.0505 (13) 0.0083 (10) 0.0201 (10) 0.0076 (10)
C13 0.0346 (11) 0.0300 (10) 0.0322 (10) −0.0003 (8) 0.0120 (8) 0.0053 (8)

Geometric parameters (Å, º)

O1—C7 1.241 (2) C4—C5 1.377 (4)
N1—C7 1.362 (2) C4—H4 0.9500
N1—C1 1.419 (2) C5—C6 1.388 (3)
N1—H1A 0.9099 C5—H5 0.9500
N2—C7 1.356 (2) C6—H6 0.9500
N2—C8 1.433 (2) C8—C9 1.381 (3)
N2—H2A 0.9099 C8—C13 1.399 (3)
N3—C13 1.381 (3) C9—C10 1.387 (3)
N3—H3A 0.9101 C9—H9 0.9500
N3—H3B 0.9101 C10—C11 1.378 (4)
C1—C6 1.385 (3) C10—H10 0.9500
C1—C2 1.394 (3) C11—C12 1.378 (4)
C2—C3 1.391 (3) C11—H11 0.9500
C2—H2 0.9500 C12—C13 1.400 (3)
C3—C4 1.375 (4) C12—H12 0.9500
C3—H3 0.9500
C7—N1—C1 124.19 (16) C1—C6—C5 119.9 (2)
C7—N1—H1A 119.2 C1—C6—H6 120.0
C1—N1—H1A 116.5 C5—C6—H6 120.0
C7—N2—C8 120.03 (15) O1—C7—N2 121.53 (17)
C7—N2—H2A 117.6 O1—C7—N1 122.64 (17)
C8—N2—H2A 121.4 N2—C7—N1 115.82 (16)
C13—N3—H3A 117.7 C9—C8—C13 120.72 (18)
C13—N3—H3B 117.0 C9—C8—N2 119.93 (18)
H3A—N3—H3B 115.7 C13—C8—N2 119.31 (17)
C6—C1—C2 119.93 (19) C8—C9—C10 120.5 (2)
C6—C1—N1 118.56 (19) C8—C9—H9 119.7
C2—C1—N1 121.43 (19) C10—C9—H9 119.7
C3—C2—C1 119.2 (2) C11—C10—C9 119.3 (2)
C3—C2—H2 120.4 C11—C10—H10 120.3
C1—C2—H2 120.4 C9—C10—H10 120.3
C4—C3—C2 120.7 (2) C12—C11—C10 120.6 (2)
C4—C3—H3 119.6 C12—C11—H11 119.7
C2—C3—H3 119.6 C10—C11—H11 119.7
C3—C4—C5 119.9 (2) C11—C12—C13 121.0 (2)
C3—C4—H4 120.0 C11—C12—H12 119.5
C5—C4—H4 120.0 C13—C12—H12 119.5
C4—C5—C6 120.3 (2) N3—C13—C8 120.78 (18)
C4—C5—H5 119.9 N3—C13—C12 121.2 (2)
C6—C5—H5 119.9 C8—C13—C12 117.83 (19)
C7—N1—C1—C6 135.3 (2) C7—N2—C8—C9 −84.9 (2)
C7—N1—C1—C2 −48.0 (3) C7—N2—C8—C13 92.9 (2)
C6—C1—C2—C3 −0.8 (3) C13—C8—C9—C10 −0.5 (3)
N1—C1—C2—C3 −177.4 (2) N2—C8—C9—C10 177.3 (2)
C1—C2—C3—C4 2.0 (4) C8—C9—C10—C11 0.5 (4)
C2—C3—C4—C5 −1.2 (4) C9—C10—C11—C12 −0.1 (4)
C3—C4—C5—C6 −0.9 (4) C10—C11—C12—C13 −0.3 (4)
C2—C1—C6—C5 −1.2 (3) C9—C8—C13—N3 174.9 (2)
N1—C1—C6—C5 175.5 (2) N2—C8—C13—N3 −2.9 (3)
C4—C5—C6—C1 2.1 (4) C9—C8—C13—C12 0.1 (3)
C8—N2—C7—O1 3.2 (3) N2—C8—C13—C12 −177.65 (17)
C8—N2—C7—N1 −177.12 (17) C11—C12—C13—N3 −174.5 (2)
C1—N1—C7—O1 −1.9 (3) C11—C12—C13—C8 0.2 (3)
C1—N1—C7—N2 178.46 (18)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2A···O1i 0.91 2.13 2.932 (2) 147
N1—H1A···O1i 0.91 1.94 2.771 (2) 151
N3—H3A···N3ii 0.91 2.19 3.057 (3) 160
N3—H3B···O1ii 0.91 2.24 3.004 (2) 141

Symmetry codes: (i) x, y−1, z; (ii) −x+1/2, y−1/2, −z+1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU5051).

References

  1. Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Doyle, A. G. & Jacobsen, E. N. (2007). Chem. Rev. 107, 5713–5743. [DOI] [PubMed]
  4. Helm, R. F., Karchesy, J. J. & Barofsky, D. F. (1989). Carbohydr. Res. 189, 103–112.
  5. Kapuscinska, A. & Nowak, I. (2014). CHEMIK, 68, 91–96.
  6. Kaymakçıoğlu, B. K., Rollas, S., Körceğez, E. & Arıcıoğlu, F. (2005). Eur. J. Pharm. Sci. 26, 97–103. [DOI] [PubMed]
  7. Khan, S. A., Singh, N. & Saleem, K. (2008). Eur. J. Med. Chem. 43, 2272–2277. [DOI] [PubMed]
  8. Seth, P. P., Ranken, R., Robinson, D. E., Osgood, S. A., Risen, L. M., Rodgers, E. L., Migawa, M. T., Jefferson, E. A. & Swayze, E. E. (2004). Bioorg. Med. Chem. Lett. 14, 5569–5572. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Upadhayaya, R. S., Kulkarni, G. M., Vasireddy, N. R., Vandavasi, J. K., Dixit, S. S., Sharma, V. & Chattopadhyaya, J. (2009). Bioorg. Med. Chem. 17, 4681–4692. [DOI] [PubMed]
  12. Yip, W. K. & Yang, S. F. (1986). Plant Physiol. 80, 515–519. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989014028175/su5051sup1.cif

e-71-00o88-sup1.cif (640.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014028175/su5051Isup2.hkl

e-71-00o88-Isup2.hkl (125.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989014028175/su5051Isup3.cml

. DOI: 10.1107/S2056989014028175/su5051fig1.tif

The mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

c . DOI: 10.1107/S2056989014028175/su5051fig2.tif

A view along the c axis of the crystal packing of the title compound. The N—H⋯O and N—H⋯N hydrogen bonds are shown by blue and violet dashed lines, respectively (see Table 1 for details).

CCDC reference: 1041048

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES