Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jan 24;71(Pt 2):206–209. doi: 10.1107/S205698901500105X

Crystal structure of the α-racemate of methohexital

Thomas Gelbrich a,*, Ulrich J Griesser a
PMCID: PMC4384543  PMID: 25878820

N—H⋯O=C bonded mol­ecules of the title compound are linked into a inversion dimer with an Inline graphic(8) motif.

Keywords: crystal structure, barbiturate, hydrogen bonding, anaesthetic

Abstract

Mol­ecules of the title compound, C14H18N2O3 [systematic name: 5-allyl-5-(hex-3-yn-2-yl)-1-methylpyrimidine-2,4,6(1H,3H,5H)-trione in the (RbSh)/(SbRh) racemic form], are connected by mutual N—H⋯O=C hydrogen bonds in which the carbonyl group at the 2-position of the pyrimidine­trione ring is employed. These inter­actions result in an inversion dimer which displays a central R 2 2(8) ring motif. This dimer is topologically distinct from that of the previously reported (SbRh) form, which is, however, also based on an R 2 2(8) motif. The methyl group at the 1-position of the pyrimidine­trione ring in the title structure is disordered over two sets of sites in a 0.57 (2):0.43 (2) ratio.

Chemical context  

The title compound is a barbiturate derivative, the Na salt of which (trade name Brevimytal, Eli Lilly) is a widely used short-acting anaesthetic with a rapid onset of action. The mol­ecule contains two asymmetric centres and can exist as two diastereomeric enanti­omer pairs. Its stereoisomerism is known to affect the anaesthetic activity and possible side effects of the drug (Gibson et al., 1959). The crystal structure of the (SbRh) form of methohexital was previously reported by Brunner et al. (2003), who also established that the commercial product (α-racemate) consists of the (RbSh) and (SbRh) isomers.graphic file with name e-71-00206-scheme1.jpg

Structural commentary  

This study confirmed the presence of the (RbSh)/(SbRh) racemate. The mol­ecule (Fig. 1) displays an approximately planar pyrimidine­trione unit in which the oxygen atoms of the C2 and C4 carbonyl groups lie at distances of −0.160 (2) and 0.156 (2) Å from the mean plane of the six-membered ring (r.m.s. deviation = 0.046 Å). The conformation of the two 5-substituents of the ring is characterized by three parameters, the torsion angles C5—C7—C8—C9 of −103.3 (2) and C10—C5—C7—C8 of −171.51 (13)° and the pseudo-torsion angle C5—C10⋯C13–C14 of 23.2 (2)°.

Figure 1.

Figure 1

The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary size.

The previously reported (SbRh) form contains two independent mol­ecules (denoted A and B), which differ from the mol­ecule of the title structure in the conformation adopted by the terminal groups of both 5-substituents (Fig. 2). Specifically, in mol­ecule A, the torsion angle analogous to C5—C7—C8—C9 in the present α-racemate is 125.3°, and the pseudo-torsion angles analogous to C5—C10⋯C13—C14 of the title structure are −15.4° (A) and −26.3° (B).

Figure 2.

Figure 2

Overlay of the mol­ecule of the α-racemate (denoted X) with the two independent mol­ecules (A, B) of the previously reported (SbRh) form, generated by least-squares fits of their 1-methyl-2,4,6-pyrimidine­trione units (ten non-H atomic positions).

Supra­molecular features  

Two mol­ecules are linked to one another by two mutual anti­parallel N—H⋯O=C bonds so that an inversion dimer is formed (Table 1, Fig. 3), which displays a central Inline graphic(8) ring motif (Etter et al., 1990; Bernstein et al., 1995). This inter­action involves the carbonyl group at the 2-position of the ring. The Inline graphic(8) ring motif is also present in the (SbRh) form (Brunner et al., 2003) where it connects the two crystallographically independent mol­ecules. However, in this case the dimer is based on two topologically distinct N—H⋯O=C inter­actions which involve the carbonyl groups at the 4-position of the ring of mol­ecule A and at the 2-position of mol­ecule B.

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N3H3O2i 0.85(2) 2.03(2) 2.8826(17) 173.2(17)

Symmetry code: (i) Inline graphic.

Figure 3.

Figure 3

The N—H⋯O=C hydrogen-bonded inversion dimer displaying a central Inline graphic(8) ring. These inter­actions (dotted lines) involve the carbonyl group at the 2-position of the six-membered ring. O and H atoms engaged in hydrogen bonding are drawn as spheres.

Database survey  

The Cambridge Structural Database (Groom & Allen, 2014; Version 3.35) contains 11 unique entries for derivatives of barbituric acid which are analogous to the title compound and substituted at the 1-position, but not at the 3-position of the six-membered ring. A common characteristic of these compounds is the presence of one hydrogen-bond donor group (NH) and three potential acceptor groups, viz. the carbonyl groups at the ring positions 2, 4 and 6. Thus, three topologically distinct hydrogen-bonding acceptor inter­actions are possible. Additionally, there is a competition between possible dimer and catemer motifs, which is similar to the competition between hydrogen-bonded dimer and catemer motifs between carboxyl groups (Beyer & Price; 2000) or carboxamide groups (Arlin et al., 2010, 2011).

Closer inspection of the geometric possibilities (Fig. 4) shows that dimer formation is feasible for N—H⋯O=C2 and N—H⋯O=C4 connections only, whereas N—H⋯O=C6 should be the preferred connection mode for chain formation. Indeed, five crystal structures containing N—H⋯O=C6 chain motifs are known and their CSD refcodes are DMCYBA01 (Nichol & Clegg, 2005), DULMED (Gelbrich et al., 2010), MDEBAR (Wunderlich, 1973), MIBABA (Wilhelm & Fischer, 1976), OBIPUM (Gelbrich & Griesser, 2009). So far, the crystal structure with refcode VEMQUB (Savechenkov et al., 2012) is the only example in the set where another chain type, viz. N—H⋯O=C2, is present.

Figure 4.

Figure 4

The three fundamental connection modes for the formation of N—H⋯O=C bonds in 1-substituted derivatives of barbituric acid arising from the involvement of different carbonyl groups, and the corresponding numbers of observed dimer and catemer isomers. The (SbRh) form of methohexithal contains a dimer with mixed N—H⋯O=C2/N—H⋯O=C4 connectivity and was therefore not included.

Apart from the title structure, two analogues with refcodes CXALBA (Dideberg et al., 1975) and DULMAZ (Gelbrich et al., 2010) also form N—H⋯O=C2 bonded dimers. The alternative N—H⋯O=C4 dimer was observed in the two structures with refcodes ALLBTC (Pyżalska et al., 1980) and MEPBAB01 (Lewis et al., 2005). The (SbRh) form of methohexital provides the only case of a dimer based on a mixed N—H⋯O=C2/N—H⋯O=C4 connectivity.

Synthesis and crystallization  

The crystals investigated in this study were obtained at room temperature, by slow evaporation from an aqueous solution of the α-racemate of methohexital (Lilly Research Centre Ltd., Windlesham, England).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were identified in difference maps. The H atoms of the C14 methyl group and disordered C1 methyl group [occupancy ratio 0.57 (2):0.43 (2)] were idealized and included as rigid groups allowed to rotate but not tip (C—H = 0.96 Å) and refined with U iso set to 1.5U eq(C) of the parent carbon atom. H atoms bonded to secondary CH2 (C—H = 0.97 Å), tertiary CH (C—H = 0.98 Å) carbon and aromatic CH carbon atoms (C—H = 0.93 Å) were positioned geometrically and refined with U iso set to 1.2U eq(C) of the parent carbon atom. The NH hydrogen atom was refined with a restrained distance [N—H = 0.86 (2) Å] and its U iso parameter was freely refined.

Table 2. Experimental details.

Crystal data
Chemical formula C14H18N2O3
M r 262.30
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 293
a, b, c () 7.7502(6), 7.9792(5), 12.6881(10)
, , () 93.713(6), 96.226(6), 113.314(7)
V (3) 711.32(10)
Z 2
Radiation type Mo K
(mm1) 0.09
Crystal size (mm) 0.35 0.20 0.20
 
Data collection
Diffractometer Agilent Xcalibur (Ruby, Gemini ultra)
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2012)
T min, T max 0.883, 1.000
No. of measured, independent and observed [I > 2(I)] reflections 6896, 3363, 2462
R int 0.022
(sin /)max (1) 0.690
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.049, 0.135, 1.05
No. of reflections 3363
No. of parameters 180
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
max, min (e 3) 0.22, 0.20

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL2014/6 (Sheldrick, 2015), XP in SHELXTL (Sheldrick, 2008), Mercury (Macrae et al., 2006) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698901500105X/wm5105sup1.cif

e-71-00206-sup1.cif (217.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901500105X/wm5105Isup2.hkl

e-71-00206-Isup2.hkl (184.6KB, hkl)

Supporting information file. DOI: 10.1107/S205698901500105X/wm5105Isup3.cml

CCDC reference: 1044166

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Volker Kahlenberg for access to the X-ray diffraction instrument used in this study.

supplementary crystallographic information

Crystal data

C14H18N2O3 Z = 2
Mr = 262.30 F(000) = 280
Triclinic, P1 Dx = 1.225 Mg m3
a = 7.7502 (6) Å Mo Kα radiation, λ = 0.71073 Å
b = 7.9792 (5) Å Cell parameters from 1814 reflections
c = 12.6881 (10) Å θ = 4.4–28.8°
α = 93.713 (6)° µ = 0.09 mm1
β = 96.226 (6)° T = 293 K
γ = 113.314 (7)° Prism, colourless
V = 711.32 (10) Å3 0.35 × 0.20 × 0.20 mm

Data collection

Agilent Xcalibur (Ruby, Gemini ultra) diffractometer 3363 independent reflections
Radiation source: Enhance (Mo) X-ray Source 2462 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.022
Detector resolution: 10.3575 pixels mm-1 θmax = 29.4°, θmin = 2.8°
ω scans h = −9→10
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) k = −11→9
Tmin = 0.883, Tmax = 1.000 l = −16→15
6896 measured reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.049 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.0572P)2 + 0.1234P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
3363 reflections Δρmax = 0.22 e Å3
180 parameters Δρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. The C1 methyl group is disordered over two positions.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
N1 −0.00769 (16) −0.12155 (16) 0.75511 (9) 0.0382 (3)
N3 0.15035 (17) 0.08665 (17) 0.63981 (10) 0.0412 (3)
H3 0.145 (2) 0.115 (2) 0.5763 (16) 0.055 (5)*
O2 −0.12784 (15) −0.15309 (16) 0.58085 (9) 0.0582 (4)
O4 0.42793 (15) 0.32706 (15) 0.69135 (9) 0.0546 (3)
O6 0.12730 (17) −0.09825 (17) 0.92461 (9) 0.0589 (3)
C1 −0.1759 (2) −0.2810 (2) 0.77286 (14) 0.0550 (4)
H1A −0.1624 −0.3036 0.8461 0.082* 0.43 (2)
H1B −0.2871 −0.2566 0.7570 0.082* 0.43 (2)
H1C −0.1881 −0.3870 0.7272 0.082* 0.43 (2)
H1D −0.2627 −0.3279 0.7074 0.082* 0.57 (2)
H1E −0.1380 −0.3749 0.7965 0.082* 0.57 (2)
H1F −0.2370 −0.2445 0.8263 0.082* 0.57 (2)
C2 −0.0015 (2) −0.06791 (19) 0.65385 (11) 0.0393 (3)
C4 0.30668 (19) 0.18923 (19) 0.71322 (11) 0.0376 (3)
C5 0.32002 (19) 0.11774 (19) 0.82021 (11) 0.0368 (3)
C6 0.1393 (2) −0.04093 (19) 0.83867 (11) 0.0383 (3)
C7 0.3687 (2) 0.2764 (2) 0.90965 (12) 0.0460 (4)
H7A 0.3993 0.2375 0.9775 0.055*
H7B 0.4802 0.3803 0.8970 0.055*
C8 0.2092 (2) 0.3359 (2) 0.91640 (13) 0.0527 (4)
H8 0.1068 0.2623 0.9479 0.063*
C9 0.2045 (3) 0.4828 (3) 0.88144 (18) 0.0759 (6)
H9A 0.3047 0.5594 0.8496 0.091*
H9B 0.1010 0.5118 0.8882 0.091*
C10 0.4766 (2) 0.0383 (2) 0.82568 (12) 0.0463 (4)
H10 0.4680 −0.0253 0.8897 0.057 (5)*
C11 0.4322 (2) −0.1006 (2) 0.73331 (14) 0.0510 (4)
C12 0.3973 (3) −0.2041 (3) 0.65519 (17) 0.0620 (5)
C13 0.3521 (4) −0.3299 (3) 0.55608 (19) 0.0882 (7)
H13A 0.4699 −0.3204 0.5319 0.106*
H13B 0.2858 −0.4551 0.5716 0.106*
C14 0.2356 (5) −0.2930 (4) 0.4700 (2) 0.1143 (10)
H14A 0.2091 −0.3809 0.4086 0.171*
H14B 0.3027 −0.1714 0.4518 0.171*
H14C 0.1185 −0.3025 0.4931 0.171*
C15 0.6801 (2) 0.1819 (3) 0.83485 (16) 0.0640 (5)
H15A 0.7656 0.1217 0.8353 0.096*
H15B 0.7106 0.2628 0.8999 0.096*
H15C 0.6922 0.2517 0.7751 0.096*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0343 (6) 0.0402 (6) 0.0336 (6) 0.0085 (5) 0.0022 (5) 0.0091 (5)
N3 0.0409 (7) 0.0458 (7) 0.0270 (6) 0.0083 (5) −0.0027 (5) 0.0108 (5)
O2 0.0463 (6) 0.0661 (7) 0.0372 (6) −0.0001 (5) −0.0087 (5) 0.0094 (5)
O4 0.0494 (6) 0.0501 (6) 0.0469 (7) 0.0019 (5) 0.0011 (5) 0.0168 (5)
O6 0.0592 (7) 0.0696 (8) 0.0345 (6) 0.0109 (6) 0.0028 (5) 0.0210 (5)
C1 0.0428 (8) 0.0541 (9) 0.0541 (10) 0.0037 (7) 0.0054 (7) 0.0182 (8)
C2 0.0366 (7) 0.0430 (8) 0.0328 (8) 0.0117 (6) −0.0010 (6) 0.0069 (6)
C4 0.0357 (7) 0.0389 (7) 0.0326 (7) 0.0100 (6) 0.0014 (6) 0.0072 (6)
C5 0.0351 (7) 0.0424 (7) 0.0276 (7) 0.0115 (6) −0.0017 (5) 0.0054 (5)
C6 0.0396 (7) 0.0429 (8) 0.0302 (7) 0.0143 (6) 0.0026 (6) 0.0081 (6)
C7 0.0433 (8) 0.0508 (9) 0.0329 (8) 0.0110 (7) −0.0046 (6) −0.0011 (6)
C8 0.0504 (9) 0.0550 (10) 0.0433 (9) 0.0138 (8) 0.0031 (7) −0.0034 (7)
C9 0.0711 (13) 0.0635 (12) 0.0904 (16) 0.0273 (10) 0.0032 (11) 0.0041 (11)
C10 0.0434 (8) 0.0571 (9) 0.0387 (8) 0.0215 (7) −0.0007 (6) 0.0112 (7)
C11 0.0491 (9) 0.0562 (10) 0.0533 (10) 0.0268 (8) 0.0064 (8) 0.0122 (8)
C12 0.0633 (11) 0.0639 (11) 0.0663 (12) 0.0352 (9) 0.0044 (9) 0.0051 (9)
C13 0.1023 (18) 0.0897 (16) 0.0816 (16) 0.0565 (14) −0.0012 (14) −0.0187 (13)
C14 0.146 (3) 0.130 (2) 0.0667 (16) 0.064 (2) 0.0027 (17) −0.0222 (15)
C15 0.0396 (9) 0.0777 (12) 0.0671 (12) 0.0194 (9) −0.0034 (8) 0.0029 (10)

Geometric parameters (Å, º)

N1—C2 1.3800 (18) C7—H7A 0.9700
N1—C6 1.3804 (17) C7—H7B 0.9700
N1—C1 1.4687 (18) C8—C9 1.292 (3)
N3—C2 1.3648 (18) C8—H8 0.9300
N3—C4 1.3701 (17) C9—H9A 0.9300
N3—H3 0.85 (2) C9—H9B 0.9300
O2—C2 1.2140 (16) C10—C11 1.471 (2)
O4—C4 1.2032 (17) C10—C15 1.526 (2)
O6—C6 1.2083 (17) C10—H10 0.9800
C1—H1A 0.9600 C11—C12 1.182 (2)
C1—H1B 0.9600 C12—C13 1.474 (3)
C1—H1C 0.9600 C13—C14 1.460 (3)
C1—H1D 0.9600 C13—H13A 0.9700
C1—H1E 0.9600 C13—H13B 0.9700
C1—H1F 0.9600 C14—H14A 0.9600
C4—C5 1.5151 (18) C14—H14B 0.9600
C5—C6 1.5248 (19) C14—H14C 0.9600
C5—C7 1.541 (2) C15—H15A 0.9600
C5—C10 1.574 (2) C15—H15B 0.9600
C7—C8 1.498 (2) C15—H15C 0.9600
C2—N1—C6 123.81 (12) O6—C6—C5 120.29 (12)
C2—N1—C1 117.84 (12) N1—C6—C5 119.14 (12)
C6—N1—C1 118.24 (12) C8—C7—C5 112.61 (12)
C2—N3—C4 127.42 (12) C8—C7—H7A 109.1
C2—N3—H3 113.2 (12) C5—C7—H7A 109.1
C4—N3—H3 119.3 (12) C8—C7—H7B 109.1
N1—C1—H1A 109.5 C5—C7—H7B 109.1
N1—C1—H1B 109.5 H7A—C7—H7B 107.8
H1A—C1—H1B 109.5 C9—C8—C7 124.36 (18)
N1—C1—H1C 109.5 C9—C8—H8 117.8
H1A—C1—H1C 109.5 C7—C8—H8 117.8
H1B—C1—H1C 109.5 C8—C9—H9A 120.0
N1—C1—H1D 109.5 C8—C9—H9B 120.0
H1A—C1—H1D 141.1 H9A—C9—H9B 120.0
H1B—C1—H1D 56.3 C11—C10—C15 110.95 (15)
H1C—C1—H1D 56.3 C11—C10—C5 109.25 (12)
N1—C1—H1E 109.5 C15—C10—C5 114.96 (14)
H1A—C1—H1E 56.3 C11—C10—H10 107.1
H1B—C1—H1E 141.1 C15—C10—H10 107.1
H1C—C1—H1E 56.3 C5—C10—H10 107.1
H1D—C1—H1E 109.5 C12—C11—C10 176.00 (18)
N1—C1—H1F 109.5 C11—C12—C13 178.4 (2)
H1A—C1—H1F 56.3 C14—C13—C12 113.7 (2)
H1B—C1—H1F 56.3 C14—C13—H13A 108.8
H1C—C1—H1F 141.1 C12—C13—H13A 108.8
H1D—C1—H1F 109.5 C14—C13—H13B 108.8
H1E—C1—H1F 109.5 C12—C13—H13B 108.8
O2—C2—N3 121.50 (13) H13A—C13—H13B 107.7
O2—C2—N1 121.22 (13) C13—C14—H14A 109.5
N3—C2—N1 117.27 (12) C13—C14—H14B 109.5
O4—C4—N3 120.57 (12) H14A—C14—H14B 109.5
O4—C4—C5 122.59 (12) C13—C14—H14C 109.5
N3—C4—C5 116.82 (12) H14A—C14—H14C 109.5
C4—C5—C6 114.41 (11) H14B—C14—H14C 109.5
C4—C5—C7 108.82 (12) C10—C15—H15A 109.5
C6—C5—C7 108.29 (12) C10—C15—H15B 109.5
C4—C5—C10 108.59 (12) H15A—C15—H15B 109.5
C6—C5—C10 105.19 (11) C10—C15—H15C 109.5
C7—C5—C10 111.55 (11) H15A—C15—H15C 109.5
O6—C6—N1 120.54 (13) H15B—C15—H15C 109.5
C10—C5—C7—C8 −171.51 (13) C5—C7—C8—C9 −103.3 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N3—H3···O2i 0.85 (2) 2.03 (2) 2.8826 (17) 173.2 (17)

Symmetry code: (i) −x, −y, −z+1.

References

  1. Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.
  2. Arlin, J.-B., Johnston, A., Miller, G. J., Kennedy, A. R., Price, S. L. & Florence, A. J. (2010). CrystEngComm 12, 64–66.
  3. Arlin, J.-B., Price, L. S., Price, S. L. & Florence, A. J. (2011). Chem. Commun. 47, 7074–7076. [DOI] [PubMed]
  4. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  5. Beyer, T. & Price, S. L. (2000). J. Phys. Chem. B, 104, 2647–2655.
  6. Brunner, H., Ittner, K.-P., Lunz, D., Schmatloch, S., Schmidt, T. & Zabel, M. (2003). Eur. J. Org. Chem. pp. 855–862.
  7. Dideberg, O., Dupont, L. & Pyzalska, D. (1975). Acta Cryst. B31, 685–688.
  8. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  9. Gelbrich, T. & Griesser, U. (2009). Private communication (refcode OBIPUM). CCDC, Cambridge, England.
  10. Gelbrich, T., Zencirci, N. & Griesser, U. J. (2010). Acta Cryst. C66, o55–o58. [DOI] [PubMed]
  11. Gibson, W. R., Doran, W. J., Wood, W. C. & Swanson, E. E. (1959). J. Pharmacol. Exp. Ther. 125, 23–27. [PubMed]
  12. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 115–121.
  13. Lewis, W., McKeown, R. H. & Robinson, W. T. (2005). Acta Cryst. E61, o799–o800.
  14. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  15. Nichol, G. S. & Clegg, W. (2005). Acta Cryst. E61, o1004–o1006.
  16. Pyżalska, D., Pyżalski, R. & Borowiak, T. (1980). Acta Cryst. B36, 1672–1675.
  17. Savechenkov, P. Y., Zhang, X., Chiara, D. C., Stewart, D. S., Ge, R., Zhou, X., Raines, D. E., Cohen, J. B., Forman, S. A., Miller, K. W. & Bruzik, K. S. (2012). J. Med. Chem. 55, 6554–6565. [DOI] [PMC free article] [PubMed]
  18. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  19. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  20. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  21. Wilhelm, E. & Fischer, K. F. (1976). Cryst. Struct. Commun. 5, 507–510.
  22. Wunderlich, H. (1973). Acta Cryst. B29, 168–173.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698901500105X/wm5105sup1.cif

e-71-00206-sup1.cif (217.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901500105X/wm5105Isup2.hkl

e-71-00206-Isup2.hkl (184.6KB, hkl)

Supporting information file. DOI: 10.1107/S205698901500105X/wm5105Isup3.cml

CCDC reference: 1044166

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES