Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jan 3;71(Pt 2):o75–o76. doi: 10.1107/S2056989014027285

Crystal structure of N-[(8E)-12-methyl-14-phenyl-10,13,14,16-tetra­aza­tetra­cyclo­[7.7.0.02,7.011,15]hexa­deca-1(16),2,4,6,9,11(15),12-heptaen-8-yl­idene]hydroxyl­amine 1,4-dioxane hemisolvate

Shaaban K Mohamed a,b, Joel T Mague c, Mehmet Akkurt d, Talaat I El-Emary e, Mustafa R Albayati f,*
PMCID: PMC4384549  PMID: 25878879

Abstract

In the title solvate, C19H13N5O·0.5C4H8O2, the main mol­ecule is almost planar (r.m.s. deviation for the non-H atoms = 0.066 Å). The hydroxyl­amine group is disordered over two orientations in a 0.761 (4):0.239 (4) ratio. The complete dioxane solvent mol­ecule is generated by a crystallographic inversion centre. In the crystal, both disorder components of the hydroxyl­amine group form O—H⋯N hydrogen bonds to the same N-atom acceptor, thereby generating [010] chains. The chains encompass [010] channels occupied by the solvent mol­ecules. Aromatic π–π stacking is also observed [shortest centroid–centroid separation = 3.3394 (19) Å].

Keywords: crystal strcuture, pyrazino­pyrazoles, oximes, hydrogen bonding, π–π stacking

Related literature  

For a related structure see: Mague et al. (2014). For background to the biological properties of pyrazino­pyroles or pyrazino­pyrazoles see: Nyeki et al. (2002); Askew et al. (1997); Wehner et al. (1998); Zimmerman (1995).graphic file with name e-71-00o75-scheme1.jpg

Experimental  

Crystal data  

  • C19H13N5O·0.5C4H8O2

  • M r = 371.40

  • Monoclinic, Inline graphic

  • a = 15.8019 (4) Å

  • b = 5.5675 (1) Å

  • c = 20.4756 (5) Å

  • β = 102.093 (2)°

  • V = 1761.41 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.77 mm−1

  • T = 150 K

  • 0.15 × 0.07 × 0.04 mm

Data collection  

  • Bruker D8 VENTURE PHOTON 100 CMOS diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2014) T min = 0.85, T max = 0.97

  • 12942 measured reflections

  • 3122 independent reflections

  • 1934 reflections with I > 2σ(I)

  • R int = 0.066

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.060

  • wR(F 2) = 0.166

  • S = 1.05

  • 3122 reflections

  • 261 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989014027285/hb7340sup1.cif

e-71-00o75-sup1.cif (420.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014027285/hb7340Isup2.hkl

e-71-00o75-Isup2.hkl (171.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989014027285/hb7340Isup3.cml

. DOI: 10.1107/S2056989014027285/hb7340fig1.tif

The title mol­ecule showing 50% probability ellipsoids. Only the major componenet of the disordered hydroxyl­amine substituent is shown.

. DOI: 10.1107/S2056989014027285/hb7340fig2.tif

Packing showing the π-π inter­actions as green dotted lines.

b via . DOI: 10.1107/S2056989014027285/hb7340fig3.tif

Packing viewed down the b axis showing the formation of one column via O—H⋯N hydrogen bonds (red dotted lines).

CCDC reference: 1039120

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
O1H1N4i 0.84 2.04 2.878(3) 172
O1aH1aN4i 0.84 1.94 2.749(5) 162

Symmetry code: (i) Inline graphic.

Acknowledgments

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

supplementary crystallographic information

S1. Comment

Heterocyclic compounds containing pyrolo- or pyrazino-pyrazole core structures represent a relatively little-explored group with interesting pharmaceutical properties. They have been described as vasodilators (Nyeki et al., 2002), fibrinogen receptor antagonists with antiplatelet activity (Askew et al., 1997), vitronectin-receptor antagonists (Wehner et al., 1998) and herbicidal agents (Zimmerman, 1995). In a continuation of our efforts towards the synthesis of bio-active pyrazinopyrazines, we report here the synthesis and crystal structure of the title compound.

The fused, four-ring core of the title molecule (Fig. 1) is nearly planar with only a 3.0 (2)° dihedral angle between the C14–C19 and C7/C9/C10/N1/N2 rings while the dihedral angle between the latter ring and the pendant phenyl ring is 5.2 (2)°. The values of the geometric parameters of the title molecule are normal and are comparable to those reported for a similar structure (Mague et al., 2014).

The molecules form stacks viaπ-π interactions between the C7/C9/C10/N1/N2 ring in one molecule with the C11–C15 ring in the molecule at x, -1 + y, z (centroid–centroid distance = 3.34 Å, Fig. 2). Two screw-axis-related stacks are associated via O1—H1···N4 hydrogen bonds forming columns running parallel to the b axis (Table 1 and Fig. 3). In each column, the mean planes of the molecules in one stack are inclined to those of the second by 73.3°. The solvent dioxane molecules lie adjacent to the hydroxylamine groups and fill channels between the columns.

S2. Experimental

A mixture of 2 mmol (624 mg) of 3-methyl-1-phenylindeno[2,1-e]pyrazolo[3,4-b]pyrazin-5(1H)-one and 2 mmol (139 mg) of hydroxylamine hydrochloride in dry pyridine (15 ml) was heated under reflux for 3 h. After cooling, the reaction mixture was poured into an ice-water mixture. The resulting solid product was then filtered off, washed with water, dried and crystallized from a mixture of dioxane/water (1:2 v/v) to afford light yellow crystals of the title compound. Mp 577 – 579 K.

S3. Refinement

H-atoms attached to carbon atoms were placed in calculated positions (C—H = 0.95 - 0.98 Å) while that attached to the oxygen atom was placed in a location derived from a difference map and its parameters adjusted to give O—H = 0.84 Å. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. The {N—OH} unit is disordered over two resolved sites in a 3:1 ratio and was refined subject to restraints that the geometries of the two components be comparable. The solvent molecule of dioxane located on a center of symmetry appeared to be slightly disordered on the basis of the size and shape of its displacement ellipsoids but attempts to refine it with a split atom model were unsuccessful.

Figures

Fig. 1.

Fig. 1.

The title molecule showing 50% probability ellipsoids. Only the major componenet of the disordered hydroxylamine substituent is shown.

Fig. 2.

Fig. 2.

Packing showing the π-π interactions as green dotted lines.

Fig. 3.

Fig. 3.

Packing viewed down the b axis showing the formation of one column via O—H···N hydrogen bonds (red dotted lines).

Crystal data

C19H13N5O·0.5C4H8O2 F(000) = 776
Mr = 371.40 Dx = 1.401 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.54178 Å
a = 15.8019 (4) Å Cell parameters from 5735 reflections
b = 5.5675 (1) Å θ = 3.2–67.0°
c = 20.4756 (5) Å µ = 0.77 mm1
β = 102.093 (2)° T = 150 K
V = 1761.41 (7) Å3 Column, light yellow
Z = 4 0.15 × 0.07 × 0.04 mm

Data collection

Bruker D8 VENTURE PHOTON 100 CMOS diffractometer 3122 independent reflections
Radiation source: INCOATEC IµS micro-focus source 1934 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.066
Detector resolution: 10.4167 pixels mm-1 θmax = 67.1°, θmin = 3.2°
ω scans h = −18→18
Absorption correction: multi-scan (SADABS; Bruker, 2014) k = −6→6
Tmin = 0.85, Tmax = 0.97 l = −21→23
12942 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060 Hydrogen site location: mixed
wR(F2) = 0.166 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0629P)2 + 1.2077P] where P = (Fo2 + 2Fc2)/3
3122 reflections (Δ/σ)max < 0.001
261 parameters Δρmax = 0.49 e Å3
2 restraints Δρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)are estimated using the full covariance matrix. The cell e.s.d.'s are takeninto account individually in the estimation of e.s.d.'s in distances, anglesand torsion angles; correlations between e.s.d.'s in cell parameters are onlyused when they are defined by crystal symmetry. An approximate (isotropic)treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR andgoodness of fit S are based on F2, conventional R-factors R are basedon F, with F set to zero for negative F2. The threshold expression ofF2 > σ(F2) is used only for calculating R-factors(gt) etc. and isnot relevant to the choice of reflections for refinement. R-factors basedon F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. H-atoms attached to carbonwere placed in calculated positions (C—H = 0.95 - 0.98 Å) while thatattached to oxygen was placed in a location derived from a differencemap and its parameters adjusted to give O—H = 0.84 Å. All wereincluded as riding contributions with isotropic displacementparameters 1.2 - 1.5 times those of the attached atoms. The {N—OH} unitis disordered over two resolved sites in a 3:1 ratio and was refinedsubject to restraints that the geometries of the two components becomparable. The molecule of lattice dioxane located on a center of symmetryappeared to be slightly disordered on the basis of the size and shape ofits displacement ellipsoids but attempts to refine it with a split atommodel were unsuccessful.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.31941 (17) 0.8942 (5) 0.31844 (14) 0.0526 (9) 0.761 (4)
H1 0.2653 0.8868 0.3133 0.063* 0.761 (4)
N5 0.3255 (3) 0.7078 (7) 0.27450 (18) 0.0477 (10) 0.761 (4)
O1A 0.2787 (7) 0.6744 (19) 0.2677 (5) 0.0526 (9) 0.239 (4)
H1A 0.2308 0.7294 0.2723 0.063* 0.239 (4)
N5A 0.3523 (7) 0.811 (3) 0.2922 (7) 0.0477 (10) 0.239 (4)
N1 0.50054 (14) 0.0011 (5) 0.10956 (11) 0.0441 (6)
N2 0.42463 (15) −0.1296 (5) 0.08969 (12) 0.0483 (7)
N3 0.54532 (15) 0.3519 (5) 0.17927 (11) 0.0436 (6)
N4 0.36329 (15) 0.3403 (5) 0.18808 (12) 0.0479 (7)
C1 0.57561 (18) −0.0748 (6) 0.08673 (14) 0.0434 (7)
C2 0.65086 (19) 0.0591 (6) 0.10022 (16) 0.0525 (8)
H2 0.6541 0.2027 0.1257 0.063*
C3 0.7218 (2) −0.0197 (6) 0.07592 (17) 0.0568 (9)
H3 0.7737 0.0718 0.0849 0.068*
C4 0.7184 (2) −0.2271 (6) 0.03920 (15) 0.0529 (9)
H4 0.7674 −0.2792 0.0229 0.063*
C5 0.6431 (2) −0.3581 (6) 0.02643 (16) 0.0558 (9)
H5 0.6399 −0.5020 0.0011 0.067*
C6 0.5719 (2) −0.2820 (6) 0.05014 (15) 0.0526 (8)
H6 0.5201 −0.3738 0.0410 0.063*
C7 0.36423 (19) −0.0231 (6) 0.11490 (14) 0.0478 (8)
C8 0.27394 (18) −0.1199 (6) 0.10347 (16) 0.0564 (9)
H8A 0.2341 −0.0060 0.0763 0.085*
H8B 0.2573 −0.1429 0.1465 0.085*
H8C 0.2713 −0.2741 0.0801 0.085*
C9 0.39917 (18) 0.1795 (6) 0.15255 (14) 0.0457 (8)
C10 0.48730 (18) 0.1895 (6) 0.14854 (14) 0.0435 (7)
C11 0.50897 (18) 0.5059 (6) 0.21488 (14) 0.0436 (7)
C12 0.41977 (18) 0.4993 (6) 0.21947 (14) 0.0467 (8)
C13 0.40452 (19) 0.6952 (6) 0.26329 (15) 0.0501 (8)
C14 0.4877 (2) 0.8210 (6) 0.28446 (14) 0.0492 (8)
C15 0.55051 (18) 0.7031 (6) 0.25596 (14) 0.0455 (8)
C16 0.6360 (2) 0.7815 (6) 0.26910 (16) 0.0531 (8)
H16 0.6783 0.7027 0.2500 0.064*
C17 0.6576 (2) 0.9791 (6) 0.31112 (16) 0.0573 (9)
H17 0.7157 1.0349 0.3212 0.069*
C18 0.5955 (2) 1.0949 (6) 0.33833 (16) 0.0595 (9)
H18 0.6117 1.2305 0.3663 0.071*
C19 0.5100 (2) 1.0176 (6) 0.32565 (16) 0.0560 (9)
H19 0.4681 1.0978 0.3448 0.067*
C20 0.4575 (3) 0.6668 (10) 0.4576 (3) 0.1110 (18)
H20A 0.4427 0.8360 0.4454 0.133*
H20B 0.4296 0.5635 0.4198 0.133*
O6 0.42711 (19) 0.6056 (7) 0.51479 (14) 0.1018 (11)
C22 0.4493 (3) 0.3649 (12) 0.5297 (3) 0.155 (3)
H22A 0.4217 0.2617 0.4919 0.186*
H22B 0.4275 0.3149 0.5696 0.186*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0353 (15) 0.068 (2) 0.0564 (18) 0.0043 (13) 0.0138 (13) −0.0102 (15)
N5 0.042 (3) 0.062 (3) 0.039 (2) 0.007 (2) 0.009 (2) −0.0014 (18)
O1A 0.0353 (15) 0.068 (2) 0.0564 (18) 0.0043 (13) 0.0138 (13) −0.0102 (15)
N5A 0.042 (3) 0.062 (3) 0.039 (2) 0.007 (2) 0.009 (2) −0.0014 (18)
N1 0.0379 (13) 0.0535 (16) 0.0418 (14) −0.0011 (12) 0.0104 (11) 0.0027 (13)
N2 0.0416 (14) 0.0578 (17) 0.0450 (15) −0.0042 (13) 0.0081 (11) 0.0065 (13)
N3 0.0394 (13) 0.0542 (17) 0.0378 (13) 0.0035 (12) 0.0095 (11) 0.0052 (12)
N4 0.0387 (14) 0.0641 (18) 0.0424 (14) 0.0025 (13) 0.0122 (11) 0.0115 (13)
C1 0.0427 (17) 0.051 (2) 0.0376 (16) 0.0041 (15) 0.0102 (13) 0.0083 (15)
C2 0.0440 (18) 0.057 (2) 0.058 (2) −0.0012 (16) 0.0163 (15) −0.0074 (17)
C3 0.0435 (18) 0.066 (2) 0.062 (2) −0.0022 (17) 0.0132 (16) −0.0082 (19)
C4 0.0480 (19) 0.063 (2) 0.0496 (19) 0.0088 (17) 0.0157 (15) 0.0043 (17)
C5 0.060 (2) 0.056 (2) 0.055 (2) −0.0002 (17) 0.0187 (16) −0.0035 (17)
C6 0.0488 (19) 0.059 (2) 0.0521 (19) −0.0069 (16) 0.0157 (15) −0.0022 (17)
C7 0.0431 (17) 0.063 (2) 0.0383 (17) −0.0018 (16) 0.0094 (13) 0.0092 (16)
C8 0.0398 (17) 0.073 (2) 0.056 (2) −0.0058 (16) 0.0100 (15) 0.0081 (18)
C9 0.0394 (16) 0.060 (2) 0.0392 (17) 0.0029 (15) 0.0112 (13) 0.0092 (16)
C10 0.0408 (16) 0.054 (2) 0.0361 (16) 0.0024 (15) 0.0092 (13) 0.0091 (15)
C11 0.0417 (16) 0.054 (2) 0.0365 (16) 0.0077 (15) 0.0113 (13) 0.0096 (15)
C12 0.0387 (17) 0.063 (2) 0.0408 (17) 0.0066 (16) 0.0130 (13) 0.0126 (16)
C13 0.0441 (18) 0.067 (2) 0.0418 (17) 0.0122 (16) 0.0145 (14) 0.0101 (16)
C14 0.0556 (19) 0.058 (2) 0.0350 (16) 0.0144 (17) 0.0121 (14) 0.0073 (16)
C15 0.0418 (17) 0.055 (2) 0.0402 (17) 0.0032 (15) 0.0096 (13) 0.0062 (15)
C16 0.0503 (19) 0.061 (2) 0.0486 (19) 0.0069 (17) 0.0123 (15) 0.0064 (17)
C17 0.054 (2) 0.065 (2) 0.051 (2) −0.0013 (18) 0.0082 (16) 0.0026 (18)
C18 0.071 (2) 0.061 (2) 0.0463 (19) 0.0031 (19) 0.0110 (17) −0.0026 (17)
C19 0.061 (2) 0.062 (2) 0.0458 (19) 0.0103 (18) 0.0144 (16) 0.0056 (17)
C20 0.078 (3) 0.147 (5) 0.113 (4) 0.030 (3) 0.032 (3) 0.062 (4)
O6 0.089 (2) 0.151 (3) 0.0728 (18) 0.054 (2) 0.0329 (16) 0.009 (2)
C22 0.082 (4) 0.200 (7) 0.191 (6) 0.047 (4) 0.051 (4) 0.130 (6)

Geometric parameters (Å, º)

O1—N5 1.390 (4) C8—H8A 0.9800
O1—H1 0.8400 C8—H8B 0.9800
N5—C13 1.318 (5) C8—H8C 0.9800
O1A—N5A 1.392 (12) C9—C10 1.413 (4)
O1A—H1A 0.8402 C11—C12 1.433 (4)
N5A—C13 1.286 (12) C11—C15 1.453 (4)
N1—C10 1.360 (4) C12—C13 1.464 (4)
N1—N2 1.389 (3) C13—C14 1.472 (4)
N1—C1 1.427 (3) C14—C19 1.382 (4)
N2—C7 1.317 (4) C14—C15 1.414 (4)
N3—C11 1.331 (4) C15—C16 1.391 (4)
N3—C10 1.346 (4) C16—C17 1.394 (5)
N4—C12 1.324 (4) C16—H16 0.9500
N4—C9 1.351 (4) C17—C18 1.385 (4)
C1—C6 1.370 (4) C17—H17 0.9500
C1—C2 1.382 (4) C18—C19 1.389 (5)
C2—C3 1.389 (4) C18—H18 0.9500
C2—H2 0.9500 C19—H19 0.9500
C3—C4 1.373 (5) C20—O6 1.398 (5)
C3—H3 0.9500 C20—C22i 1.452 (6)
C4—C5 1.374 (4) C20—H20A 0.9900
C4—H4 0.9500 C20—H20B 0.9900
C5—C6 1.382 (4) O6—C22 1.403 (6)
C5—H5 0.9500 C22—C20i 1.452 (6)
C6—H6 0.9500 C22—H22A 0.9900
C7—C9 1.412 (4) C22—H22B 0.9900
C7—C8 1.497 (4)
N5—O1—H1 95.1 N3—C11—C12 124.3 (3)
C13—N5—O1 110.4 (4) N3—C11—C15 127.5 (3)
N5A—O1A—H1A 117.7 C12—C11—C15 108.2 (3)
C13—N5A—O1A 97.3 (9) N4—C12—C11 123.9 (3)
C10—N1—N2 110.3 (2) N4—C12—C13 127.9 (3)
C10—N1—C1 131.4 (3) C11—C12—C13 108.2 (3)
N2—N1—C1 118.4 (2) N5A—C13—C12 149.3 (6)
C7—N2—N1 107.5 (3) N5—C13—C12 115.5 (3)
C11—N3—C10 111.0 (2) N5A—C13—C14 104.2 (6)
C12—N4—C9 112.8 (2) N5—C13—C14 138.0 (3)
C6—C1—C2 120.0 (3) C12—C13—C14 106.5 (2)
C6—C1—N1 119.0 (3) C19—C14—C15 120.5 (3)
C2—C1—N1 120.9 (3) C19—C14—C13 130.9 (3)
C1—C2—C3 118.9 (3) C15—C14—C13 108.6 (3)
C1—C2—H2 120.6 C16—C15—C14 120.8 (3)
C3—C2—H2 120.6 C16—C15—C11 130.6 (3)
C4—C3—C2 121.4 (3) C14—C15—C11 108.6 (3)
C4—C3—H3 119.3 C15—C16—C17 118.0 (3)
C2—C3—H3 119.3 C15—C16—H16 121.0
C3—C4—C5 118.9 (3) C17—C16—H16 121.0
C3—C4—H4 120.6 C18—C17—C16 120.8 (3)
C5—C4—H4 120.6 C18—C17—H17 119.6
C4—C5—C6 120.5 (3) C16—C17—H17 119.6
C4—C5—H5 119.8 C17—C18—C19 121.6 (3)
C6—C5—H5 119.8 C17—C18—H18 119.2
C1—C6—C5 120.4 (3) C19—C18—H18 119.2
C1—C6—H6 119.8 C14—C19—C18 118.3 (3)
C5—C6—H6 119.8 C14—C19—H19 120.9
N2—C7—C9 109.9 (3) C18—C19—H19 120.9
N2—C7—C8 121.4 (3) O6—C20—C22i 109.5 (4)
C9—C7—C8 128.6 (3) O6—C20—H20A 109.8
C7—C8—H8A 109.5 C22i—C20—H20A 109.8
C7—C8—H8B 109.5 O6—C20—H20B 109.8
H8A—C8—H8B 109.5 C22i—C20—H20B 109.8
C7—C8—H8C 109.5 H20A—C20—H20B 108.2
H8A—C8—H8C 109.5 C20—O6—C22 107.6 (4)
H8B—C8—H8C 109.5 O6—C22—C20i 110.7 (5)
N4—C9—C7 131.5 (3) O6—C22—H22A 109.5
N4—C9—C10 122.4 (3) C20i—C22—H22A 109.5
C7—C9—C10 106.1 (3) O6—C22—H22B 109.5
N3—C10—N1 128.2 (3) C20i—C22—H22B 109.5
N3—C10—C9 125.6 (3) H22A—C22—H22B 108.1
N1—C10—C9 106.2 (3)
C10—N1—N2—C7 0.9 (3) C15—C11—C12—N4 −179.8 (3)
C1—N1—N2—C7 −178.2 (2) N3—C11—C12—C13 179.6 (3)
C10—N1—C1—C6 176.7 (3) C15—C11—C12—C13 0.5 (3)
N2—N1—C1—C6 −4.5 (4) O1A—N5A—C13—C12 0 (2)
C10—N1—C1—C2 −4.3 (5) O1A—N5A—C13—C14 179.8 (8)
N2—N1—C1—C2 174.6 (3) O1—N5—C13—C12 177.9 (3)
C6—C1—C2—C3 0.2 (5) O1—N5—C13—C14 0.6 (6)
N1—C1—C2—C3 −178.8 (3) N4—C12—C13—N5A 0.6 (15)
C1—C2—C3—C4 −0.2 (5) C11—C12—C13—N5A −179.8 (14)
C2—C3—C4—C5 0.1 (5) N4—C12—C13—N5 2.7 (5)
C3—C4—C5—C6 0.1 (5) C11—C12—C13—N5 −177.7 (3)
C2—C1—C6—C5 −0.1 (5) N4—C12—C13—C14 −179.2 (3)
N1—C1—C6—C5 179.0 (3) C11—C12—C13—C14 0.4 (3)
C4—C5—C6—C1 0.0 (5) N5A—C13—C14—C19 0.2 (8)
N1—N2—C7—C9 −0.5 (3) N5—C13—C14—C19 −2.6 (7)
N1—N2—C7—C8 −179.4 (3) C12—C13—C14—C19 −180.0 (3)
C12—N4—C9—C7 176.7 (3) N5A—C13—C14—C15 178.9 (7)
C12—N4—C9—C10 −1.9 (4) N5—C13—C14—C15 176.2 (4)
N2—C7—C9—N4 −178.8 (3) C12—C13—C14—C15 −1.2 (3)
C8—C7—C9—N4 0.0 (5) C19—C14—C15—C16 0.4 (4)
N2—C7—C9—C10 −0.1 (3) C13—C14—C15—C16 −178.5 (3)
C8—C7—C9—C10 178.8 (3) C19—C14—C15—C11 −179.5 (3)
C11—N3—C10—N1 −178.0 (3) C13—C14—C15—C11 1.6 (3)
C11—N3—C10—C9 0.1 (4) N3—C11—C15—C16 −0.3 (5)
N2—N1—C10—N3 177.4 (3) C12—C11—C15—C16 178.8 (3)
C1—N1—C10—N3 −3.6 (5) N3—C11—C15—C14 179.6 (3)
N2—N1—C10—C9 −1.0 (3) C12—C11—C15—C14 −1.3 (3)
C1—N1—C10—C9 178.0 (3) C14—C15—C16—C17 0.0 (4)
N4—C9—C10—N3 1.1 (5) C11—C15—C16—C17 179.9 (3)
C7—C9—C10—N3 −177.8 (3) C15—C16—C17—C18 −0.7 (5)
N4—C9—C10—N1 179.5 (3) C16—C17—C18—C19 0.8 (5)
C7—C9—C10—N1 0.6 (3) C15—C14—C19—C18 −0.2 (4)
C10—N3—C11—C12 −0.2 (4) C13—C14—C19—C18 178.4 (3)
C10—N3—C11—C15 178.7 (3) C17—C18—C19—C14 −0.4 (5)
C9—N4—C12—C11 1.8 (4) C22i—C20—O6—C22 −59.7 (7)
C9—N4—C12—C13 −178.7 (3) C20—O6—C22—C20i 60.4 (7)
N3—C11—C12—N4 −0.8 (5)

Symmetry code: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···N4ii 0.84 2.04 2.878 (3) 172
O1a—H1a···N4ii 0.84 1.94 2.749 (5) 162

Symmetry code: (ii) −x+1/2, y+1/2, −z+1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7340).

References

  1. Askew, B. C., McIntyre, C. J., Hunt, C. A., Claremon, D. A., Baldwin, J. J., Anderson, P. S., Gould, R. J., Lynch, R. J., Chang, C. C.-T., Cook, J. J., Lynch, J. J., Holahan, M. A., Sitko, G. R. & Stranieri, M. T. (1997). Bioorg. Med. Chem. Lett. 7, 1531–1536.
  2. Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.
  4. Mague, J. T., Mohamed, S. K., Akkurt, M., El-Kashef, H. M. S. & Albayati, M. R. (2014). Acta Cryst. E70, o1244–o1245. [DOI] [PMC free article] [PubMed]
  5. Nyeki, O., Nogradi, K., Chongor, E.-A., Bartane, S. G., Domany, G., Demeter, A., Galaambos, J., Gizur, T., Kassai, F., Kiss, C., Rill, A., Schoen, I., Trischler, F., Torey, J., Kyotani, Y. & Yokoyama, A. (2002). Chem. Abstr. 137, 232907.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Wehner, V., Stilz, H.-U., Peyman, A., Knolle, J., Ruxer, J.-M., Carniato, D., Lefrancois, J.-M., Gadek, T. R. & McDowell, R. (1998). Chem. Abstr. 129, 81970.
  8. Zimmerman, W. T. (1995). Chem. Abstr. 122, 49104.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989014027285/hb7340sup1.cif

e-71-00o75-sup1.cif (420.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014027285/hb7340Isup2.hkl

e-71-00o75-Isup2.hkl (171.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989014027285/hb7340Isup3.cml

. DOI: 10.1107/S2056989014027285/hb7340fig1.tif

The title mol­ecule showing 50% probability ellipsoids. Only the major componenet of the disordered hydroxyl­amine substituent is shown.

. DOI: 10.1107/S2056989014027285/hb7340fig2.tif

Packing showing the π-π inter­actions as green dotted lines.

b via . DOI: 10.1107/S2056989014027285/hb7340fig3.tif

Packing viewed down the b axis showing the formation of one column via O—H⋯N hydrogen bonds (red dotted lines).

CCDC reference: 1039120

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES