Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jan 31;71(Pt 2):238–240. doi: 10.1107/S205698901500095X

Crystal structure of benzyl (E)-2-(3,4-di­meth­oxy­benzyl­idene)hydrazine-1-carbodi­thio­ate

Yew-Fung Tan a, Mohammed Khaled bin Break a, M Ibrahim M Tahir b, Teng-Jin Khoo a,*
PMCID: PMC4384544  PMID: 25878829

In the crystal of the title compound, which crystallized with two independent mol­ecules (A and B) in the asymmetric unit, the A and B mol­ecules are linked via pairs of N—H⋯S hydrogen bonds, forming dimers with an Inline graphic(8) ring motif. The dimers are linked via pairs of C—H⋯O hydrogen bonds and C—H⋯π inter­actions, forming ribbons propagating along [100].

Keywords: crystal structure; di­thio­carbazate; hydrazine-1-carbodi­thio­ate; 3,4-di­meth­oxy­benzaldehyde; hydrogen bonding; C—H⋯π inter­actions

Abstract

The title compound, C17H18N2O2S2, synthesized via a condensation reaction between S-benzyl di­thio­carbazate and 3,4-di­meth­oxy­benzaldehyde, crystallized with two independent mol­ecules (A and B) in the asymmetric unit. Both mol­ecules have an L-shape but differ in the orientation of the benzyl ring with respect to the 3,4-di­meth­oxy­benzyl­idine ring, this dihedral angle is 65.59 (8)° in mol­ecule A and 73.10 (8)° in mol­ecule B. In the crystal, the A and B mol­ecules are linked via pairs of N—H⋯S hydrogen bonds, forming dimers with an R 2 2(8) ring motif. The dimers are linked via pairs of C—H⋯O hydrogen bonds, giving inversion dimers of dimers. These units are linked by C—H⋯π inter­actions, forming ribbons propagating in the [100] direction.

Chemical context  

Schiff bases have been proven to possess a variety of bio­logical activities, and this has led to extensive studies on this group of compounds with particular emphasis on those derived from di­thio­carbaza­tes. Di­thio­carbazate-derived Schiff bases have generally been found to exhibit inter­esting cytotoxic and anti­microbial activities. One of the most investigated di­thio­carbaza­tes has been S-benzyl­dithio­carbazate (SBDTC) whose derivatives have shown promising biological activities (Break et al., 2013). Therefore, as part of our research which is aimed at developing anti­cancer and anti­microbial drugs, we have synthesized a novel Schiff base via the condensation reaction of SBDTC and 3,4-di­meth­oxy­benzaldehyde. We report herein on the synthesis and crystal structure of the title compound.graphic file with name e-71-00238-scheme1.jpg

Structural commentary  

The title compound, Fig. 1, crystallized with two independent mol­ecules (A and B) in the asymmetric unit. Both mol­ecules have an l-shape but differ in the orientation of the benzyl ring with respect to the 3,4-di­meth­oxy­benzyl­idine ring, this dihedral angle being 65.59 (8) ° in mol­ecule A and 73.10 (8) ° in mol­ecule B (Fig. 2).

Figure 1.

Figure 1

A view of the mol­ecular structure of the two independent mol­ecules (A and B) of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. N—H⋯S hydrogen bonds are shown as dashed lines (see Table 1 for details).

Figure 2.

Figure 2

A view of the mol­ecular overlay (Mercury; Macrae et al., 2008) of the two independent mol­ecules (A blue and B red) of the title compound.

The C—N and N(H)—C bond lengths (C1—N1 and N2—C9 in A, and C21—N21 and N22—C29 in B) are 1.331 (2) and 1.282 (2) Å, respectively, in mol­ecule A, and 1.336 (2) and 1.280 (2) Å, respectively, in mol­ecule B. The shorter length of the C—N bond suggests the existence of a double bond which belongs to the imine group. Similarly, the shorter C—S bond length [C1—S1 = 1.681 (2) Å in A, and C21—S21 = 1.677 (2) Å in B] relative to that of [C1—S2 = 1.749 (2) Å in A, and C21—S22 = 1.749 (2) Å in B] suggests that the former possesses double-bond character, indicating that the mol­ecule exists in its thione form in the solid state. The functional group identities proposed from these bond lengths are further supported by data obtained from the IR analysis reported below. Furthermore, the bond distances in the title compound are similar to those found for other carbodi­thio­ate-derived Schiff bases (Break et al.; 2013; Khoo et al., 2014).

Both mol­ecules (A and B) crystallizes in the conformer in which the two aromatic rings of the compound are cis with respect to each other across the C=N bonds, while the thione sulfur atom is trans with respect to the same bond.

Supra­molecular features  

In the crystal, the A and B mol­ecules are linked by pairs of N—H⋯S hydrogen bonds, forming dimers with an R22 (8) ring motif (Table 1 and Fig. 3). The dimers are linked via pairs of C—H⋯O hydrogen bonds, giving inversion dimers of dimers. These units are linked by C—H⋯π inter­actions, forming ribbons propagating in the [100] direction (Fig. 3 and Table 1).

Table 1. Hydrogen-bond geometry (, ).

Cg1, Cg2 and Cg4 are the centroids of the C3C8, C10C15 and C30C35 rings, respectively.

DHA DH HA D A DHA
N1H2S21 0.92 2.52 3.418(1) 166
N21H1S1 0.87 2.55 3.407(1) 168
C16H163O21i 0.97 2.69 3.560(2) 149
C17H172Cg4ii 0.97 2.74 3.5587(18) 143
C28H281Cg1ii 0.94 2.94 3.6082(18) 130
C36H363Cg2i 0.97 2.67 3.5023(17) 145

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 3.

Figure 3

A view approximately along the b axis of the crystal structure of the title compound. The hydrogen bonds and C—H⋯π inter­actions are shown as dashed lines (see Table 1 for details; for clarity only the H atoms involved in these inter­actions are shown).

Database survey  

A search of the Cambridge Structural Database (Version 5.35, May 2014; Groom & Allen, 2014) for benzyl (E)-2-benzyl­idenehydrazine-1-carbodi­thio­ates gave 13 hits. One of these concerns a structure very similar to the title compound, namely benzyl (E)-2-(4-meth­oxy­benzyl­idene)hydrazine-1-carbodi­thio­ate (YAHDAO; Fan et al., 2011). Here the two aromatic rings are inclined to one another by ca 85.71°, compared with 65.59 (8)° in mol­ecule A and 73.10 (8)° in mol­ecule B of the title compound.

Synthesis and crystallization  

1.98 g (0.01 mol) of S-benzyl­dithio­carbazate in 30 ml of absolute ethanol was added to an equimolar qu­antity of 3,4-di­meth­oxy­benzaldehyde in 10 ml of absolute ethanol, followed by the addition of 2–4 drops of concentrated H2SO4. The mixture was heated over a steam bath for 15 min and a precipitate started to form. The Schiff base which precipitated was filtered, washed with cold ethanol and dried in vacuo over silica gel, giving a white yellowish product. Yellow crystals of the title compound, suitable for X-ray analysis, were obtained by slow evaporation of a solution in DMSO over a period of three weeks (yield 60%; m.p. 438–439 K). IR (KBr, cm−1): 3360, 3122, 1602, 1069, 1023, 950, 788, 695. LCMS (ESI+): 347.1 [M+H]+.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The H atoms were all located in a difference Fourier map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98 Å, N—H in the range 0.86–0.89 Å), with U iso(H) = 1.5U eq(C) for methyl H atoms and = 1.2U eq(C) for other H atoms.

Table 2. Experimental details.

Crystal data
Chemical formula C17H18N2O2S2
M r 346.45
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 100
a, b, c () 9.6432(5), 10.796(1), 16.1673(10)
, , () 90.899(6), 97.203(5), 91.200(6)
V (3) 1669.2(2)
Z 4
Radiation type Cu K
(mm1) 2.98
Crystal size (mm) 0.15 0.06 0.04
 
Data collection
Diffractometer Oxford Diffraction Gemini
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2002)
T min, T max 0.74, 0.89
No. of measured, independent and observed [I > 2(I)] reflections 23678, 6592, 5514
R int 0.028
(sin /)max (1) 0.622
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.037, 0.106, 0.99
No. of reflections 6567
No. of parameters 415
H-atom treatment H-atom parameters constrained
max, min (e 3) 0.44, 0.33

Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2002), SUPERFLIP (Palatinus Chapuis, 2007), CRYSTALS (Betteridge et al., 2003), Mercury (Macrae et al., 2008) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S205698901500095X/su5044sup1.cif

e-71-00238-sup1.cif (25.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901500095X/su5044Isup2.hkl

e-71-00238-Isup2.hkl (412.8KB, hkl)

Supporting information file. DOI: 10.1107/S205698901500095X/su5044Isup3.cml

CCDC reference: 1043887

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Ministry of Higher Education Malaysia (MOHE) under FRGS (F0010.54.02) for providing a grant for this study.

supplementary crystallographic information

Crystal data

C17H18N2O2S2 Z = 4
Mr = 346.45 F(000) = 728
Triclinic, P1 Dx = 1.379 Mg m3
Hall symbol: -P 1 Cu Kα radiation, λ = 1.54180 Å
a = 9.6432 (5) Å Cell parameters from 8676 reflections
b = 10.796 (1) Å θ = 4–73°
c = 16.1673 (10) Å µ = 2.98 mm1
α = 90.899 (6)° T = 100 K
β = 97.203 (5)° Plate, yellow
γ = 91.200 (6)° 0.15 × 0.06 × 0.04 mm
V = 1669.2 (2) Å3

Data collection

Oxford Diffraction Gemini diffractometer 5514 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.028
ω scans θmax = 73.4°, θmin = 4.1°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2002) h = −11→11
Tmin = 0.74, Tmax = 0.89 k = −13→11
23678 measured reflections l = −20→20
6592 independent reflections

Refinement

Refinement on F2 Primary atom site location: other
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 H-atom parameters constrained
wR(F2) = 0.106 Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.07P)2 + 0.48P] , where P = (max(Fo2,0) + 2Fc2)/3
S = 0.99 (Δ/σ)max = 0.001
6567 reflections Δρmax = 0.44 e Å3
415 parameters Δρmin = −0.33 e Å3
0 restraints

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier & Glazer, 1986) with a nominal stability of 0.1K. Cosier, J. & Glazer, A.M., 1986. J. Appl. Cryst. 105-107.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.67401 (4) 0.61670 (4) 0.39922 (2) 0.0170
C1 0.77157 (15) 0.52035 (14) 0.34926 (9) 0.0150
S2 0.78189 (4) 0.51826 (4) 0.24198 (2) 0.0182
C2 0.66277 (16) 0.64058 (15) 0.20558 (10) 0.0187
C3 0.68192 (15) 0.66561 (15) 0.11569 (9) 0.0174
C8 0.65456 (17) 0.57319 (16) 0.05415 (10) 0.0215
C7 0.67331 (17) 0.59709 (17) −0.02786 (10) 0.0245
C6 0.71768 (17) 0.71377 (18) −0.04941 (10) 0.0243
C5 0.74303 (17) 0.80681 (17) 0.01141 (10) 0.0239
C4 0.72699 (16) 0.78255 (16) 0.09388 (10) 0.0199
N1 0.85201 (13) 0.43802 (12) 0.39143 (8) 0.0163
N2 0.92928 (13) 0.35596 (12) 0.35025 (8) 0.0171
C9 1.01861 (16) 0.29639 (15) 0.39886 (10) 0.0171
C10 1.10446 (16) 0.20035 (14) 0.36811 (9) 0.0156
C15 1.20578 (16) 0.14725 (15) 0.42490 (10) 0.0167
C14 1.28967 (15) 0.05382 (15) 0.39928 (9) 0.0159
C13 1.27152 (15) 0.01212 (14) 0.31724 (10) 0.0154
O2 1.34580 (11) −0.07889 (11) 0.28523 (7) 0.0187
C17 1.44520 (17) −0.14133 (16) 0.34241 (10) 0.0204
C12 1.16634 (16) 0.06392 (15) 0.25933 (9) 0.0168
C11 1.08539 (16) 0.15789 (15) 0.28466 (10) 0.0169
O1 1.15407 (12) 0.01059 (11) 0.18189 (7) 0.0235
C16 1.03032 (18) 0.03484 (18) 0.12691 (10) 0.0242
S21 0.84603 (4) 0.37456 (4) 0.59742 (2) 0.0167
C21 0.74525 (15) 0.46870 (14) 0.64640 (9) 0.0153
S22 0.73586 (4) 0.47065 (4) 0.75377 (2) 0.0186
C22 0.84857 (16) 0.34265 (15) 0.78893 (10) 0.0186
C23 0.82688 (16) 0.31752 (15) 0.87789 (10) 0.0177
C28 0.92759 (17) 0.35307 (16) 0.94417 (10) 0.0218
C27 0.90523 (18) 0.32945 (16) 1.02578 (10) 0.0245
C26 0.78224 (19) 0.27209 (16) 1.04222 (10) 0.0241
C25 0.68103 (18) 0.23642 (17) 0.97647 (10) 0.0243
C24 0.70366 (17) 0.25821 (16) 0.89488 (10) 0.0219
N21 0.66212 (13) 0.54892 (12) 0.60336 (8) 0.0167
N22 0.58326 (14) 0.63039 (12) 0.64363 (8) 0.0174
C29 0.49371 (16) 0.68920 (15) 0.59483 (10) 0.0165
C30 0.40710 (15) 0.78438 (14) 0.62621 (10) 0.0156
C31 0.30524 (16) 0.83952 (15) 0.57104 (9) 0.0160
C32 0.22248 (15) 0.93261 (15) 0.59875 (9) 0.0161
C33 0.24252 (15) 0.97166 (14) 0.68106 (9) 0.0154
O21 0.17151 (11) 1.06326 (10) 0.71518 (7) 0.0186
C36 0.07068 (16) 1.12784 (15) 0.65980 (10) 0.0198
C34 0.34780 (16) 0.91696 (15) 0.73749 (9) 0.0165
C35 0.42769 (16) 0.82408 (15) 0.71021 (9) 0.0169
O22 0.36178 (12) 0.96604 (11) 0.81611 (7) 0.0226
C37 0.48390 (17) 0.93340 (17) 0.86989 (10) 0.0229
H21 0.6844 0.7164 0.2396 0.0224*
H22 0.5671 0.6108 0.2095 0.0226*
H81 0.6251 0.4926 0.0696 0.0260*
H71 0.6559 0.5360 −0.0684 0.0289*
H61 0.7301 0.7280 −0.1055 0.0281*
H51 0.7718 0.8866 −0.0041 0.0283*
H41 0.7470 0.8439 0.1359 0.0224*
H91 1.0307 0.3132 0.4569 0.0196*
H151 1.2192 0.1755 0.4814 0.0193*
H141 1.3600 0.0204 0.4383 0.0195*
H171 1.4887 −0.2006 0.3096 0.0295*
H172 1.5153 −0.0849 0.3703 0.0296*
H173 1.3961 −0.1841 0.3835 0.0292*
H111 1.0173 0.1922 0.2457 0.0203*
H161 1.0275 −0.0232 0.0825 0.0339*
H162 1.0336 0.1188 0.1071 0.0348*
H163 0.9479 0.0253 0.1552 0.0344*
H221 0.9453 0.3651 0.7838 0.0209*
H222 0.8212 0.2696 0.7549 0.0213*
H281 1.0106 0.3923 0.9334 0.0253*
H271 0.9755 0.3524 1.0704 0.0279*
H261 0.7688 0.2572 1.0983 0.0275*
H251 0.5958 0.1972 0.9872 0.0282*
H241 0.6357 0.2334 0.8499 0.0246*
H291 0.4816 0.6724 0.5376 0.0190*
H311 0.2919 0.8124 0.5145 0.0188*
H321 0.1533 0.9669 0.5598 0.0183*
H361 0.0297 1.1869 0.6942 0.0279*
H362 0.1185 1.1706 0.6193 0.0275*
H363 0.0006 1.0703 0.6330 0.0275*
H351 0.4958 0.7869 0.7466 0.0208*
H371 0.4800 0.9831 0.9202 0.0331*
H372 0.5668 0.9527 0.8439 0.0323*
H373 0.4801 0.8448 0.8807 0.0322*
H1 0.6713 0.5556 0.5505 0.0500*
H2 0.8546 0.4361 0.4487 0.0500*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.01948 (19) 0.0154 (2) 0.01721 (19) 0.00548 (15) 0.00564 (14) 0.00046 (14)
C1 0.0153 (7) 0.0141 (8) 0.0163 (7) −0.0008 (6) 0.0044 (5) 0.0002 (6)
S2 0.0203 (2) 0.0195 (2) 0.01605 (19) 0.00695 (15) 0.00537 (14) 0.00125 (15)
C2 0.0181 (7) 0.0188 (8) 0.0198 (8) 0.0078 (6) 0.0035 (6) 0.0031 (6)
C3 0.0130 (7) 0.0213 (8) 0.0180 (7) 0.0056 (6) 0.0012 (5) 0.0007 (6)
C8 0.0185 (7) 0.0202 (8) 0.0258 (8) 0.0040 (6) 0.0022 (6) −0.0008 (7)
C7 0.0236 (8) 0.0294 (10) 0.0202 (8) 0.0079 (7) 0.0010 (6) −0.0066 (7)
C6 0.0198 (8) 0.0365 (10) 0.0172 (8) 0.0089 (7) 0.0032 (6) 0.0032 (7)
C5 0.0206 (8) 0.0258 (9) 0.0258 (8) 0.0035 (7) 0.0042 (6) 0.0048 (7)
C4 0.0194 (7) 0.0196 (8) 0.0206 (8) 0.0037 (6) 0.0020 (6) −0.0019 (6)
N1 0.0182 (6) 0.0142 (7) 0.0177 (6) 0.0033 (5) 0.0064 (5) 0.0000 (5)
N2 0.0178 (6) 0.0135 (7) 0.0213 (7) 0.0013 (5) 0.0072 (5) 0.0002 (5)
C9 0.0187 (7) 0.0147 (8) 0.0189 (7) −0.0001 (6) 0.0059 (6) 0.0008 (6)
C10 0.0154 (7) 0.0133 (8) 0.0189 (7) −0.0012 (6) 0.0059 (6) 0.0012 (6)
C15 0.0174 (7) 0.0161 (8) 0.0167 (7) −0.0015 (6) 0.0034 (6) −0.0004 (6)
C14 0.0138 (7) 0.0160 (8) 0.0180 (7) 0.0000 (6) 0.0020 (5) 0.0028 (6)
C13 0.0142 (7) 0.0128 (7) 0.0201 (7) 0.0009 (6) 0.0059 (6) 0.0015 (6)
O2 0.0195 (5) 0.0177 (6) 0.0191 (5) 0.0067 (4) 0.0032 (4) −0.0014 (4)
C17 0.0189 (8) 0.0195 (8) 0.0238 (8) 0.0068 (6) 0.0049 (6) 0.0032 (6)
C12 0.0176 (7) 0.0176 (8) 0.0156 (7) −0.0004 (6) 0.0038 (6) 0.0003 (6)
C11 0.0159 (7) 0.0160 (8) 0.0190 (7) 0.0018 (6) 0.0027 (6) 0.0040 (6)
O1 0.0255 (6) 0.0276 (7) 0.0170 (5) 0.0088 (5) 0.0000 (4) −0.0037 (5)
C16 0.0241 (8) 0.0318 (10) 0.0162 (8) 0.0025 (7) −0.0003 (6) 0.0013 (7)
S21 0.01906 (19) 0.0154 (2) 0.01649 (19) 0.00483 (15) 0.00539 (14) −0.00063 (14)
C21 0.0168 (7) 0.0135 (8) 0.0163 (7) −0.0011 (6) 0.0058 (6) −0.0015 (6)
S22 0.0232 (2) 0.0181 (2) 0.01609 (19) 0.00641 (16) 0.00685 (14) 0.00131 (15)
C22 0.0188 (7) 0.0184 (8) 0.0194 (8) 0.0056 (6) 0.0048 (6) 0.0033 (6)
C23 0.0195 (7) 0.0150 (8) 0.0194 (8) 0.0056 (6) 0.0049 (6) 0.0028 (6)
C28 0.0182 (8) 0.0207 (9) 0.0265 (8) 0.0040 (6) 0.0021 (6) 0.0019 (7)
C27 0.0250 (8) 0.0244 (9) 0.0230 (8) 0.0058 (7) −0.0020 (6) 0.0001 (7)
C26 0.0309 (9) 0.0240 (9) 0.0181 (8) 0.0073 (7) 0.0048 (7) 0.0044 (7)
C25 0.0253 (8) 0.0245 (9) 0.0236 (8) −0.0004 (7) 0.0055 (7) 0.0035 (7)
C24 0.0215 (8) 0.0234 (9) 0.0208 (8) 0.0004 (7) 0.0023 (6) 0.0009 (6)
N21 0.0193 (6) 0.0153 (7) 0.0166 (6) 0.0037 (5) 0.0069 (5) −0.0002 (5)
N22 0.0189 (6) 0.0134 (7) 0.0217 (7) 0.0019 (5) 0.0090 (5) 0.0001 (5)
C29 0.0178 (7) 0.0157 (8) 0.0168 (7) −0.0023 (6) 0.0056 (6) −0.0007 (6)
C30 0.0152 (7) 0.0124 (7) 0.0202 (7) −0.0007 (6) 0.0067 (6) 0.0014 (6)
C31 0.0176 (7) 0.0158 (8) 0.0148 (7) −0.0020 (6) 0.0031 (6) −0.0016 (6)
C32 0.0142 (7) 0.0169 (8) 0.0172 (7) 0.0010 (6) 0.0014 (5) 0.0027 (6)
C33 0.0148 (7) 0.0138 (8) 0.0184 (7) 0.0006 (6) 0.0047 (6) 0.0010 (6)
O21 0.0193 (5) 0.0178 (6) 0.0190 (5) 0.0068 (4) 0.0031 (4) −0.0009 (4)
C36 0.0185 (7) 0.0173 (8) 0.0244 (8) 0.0066 (6) 0.0049 (6) 0.0038 (6)
C34 0.0185 (7) 0.0172 (8) 0.0146 (7) −0.0001 (6) 0.0047 (6) 0.0007 (6)
C35 0.0166 (7) 0.0173 (8) 0.0171 (7) 0.0035 (6) 0.0024 (6) 0.0032 (6)
O22 0.0262 (6) 0.0276 (7) 0.0139 (5) 0.0110 (5) 0.0005 (4) −0.0025 (5)
C37 0.0242 (8) 0.0298 (10) 0.0146 (7) 0.0055 (7) 0.0013 (6) 0.0013 (7)

Geometric parameters (Å, º)

S1—C1 1.6807 (15) S21—C21 1.6774 (15)
C1—S2 1.7494 (15) C21—S22 1.7494 (15)
C1—N1 1.331 (2) C21—N21 1.336 (2)
S2—C2 1.8244 (15) S22—C22 1.8294 (16)
C2—C3 1.516 (2) C22—C23 1.507 (2)
C2—H21 0.983 C22—H221 0.973
C2—H22 0.980 C22—H222 0.968
C3—C8 1.395 (2) C23—C28 1.396 (2)
C3—C4 1.392 (2) C23—C24 1.397 (2)
C8—C7 1.388 (2) C28—C27 1.390 (2)
C8—H81 0.956 C28—H281 0.935
C7—C6 1.386 (3) C27—C26 1.384 (3)
C7—H71 0.921 C27—H271 0.952
C6—C5 1.391 (3) C26—C25 1.393 (2)
C6—H61 0.944 C26—H261 0.948
C5—C4 1.390 (2) C25—C24 1.387 (2)
C5—H51 0.947 C25—H251 0.953
C4—H41 0.941 C24—H241 0.947
N1—N2 1.3845 (18) N21—N22 1.3820 (18)
N1—H2 0.924 N21—H1 0.874
N2—C9 1.282 (2) N22—C29 1.280 (2)
C9—C10 1.460 (2) C29—C30 1.462 (2)
C9—H91 0.945 C29—H291 0.932
C10—C15 1.393 (2) C30—C31 1.392 (2)
C10—C11 1.407 (2) C30—C35 1.406 (2)
C15—C14 1.396 (2) C31—C32 1.399 (2)
C15—H151 0.951 C31—H311 0.948
C14—C13 1.383 (2) C32—C33 1.379 (2)
C14—H141 0.948 C32—H321 0.944
C13—O2 1.3612 (18) C33—O21 1.3628 (18)
C13—C12 1.421 (2) C33—C34 1.422 (2)
O2—C17 1.4325 (18) O21—C36 1.4362 (18)
C17—H171 0.961 C36—H361 0.963
C17—H172 0.964 C36—H362 0.965
C17—H173 0.979 C36—H363 0.965
C12—C11 1.381 (2) C34—C35 1.377 (2)
C12—O1 1.3603 (19) C34—O22 1.3592 (19)
C11—H111 0.938 C35—H351 0.927
O1—C16 1.4273 (19) O22—C37 1.4272 (18)
C16—H161 0.943 C37—H371 0.972
C16—H162 0.968 C37—H372 0.969
C16—H163 0.970 C37—H373 0.976
S1—C1—S2 125.49 (9) S21—C21—S22 124.90 (9)
S1—C1—N1 120.52 (11) S21—C21—N21 120.52 (11)
S2—C1—N1 113.98 (11) S22—C21—N21 114.57 (11)
C1—S2—C2 102.05 (7) C21—S22—C22 101.97 (7)
S2—C2—C3 107.65 (10) S22—C22—C23 107.26 (10)
S2—C2—H21 110.3 S22—C22—H221 109.5
C3—C2—H21 109.7 C23—C22—H221 112.0
S2—C2—H22 107.9 S22—C22—H222 109.4
C3—C2—H22 110.5 C23—C22—H222 109.2
H21—C2—H22 110.7 H221—C22—H222 109.4
C2—C3—C8 121.01 (15) C22—C23—C28 121.20 (14)
C2—C3—C4 119.67 (15) C22—C23—C24 119.74 (15)
C8—C3—C4 119.32 (15) C28—C23—C24 119.05 (14)
C3—C8—C7 120.44 (16) C23—C28—C27 120.27 (15)
C3—C8—H81 119.0 C23—C28—H281 119.7
C7—C8—H81 120.5 C27—C28—H281 120.1
C8—C7—C6 120.09 (16) C28—C27—C26 120.38 (16)
C8—C7—H71 120.5 C28—C27—H271 119.6
C6—C7—H71 119.5 C26—C27—H271 120.0
C7—C6—C5 119.73 (15) C27—C26—C25 119.76 (15)
C7—C6—H61 118.7 C27—C26—H261 119.1
C5—C6—H61 121.5 C25—C26—H261 121.2
C6—C5—C4 120.34 (16) C26—C25—C24 120.09 (16)
C6—C5—H51 119.1 C26—C25—H251 120.4
C4—C5—H51 120.6 C24—C25—H251 119.5
C3—C4—C5 120.06 (16) C23—C24—C25 120.44 (16)
C3—C4—H41 118.9 C23—C24—H241 119.1
C5—C4—H41 121.1 C25—C24—H241 120.4
C1—N1—N2 120.71 (13) C21—N21—N22 120.85 (12)
C1—N1—H2 118.7 C21—N21—H1 116.4
N2—N1—H2 120.6 N22—N21—H1 121.9
N1—N2—C9 113.83 (13) N21—N22—C29 114.27 (13)
N2—C9—C10 122.28 (14) N22—C29—C30 121.69 (14)
N2—C9—H91 120.4 N22—C29—H291 120.7
C10—C9—H91 117.3 C30—C29—H291 117.6
C9—C10—C15 117.98 (14) C29—C30—C31 119.12 (14)
C9—C10—C11 122.42 (14) C29—C30—C35 121.40 (14)
C15—C10—C11 119.58 (14) C31—C30—C35 119.45 (14)
C10—C15—C14 120.50 (14) C30—C31—C32 120.54 (14)
C10—C15—H151 120.0 C30—C31—H311 119.1
C14—C15—H151 119.5 C32—C31—H311 120.4
C15—C14—C13 120.08 (14) C31—C32—C33 120.09 (14)
C15—C14—H141 119.4 C31—C32—H321 118.2
C13—C14—H141 120.5 C33—C32—H321 121.7
C14—C13—O2 125.39 (14) C32—C33—O21 125.73 (13)
C14—C13—C12 119.77 (14) C32—C33—C34 119.65 (14)
O2—C13—C12 114.83 (13) O21—C33—C34 114.59 (13)
C13—O2—C17 117.10 (12) C33—O21—C36 117.04 (12)
O2—C17—H171 106.1 O21—C36—H361 105.8
O2—C17—H172 111.9 O21—C36—H362 108.9
H171—C17—H172 109.6 H361—C36—H362 109.9
O2—C17—H173 109.3 O21—C36—H363 110.1
H171—C17—H173 109.9 H361—C36—H363 110.9
H172—C17—H173 110.0 H362—C36—H363 111.1
C13—C12—C11 119.89 (14) C33—C34—C35 120.06 (14)
C13—C12—O1 114.08 (14) C33—C34—O22 114.49 (13)
C11—C12—O1 126.01 (14) C35—C34—O22 125.43 (14)
C10—C11—C12 120.16 (14) C30—C35—C34 120.20 (14)
C10—C11—H111 120.7 C30—C35—H351 119.0
C12—C11—H111 119.1 C34—C35—H351 120.8
C12—O1—C16 117.16 (12) C34—O22—C37 116.40 (12)
O1—C16—H161 106.2 O22—C37—H371 104.2
O1—C16—H162 110.2 O22—C37—H372 110.0
H161—C16—H162 111.1 H371—C37—H372 111.9
O1—C16—H163 110.8 O22—C37—H373 109.3
H161—C16—H163 110.4 H371—C37—H373 112.0
H162—C16—H163 108.1 H372—C37—H373 109.2

Hydrogen-bond geometry (Å, º)

Cg1, Cg2 and Cg4 are the centroids of the C3–C8, C10–C15 and C30–C35 rings, respectively.

D—H···A D—H H···A D···A D—H···A
N1—H2···S21 0.92 2.52 3.418 (1) 166
N21—H1···S1 0.87 2.55 3.407 (1) 168
C16—H163···O21i 0.97 2.69 3.560 (2) 149
C17—H172···Cg4ii 0.97 2.74 3.5587 (18) 143
C28—H281···Cg1ii 0.94 2.94 3.6082 (18) 130
C36—H363···Cg2i 0.97 2.67 3.5023 (17) 145

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+1, −z+1.

References

  1. Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
  2. Break, M. K. bin, Tahir, M. I. M., Crouse, K. A. & Khoo, T.-J. (2013). Bioinorganic Chemistry and Applications, Vol. 2013, Article ID 362513, 13 pages. http//dx..org/10.1155/2013/362513 [DOI] [PMC free article] [PubMed]
  3. Fan, Z., Huang, Y.-L., Wang, Z., Guo, H.-Q. & Shan, S. (2011). Acta Cryst. E67, o3011. [DOI] [PMC free article] [PubMed]
  4. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  5. Khoo, T.-J., Break, M. K., bin, , Crouse, K. A., Tahir, M. I. M., Ali, A. M., Cowley, A. R., Watkin, D. & Tarafder, M. T. H. (2014). Inorg. Chim. Acta, 413, 68–76.
  6. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  7. Oxford Diffraction (2002). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
  8. Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.
  9. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S205698901500095X/su5044sup1.cif

e-71-00238-sup1.cif (25.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901500095X/su5044Isup2.hkl

e-71-00238-Isup2.hkl (412.8KB, hkl)

Supporting information file. DOI: 10.1107/S205698901500095X/su5044Isup3.cml

CCDC reference: 1043887

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES