Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jan 14;71(Pt 2):o108. doi: 10.1107/S2056989015000304

Crystal structure of N,N′-(1,2-phenyl­ene)bis­(2-chloro­acetamide)

Javaria Tariq a, Shahzad Murtaza a, Muhammad Nawaz Tahir b,*, Muhammad Zaheer a
PMCID: PMC4384540  PMID: 25878855

Abstract

In the title compound, C10H10Cl2N2O2, the secondary amide groups are differently twisted relative to the benzene ring, with dihedral angles between the respective planes of 21.03 (2) and 81.22 (2)°. In the crystal, the mol­ecules are connected by N—H⋯O and C—H⋯O hydrogen bonds, forming a two-dimensional polymeric network parallel to (001). One of the amide carbonyl O atoms accepts two H atoms in N—H⋯O and C—H⋯O inter­actions, forming an R 2 2(6) ring motif.

Keywords: crystal structure, 2-chloro­acetamide, secondary amide groups, hydrogen bonding

Related literature  

For the structure of N,N′-phenyl­enebisacetamide, see: Shivanyuk et al. (2000).graphic file with name e-71-0o108-scheme1.jpg

Experimental  

Crystal data  

  • C10H10Cl2N2O2

  • M r = 261.10

  • Monoclinic, Inline graphic

  • a = 4.5731 (4) Å

  • b = 14.3260 (16) Å

  • c = 16.7472 (15) Å

  • β = 95.611 (5)°

  • V = 1091.92 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.58 mm−1

  • T = 296 K

  • 0.40 × 0.22 × 0.16 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.803, T max = 0.911

  • 8308 measured reflections

  • 2154 independent reflections

  • 1685 reflections with I > 2σ(I)

  • R int = 0.031

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.083

  • S = 1.03

  • 2154 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989015000304/gk2623sup1.cif

e-71-0o108-sup1.cif (19.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015000304/gk2623Isup2.hkl

e-71-0o108-Isup2.hkl (118.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015000304/gk2623Isup3.cml

. DOI: 10.1107/S2056989015000304/gk2623fig1.tif

Mol­ecular structure with displacement ellipsoids drawn at the 50% probability level. H-atoms are shown as small spheres of arbitrary radii.

. DOI: 10.1107/S2056989015000304/gk2623fig2.tif

Two dimensional polymeric network fomed via hydrogen bonds. The H-atoms not involved in hydrogen bonding are omitted for clarity.

CCDC reference: 1042462

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N1H1O2i 0.86 2.16 3.003(2) 168
N2H2O1ii 0.86 2.23 3.004(2) 150
C1H1AO2i 0.97 2.44 3.333(3) 153

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors acknowledge the provision of funds for the purchase of a diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. They also acknowledge the technical support provided by Syed Muhammad Hussain Rizvi of Bana Inter­national, Karachi, Pakistan.

supplementary crystallographic information

S1. Comment

The title compound has been synthesized to check its antimicrobial activity owing to the concept that amide moiety is an important part of different drugs. The title molecule is shown in Fig. 1.

The benzene-1,2-diamine (C3—C8/N1/N2; A) unit is planar with r. m. s. deviation of 0.0084 Å. The attached chloroacetyl groups differ structurally. The groups B (C1/C2/O1) and C (C9/C10/O2) form with the fragment A the dihedral angles of 21.0 (2)° and 82.78 (13)°, respectively. The molecules are connected by N-H···O and C-H···O hydrogen bonds to form a two dimensional polymeric network parallel to (0 0 1) (Table 1, Fig. 2). In closely related N,N'-phenylenebisacetamide (Shivanyuk et al., 2000) a one dimensional ribbon is formed.

S2. Experimental

Benzene-1,2-diamine (0.1 g, 0.925 mmol) was dissolved in chloroform (10 ml) and pyridine (0.149 ml, 1.85 mmol) was added. The mixture was cooled to 273–278 K in ice-water bath. A separately prepared solution of chloroacetyl chloride (0.104 g, 0.925 mmol) in chloroform (5 ml) was added drop wise to the above mixture. The mixture was stirred for 3 h and solvent was evaporated to give a pink colored residue.Recrystallization from chloroform gave colorless needles with melting point of 471.15 K.

S3. Refinement

The H-atoms were positioned geometrically (N—H = 0.86, C–H = 0.93–0.97 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2Ueq(C, N).

Figures

Fig. 1.

Fig. 1.

Molecular structure with displacement ellipsoids drawn at the 50% probability level. H-atoms are shown as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Two dimensional polymeric network fomed via hydrogen bonds. The H-atoms not involved in hydrogen bonding are omitted for clarity.

Crystal data

C10H10Cl2N2O2 F(000) = 536
Mr = 261.10 Dx = 1.588 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 4.5731 (4) Å Cell parameters from 1685 reflections
b = 14.3260 (16) Å θ = 1.9–26.0°
c = 16.7472 (15) Å µ = 0.58 mm1
β = 95.611 (5)° T = 296 K
V = 1091.92 (18) Å3 Needle, colorless
Z = 4 0.40 × 0.22 × 0.16 mm

Data collection

Bruker Kappa APEXII CCD diffractometer 2154 independent reflections
Radiation source: fine-focus sealed tube 1685 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.031
Detector resolution: 8.00 pixels mm-1 θmax = 26.0°, θmin = 1.9°
ω scans h = −5→5
Absorption correction: multi-scan (SADABS; Bruker, 2005) k = −17→14
Tmin = 0.803, Tmax = 0.911 l = −20→20
8308 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0318P)2 + 0.392P] where P = (Fo2 + 2Fc2)/3
2154 reflections (Δ/σ)max < 0.001
145 parameters Δρmax = 0.25 e Å3
0 restraints Δρmin = −0.28 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.42275 (13) 0.31322 (5) 0.41502 (3) 0.0566 (2)
Cl2 1.17253 (12) −0.12690 (5) 0.49132 (3) 0.05386 (19)
O1 0.5571 (3) 0.29789 (10) 0.23928 (9) 0.0451 (4)
O2 1.2396 (3) 0.00838 (11) 0.36111 (8) 0.0451 (4)
N1 0.5615 (3) 0.14134 (11) 0.26212 (9) 0.0310 (4)
H1 0.4935 0.0990 0.2917 0.037*
N2 0.8285 (3) −0.03260 (11) 0.28396 (9) 0.0331 (4)
H2 0.6706 −0.0656 0.2809 0.040*
C1 0.2642 (4) 0.23927 (16) 0.33817 (13) 0.0420 (5)
H1A 0.2243 0.1785 0.3602 0.050*
H1B 0.0799 0.2655 0.3148 0.050*
C2 0.4749 (4) 0.22930 (14) 0.27444 (11) 0.0318 (4)
C3 0.7526 (4) 0.11071 (14) 0.20580 (10) 0.0297 (4)
C4 0.8061 (4) 0.16327 (16) 0.13895 (12) 0.0392 (5)
H4 0.7163 0.2211 0.1303 0.047*
C5 0.9919 (5) 0.12981 (17) 0.08557 (12) 0.0441 (5)
H5 1.0262 0.1653 0.0409 0.053*
C6 1.1271 (4) 0.04451 (17) 0.09760 (12) 0.0428 (5)
H6 1.2544 0.0228 0.0618 0.051*
C7 1.0726 (4) −0.00838 (15) 0.16302 (12) 0.0382 (5)
H7 1.1621 −0.0664 0.1711 0.046*
C8 0.8855 (4) 0.02408 (14) 0.21689 (11) 0.0301 (4)
C9 1.0116 (4) −0.03627 (13) 0.35130 (11) 0.0314 (4)
C10 0.8997 (4) −0.09830 (17) 0.41444 (13) 0.0451 (5)
H10A 0.8221 −0.1553 0.3893 0.054*
H10B 0.7399 −0.0669 0.4375 0.054*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0649 (4) 0.0620 (5) 0.0442 (3) −0.0031 (3) 0.0113 (3) −0.0083 (3)
Cl2 0.0561 (4) 0.0613 (4) 0.0443 (3) 0.0051 (3) 0.0057 (2) 0.0141 (3)
O1 0.0551 (9) 0.0273 (9) 0.0557 (9) 0.0023 (6) 0.0198 (7) 0.0054 (7)
O2 0.0390 (8) 0.0483 (10) 0.0478 (8) −0.0158 (7) 0.0025 (6) 0.0089 (7)
N1 0.0331 (8) 0.0248 (10) 0.0368 (8) −0.0025 (6) 0.0114 (7) 0.0037 (7)
N2 0.0272 (8) 0.0277 (9) 0.0448 (9) −0.0047 (6) 0.0055 (7) 0.0056 (8)
C1 0.0354 (11) 0.0351 (13) 0.0574 (13) −0.0016 (9) 0.0148 (9) −0.0049 (11)
C2 0.0274 (9) 0.0287 (12) 0.0395 (10) −0.0006 (8) 0.0040 (8) 0.0006 (9)
C3 0.0268 (9) 0.0299 (11) 0.0327 (9) −0.0042 (8) 0.0052 (7) −0.0024 (9)
C4 0.0439 (11) 0.0360 (13) 0.0389 (10) 0.0029 (9) 0.0106 (9) 0.0069 (10)
C5 0.0498 (13) 0.0494 (15) 0.0347 (10) −0.0058 (11) 0.0122 (9) 0.0042 (10)
C6 0.0425 (12) 0.0494 (15) 0.0385 (11) −0.0029 (10) 0.0139 (9) −0.0100 (11)
C7 0.0351 (10) 0.0318 (12) 0.0484 (12) 0.0002 (9) 0.0071 (9) −0.0068 (10)
C8 0.0269 (9) 0.0289 (11) 0.0345 (9) −0.0055 (8) 0.0024 (8) −0.0005 (9)
C9 0.0300 (10) 0.0237 (11) 0.0420 (10) 0.0011 (8) 0.0102 (8) 0.0015 (9)
C10 0.0410 (12) 0.0434 (14) 0.0507 (12) −0.0061 (10) 0.0046 (10) 0.0123 (11)

Geometric parameters (Å, º)

Cl1—C1 1.767 (2) C3—C8 1.387 (3)
Cl2—C10 1.752 (2) C3—C4 1.391 (3)
O1—C2 1.223 (2) C4—C5 1.378 (3)
O2—C9 1.221 (2) C4—H4 0.9300
N1—C2 1.343 (2) C5—C6 1.375 (3)
N1—C3 1.417 (2) C5—H5 0.9300
N1—H1 0.8600 C6—C7 1.375 (3)
N2—C9 1.338 (2) C6—H6 0.9300
N2—C8 1.431 (2) C7—C8 1.383 (3)
N2—H2 0.8600 C7—H7 0.9300
C1—C2 1.513 (3) C9—C10 1.509 (3)
C1—H1A 0.9700 C10—H10A 0.9700
C1—H1B 0.9700 C10—H10B 0.9700
C2—N1—C3 127.11 (16) C6—C5—C4 120.71 (19)
C2—N1—H1 116.4 C6—C5—H5 119.6
C3—N1—H1 116.4 C4—C5—H5 119.6
C9—N2—C8 122.45 (15) C7—C6—C5 119.51 (19)
C9—N2—H2 118.8 C7—C6—H6 120.2
C8—N2—H2 118.8 C5—C6—H6 120.2
C2—C1—Cl1 109.02 (14) C6—C7—C8 120.4 (2)
C2—C1—H1A 109.9 C6—C7—H7 119.8
Cl1—C1—H1A 109.9 C8—C7—H7 119.8
C2—C1—H1B 109.9 C7—C8—C3 120.32 (18)
Cl1—C1—H1B 109.9 C7—C8—N2 119.55 (18)
H1A—C1—H1B 108.3 C3—C8—N2 120.13 (16)
O1—C2—N1 124.80 (17) O2—C9—N2 123.29 (18)
O1—C2—C1 120.69 (19) O2—C9—C10 123.94 (17)
N1—C2—C1 114.50 (17) N2—C9—C10 112.73 (16)
C8—C3—C4 118.89 (17) C9—C10—Cl2 112.76 (14)
C8—C3—N1 118.63 (16) C9—C10—H10A 109.0
C4—C3—N1 122.47 (18) Cl2—C10—H10A 109.0
C5—C4—C3 120.1 (2) C9—C10—H10B 109.0
C5—C4—H4 119.9 Cl2—C10—H10B 109.0
C3—C4—H4 119.9 H10A—C10—H10B 107.8
C3—N1—C2—O1 −2.1 (3) C6—C7—C8—N2 179.12 (17)
C3—N1—C2—C1 178.87 (16) C4—C3—C8—C7 1.2 (3)
Cl1—C1—C2—O1 −58.8 (2) N1—C3—C8—C7 179.76 (16)
Cl1—C1—C2—N1 120.23 (16) C4—C3—C8—N2 −178.35 (17)
C2—N1—C3—C8 161.13 (17) N1—C3—C8—N2 0.2 (2)
C2—N1—C3—C4 −20.4 (3) C9—N2—C8—C7 81.8 (2)
C8—C3—C4—C5 −0.9 (3) C9—N2—C8—C3 −98.6 (2)
N1—C3—C4—C5 −179.38 (18) C8—N2—C9—O2 0.4 (3)
C3—C4—C5—C6 −0.2 (3) C8—N2—C9—C10 178.10 (17)
C4—C5—C6—C7 0.9 (3) O2—C9—C10—Cl2 −17.4 (3)
C5—C6—C7—C8 −0.6 (3) N2—C9—C10—Cl2 164.89 (15)
C6—C7—C8—C3 −0.5 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O2i 0.86 2.16 3.003 (2) 168
N2—H2···O1ii 0.86 2.23 3.004 (2) 150
C1—H1A···O2i 0.97 2.44 3.333 (3) 153

Symmetry codes: (i) x−1, y, z; (ii) −x+1, y−1/2, −z+1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: GK2623).

References

  1. Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Shivanyuk, A., Rissanen, K., Korner, S. K., Rudkevich, D. M. & Rebek, J. Jr (2000). Helv. Chim. Acta, 83, 1778–1790.
  6. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989015000304/gk2623sup1.cif

e-71-0o108-sup1.cif (19.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015000304/gk2623Isup2.hkl

e-71-0o108-Isup2.hkl (118.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015000304/gk2623Isup3.cml

. DOI: 10.1107/S2056989015000304/gk2623fig1.tif

Mol­ecular structure with displacement ellipsoids drawn at the 50% probability level. H-atoms are shown as small spheres of arbitrary radii.

. DOI: 10.1107/S2056989015000304/gk2623fig2.tif

Two dimensional polymeric network fomed via hydrogen bonds. The H-atoms not involved in hydrogen bonding are omitted for clarity.

CCDC reference: 1042462

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES