Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jan 10;71(Pt 2):139–141. doi: 10.1107/S2056989014028096

Crystal structure of a mixed solvated form of amoxapine acetate

Rajni M Bhardwaj a, Vishal Raval a, Iain D H Oswald a, Alastair J Florence a,*
PMCID: PMC4384552  PMID: 25878802

The mixed solvated salt 4-(2-chloro­dibenzo[b,f][1,4]oxazepin-11-yl)piperazin-1-ium acetate–acetic acid–cyclo­hexane (2/2/1), crystallizes with one mol­ecule of protonated amoxapine (AXPN), an acetate anion and a mol­ecule of acetic acid together with half a mol­ecule of cyclo­hexane. In the crystal, the various components are linked via N—H⋯O and O—H⋯O hydrogen bonds, forming a layered structure with the solvent mol­ecules occupying the spaces between the layers.

Keywords: crystal structure, amoxapine, oxazepine, mixed solvate, hydrogen bonding.

Abstract

The mixed solvated salt 4-(2-chloro­dibenzo[b,f][1,4]oxazepin-11-yl)piperazin-1-ium acetate–acetic acid–cyclo­hexane (2/2/1), C17H17ClN3O+·C2H3O2 ·C2H4O2·0.5C6H12, crystallizes with one mol­ecule of protonated amoxapine (AXPN), an acetate anion and a mol­ecule of acetic acid together with half a mol­ecule of cyclo­hexane. In the centrosymmetric crystal, both enanti­omers of the protonated AXPN mol­ecule stack alternatively along [001]. Acetate anions connect the AXPN cations through N—H⋯O hydrogen bonding in the [010] direction, creating a sheet lying parallel to (100). The acetic acid mol­ecules are linked to the acetate anions via O—H⋯O hydrogen bonds within the sheets. Within the sheets there are also a number of C—H⋯O hydrogen bonds present. The cyclo­hexane solvent mol­ecules occupy the space between the sheets.

Chemical context  

2-Chloro-11-(piperazin-1-yl)dibenzo[b,f][1,4]oxazepine (Amox­apine, AXPN) is a benzodiazepine derivative and exhibits anti-depressant properties (Greenbla & Osterber, 1968) with one reported crystal structure (CSD refcode: AMOXAP; Cosulich & Lovell, 1977). AXPN acetate acetic acid cyclo­hexane was obtained as a part of a wider investigation that couples experimental crystallization techniques with computational methods in order to obtain a better understanding of the factors underpinning the solid-state structure and diversity of structurally related compounds, i.e. olanzapine, clozapine, loxapine and AXPN (Bhardwaj & Florence, 2013; Bhardwaj, Johnston et al., 2013; Bhardwaj, Price et al., 2013). The sample of AXPN acetate acetic acid cyclo­hexane was isolated during an experimental physical form screen of AXPN. The sample was identified as a novel form using multi-sample foil transmission X-ray powder diffraction analysis (Florence et al., 2003). A suitable sample for single crystal X-ray diffraction analysis was obtained from slow evaporation of a saturated solution of AXPN in a 1:1 molar ratio of acetic acid and cyclo­hexane at room temperature.graphic file with name e-71-00139-scheme1.jpg

Structural commentary  

The title compound crystallizes with one mol­ecule of protonated AXPN and an acetate anion each with a mol­ecule of acetic acid and a half mol­ecule of cyclo­hexane (which lies across a center of inversion) as solvent of crystallization in the asymmetric unit (Fig. 1). The dioxazepine ring of AXPN exists in a puckered conformation between the planes of the benzene rings [the benzene rings fused to the central ring make a dihedral angle of 58.63 (6)°], and the piperazine ring adopts a chair conformation, as observed in the AXPN free base (CSD refcode: AMOXAP; Cosulich and Lovell, 1977) and structurally related analogues (Bhardwaj & Florence, 2013; Bhardwaj, Johnston et al., 2013; Bhardwaj, Price et al., 2013).

Figure 1.

Figure 1

A view of the mol­ecular structure of the asymmetric unit of the title mol­ecular salt, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Supra­molecular features  

In the crystal, opposite enanti­omers of protonated AXPN mol­ecules stack along the c-axis direction. Each protonated AXPN mol­ecule forms two N—H⋯O hydrogen bonds with two acetate anions, which connect it to an adjacent protonated AXPN mol­ecule along the b axis, creating a sheet-like structure parallel to (100); see Fig. 2 and Table 1. The acetic acid mol­ecules act as hydrogen-bond donors to acetate anions and are present between the protonated AXPN mol­ecules along the c-axis direction. There are also C—H⋯O hydrogen bonds present within the sheets (Table 1). These sheets stack along the a axis and the cyclo­hexane mol­ecules occupy the space between the sheets (Fig. 2).

Figure 2.

Figure 2

The crystal packing of the title mol­ecular salt, viewed down the b axis. The cyclo­hexane mol­ecules are shown as a blue space-fill model. Hydrogen bonds are shown as green lines (see Table 1 for details; atom colour code: C, N, O, Cl and H are blue, violet, red, green and black, respectively; H atoms not involved in hydrogen bonding have been omitted for clarity).

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N3H1N3O1S 0.91(2) 1.86(2) 2.7664(13) 175(2)
O3SH1SO2S i 0.94(2) 1.61(2) 2.5375(13) 171(2)
N3H2N3O1S ii 0.94(2) 1.82(2) 2.7292(14) 162(1)
C1SH1S1O3S ii 0.96 2.42 3.3778(18) 172
C14H14AO1iii 0.97 2.59 3.2448(15) 125
C17H17AO4S iii 0.97 2.32 3.2314(15) 155

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Synthesis and crystallization  

Rod-shaped crystals were grown from a saturated solution of AXPN in a 1:1 molar ratio of acetic acid and cyclo­hexane by isothermal solvent evaporation at 298 K.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The N- and O-bound H atoms were located in a difference Fourier map and freely refined. The C-bound H atoms were placed in calculated positions and refined as riding atoms: C—H = 0.95–0.99 Å with U iso(H) = 1.5U eq(C) for methyl H atoms and = 1.2U eq(C) for other H atoms.

Table 2. Experimental details.

Crystal data
Chemical formula C17H17ClN3O+C2H3O2 C2H4O20.5C6H12
M r 475.96
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c () 21.0726(12), 6.0393(3), 18.6087(10)
() 92.096(2)
V (3) 2366.6(2)
Z 4
Radiation type Mo K
(mm1) 0.20
Crystal size (mm) 0.55 0.22 0.11
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2007)
T min, T max 0.647, 0.745
No. of measured, independent and observed [I > 2(I)] reflections 18828, 4860, 4177
R int 0.018
(sin /)max (1) 0.626
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.030, 0.082, 1.03
No. of reflections 4860
No. of parameters 312
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
max, min (e 3) 0.28, 0.22

Computer programs: APEX2 and SAINT (Bruker, 2007), SHELXS97 and SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), ORTEP-3 for Windows (Farrugia, 2012), enCIFer (Allen et al., 2004) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989014028096/su5039sup1.cif

e-71-00139-sup1.cif (32.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014028096/su5039Isup2.hkl

e-71-00139-Isup2.hkl (233.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989014028096/su5039Isup3.mol

Supporting information file. DOI: 10.1107/S2056989014028096/su5039Isup4.cml

CCDC reference: 1040948

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the UK Research Councils for funding under the project Control and Prediction of the Organic Solid State (www.cposs.org.uk). RMB thanks the Commonwealth Scholarship Commission for providing a scholarship.

supplementary crystallographic information

Crystal data

C17H17ClN3O+·C2H3O2·C2H4O2·0.5C6H12 F(000) = 1008
Mr = 475.96 Dx = 1.336 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 9940 reflections
a = 21.0726 (12) Å θ = 2.9–26.4°
b = 6.0393 (3) Å µ = 0.20 mm1
c = 18.6087 (10) Å T = 150 K
β = 92.096 (2)° Rod, colourless
V = 2366.6 (2) Å3 0.55 × 0.22 × 0.11 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 4860 independent reflections
Radiation source: fine-focus sealed tube 4177 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.018
φ and ω scans θmax = 26.4°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2007) h = −26→26
Tmin = 0.647, Tmax = 0.745 k = −6→7
18828 measured reflections l = −23→21

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0383P)2 + 1.089P] where P = (Fo2 + 2Fc2)/3
4860 reflections (Δ/σ)max = 0.001
312 parameters Δρmax = 0.28 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
H2N3 0.0503 (7) −0.014 (3) 0.3171 (8) 0.029 (4)*
H1N3 0.0584 (7) 0.167 (3) 0.2658 (9) 0.025 (4)*
H1S 0.1043 (10) 0.564 (4) 0.5635 (12) 0.064 (6)*
Cl 0.276361 (16) 0.39554 (6) 0.594267 (17) 0.02772 (10)
O1 0.30157 (4) 0.90957 (15) 0.32837 (5) 0.0225 (2)
O2S 0.07221 (4) 0.03016 (16) 0.13430 (5) 0.0259 (2)
O1S 0.01425 (4) 0.28471 (16) 0.18632 (5) 0.0234 (2)
N3 0.07793 (5) 0.09975 (18) 0.30430 (6) 0.0161 (2)
N2 0.19325 (5) 0.34168 (17) 0.31916 (5) 0.0160 (2)
N1 0.27645 (5) 0.48819 (18) 0.25813 (6) 0.0196 (2)
C4 0.33285 (6) 0.6088 (2) 0.25098 (7) 0.0198 (3)
C6 0.25997 (5) 0.4584 (2) 0.45099 (6) 0.0177 (2)
H6 0.2404 0.3204 0.4501 0.021*
C2S 0.03703 (5) 0.1974 (2) 0.13128 (6) 0.0175 (2)
C5 0.24619 (5) 0.4789 (2) 0.31684 (6) 0.0170 (2)
C2 0.29573 (5) 0.7852 (2) 0.39086 (7) 0.0183 (3)
C8 0.31125 (6) 0.7556 (2) 0.51865 (7) 0.0228 (3)
H8 0.3256 0.8140 0.5625 0.027*
C15 0.13972 (6) 0.0041 (2) 0.28291 (6) 0.0167 (2)
H15A 0.1326 −0.1006 0.2439 0.020*
H15B 0.1596 −0.0741 0.3233 0.020*
C1 0.26655 (5) 0.5783 (2) 0.38728 (7) 0.0168 (2)
C17 0.08763 (5) 0.2614 (2) 0.36432 (6) 0.0169 (2)
H17A 0.1044 0.1855 0.4068 0.020*
H17B 0.0473 0.3278 0.3757 0.020*
C7 0.28300 (6) 0.5483 (2) 0.51529 (7) 0.0200 (3)
C9 0.31772 (6) 0.8743 (2) 0.45570 (7) 0.0219 (3)
H9 0.3368 1.0133 0.4569 0.026*
C16 0.13360 (5) 0.4404 (2) 0.34257 (7) 0.0164 (2)
H16A 0.1145 0.5276 0.3037 0.020*
H16B 0.1425 0.5384 0.3830 0.020*
C10 0.39883 (6) 0.9372 (2) 0.26691 (7) 0.0264 (3)
H10 0.4059 1.0745 0.2884 0.032*
C3 0.34532 (6) 0.8156 (2) 0.28257 (7) 0.0208 (3)
C13 0.37702 (6) 0.5278 (2) 0.20305 (7) 0.0234 (3)
H13 0.3701 0.3911 0.1811 0.028*
C14 0.18287 (6) 0.1887 (2) 0.25899 (6) 0.0167 (2)
H14A 0.2231 0.1280 0.2446 0.020*
H14B 0.1634 0.2660 0.2182 0.020*
C12 0.43094 (6) 0.6479 (3) 0.18768 (7) 0.0275 (3)
H12 0.4600 0.5904 0.1562 0.033*
C1S 0.02027 (7) 0.2996 (3) 0.05945 (7) 0.0298 (3)
H1S1 −0.0177 0.2323 0.0396 0.045*
H1S2 0.0544 0.2763 0.0275 0.045*
H1S3 0.0134 0.4556 0.0653 0.045*
C11 0.44173 (6) 0.8535 (3) 0.21911 (8) 0.0297 (3)
H11 0.4776 0.9348 0.2082 0.036*
O4S 0.15853 (5) 0.90631 (17) 0.46941 (5) 0.0285 (2)
O3S 0.11677 (5) 0.61112 (17) 0.51804 (5) 0.0266 (2)
C4S 0.16200 (7) 0.8869 (2) 0.59805 (7) 0.0292 (3)
H4S1 0.1780 1.0354 0.5958 0.044*
H4S2 0.1937 0.7926 0.6202 0.044*
H4S3 0.1246 0.8849 0.6259 0.044*
C3S 0.14591 (6) 0.8053 (2) 0.52335 (7) 0.0212 (3)
C6S 0.44669 (7) 0.4352 (3) 0.45153 (8) 0.0347 (4)
H6S1 0.4659 0.3259 0.4209 0.042*
H6S2 0.4024 0.4505 0.4362 0.042*
C5S 0.45086 (7) 0.3553 (3) 0.52918 (9) 0.0363 (4)
H5S1 0.4317 0.2097 0.5322 0.044*
H5S2 0.4274 0.4555 0.5591 0.044*
C7S 0.48016 (7) 0.6561 (3) 0.44293 (9) 0.0370 (4)
H7S1 0.4580 0.7693 0.4691 0.044*
H7S2 0.4789 0.6974 0.3925 0.044*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl 0.02984 (17) 0.0361 (2) 0.01704 (16) 0.00076 (14) −0.00169 (12) 0.00358 (14)
O1 0.0221 (4) 0.0177 (4) 0.0275 (5) −0.0006 (4) −0.0010 (4) 0.0056 (4)
O2S 0.0311 (5) 0.0282 (5) 0.0183 (5) 0.0132 (4) 0.0001 (4) 0.0000 (4)
O1S 0.0258 (5) 0.0263 (5) 0.0179 (4) 0.0112 (4) 0.0001 (4) 0.0005 (4)
N3 0.0174 (5) 0.0156 (5) 0.0151 (5) −0.0033 (4) −0.0012 (4) 0.0029 (4)
N2 0.0154 (5) 0.0161 (5) 0.0165 (5) −0.0018 (4) 0.0005 (4) −0.0018 (4)
N1 0.0178 (5) 0.0222 (5) 0.0186 (5) −0.0040 (4) −0.0010 (4) 0.0033 (4)
C4 0.0183 (6) 0.0232 (7) 0.0175 (6) −0.0036 (5) −0.0034 (5) 0.0071 (5)
C6 0.0149 (5) 0.0185 (6) 0.0197 (6) 0.0015 (5) −0.0005 (4) −0.0006 (5)
C2S 0.0154 (5) 0.0197 (6) 0.0174 (6) −0.0009 (5) −0.0012 (4) 0.0017 (5)
C5 0.0164 (5) 0.0151 (6) 0.0192 (6) −0.0001 (5) −0.0024 (4) 0.0025 (5)
C2 0.0146 (5) 0.0179 (6) 0.0223 (6) 0.0017 (5) −0.0010 (5) 0.0020 (5)
C8 0.0184 (6) 0.0274 (7) 0.0222 (6) 0.0019 (5) −0.0036 (5) −0.0073 (6)
C15 0.0201 (6) 0.0144 (6) 0.0155 (6) 0.0002 (5) −0.0011 (4) 0.0011 (5)
C1 0.0133 (5) 0.0175 (6) 0.0196 (6) 0.0010 (4) −0.0013 (4) −0.0007 (5)
C17 0.0171 (5) 0.0184 (6) 0.0154 (6) −0.0001 (5) 0.0010 (4) 0.0006 (5)
C7 0.0166 (6) 0.0259 (7) 0.0175 (6) 0.0040 (5) −0.0005 (5) 0.0011 (5)
C9 0.0164 (6) 0.0192 (6) 0.0298 (7) −0.0009 (5) −0.0021 (5) −0.0047 (5)
C16 0.0173 (6) 0.0141 (6) 0.0179 (6) −0.0001 (4) 0.0003 (4) −0.0003 (5)
C10 0.0266 (7) 0.0256 (7) 0.0264 (7) −0.0086 (6) −0.0048 (5) 0.0074 (6)
C3 0.0184 (6) 0.0235 (7) 0.0202 (6) −0.0008 (5) −0.0029 (5) 0.0074 (5)
C13 0.0228 (6) 0.0281 (7) 0.0193 (6) −0.0038 (5) −0.0009 (5) 0.0039 (6)
C14 0.0176 (5) 0.0173 (6) 0.0150 (6) −0.0011 (5) −0.0001 (4) −0.0002 (5)
C12 0.0211 (6) 0.0394 (8) 0.0221 (7) −0.0036 (6) 0.0017 (5) 0.0069 (6)
C1S 0.0350 (7) 0.0344 (8) 0.0197 (7) 0.0083 (6) −0.0014 (6) 0.0068 (6)
C11 0.0221 (6) 0.0392 (8) 0.0278 (7) −0.0122 (6) −0.0008 (5) 0.0099 (6)
O4S 0.0308 (5) 0.0296 (5) 0.0254 (5) 0.0071 (4) 0.0062 (4) 0.0109 (4)
O3S 0.0309 (5) 0.0308 (5) 0.0182 (5) −0.0071 (4) 0.0018 (4) 0.0010 (4)
C4S 0.0341 (7) 0.0292 (8) 0.0244 (7) −0.0058 (6) 0.0035 (6) −0.0020 (6)
C3S 0.0188 (6) 0.0233 (7) 0.0215 (6) 0.0054 (5) 0.0027 (5) 0.0031 (5)
C6S 0.0226 (7) 0.0481 (9) 0.0332 (8) 0.0057 (6) −0.0017 (6) −0.0085 (7)
C5S 0.0256 (7) 0.0440 (9) 0.0394 (9) 0.0011 (6) 0.0031 (6) −0.0021 (7)
C7S 0.0302 (8) 0.0467 (9) 0.0341 (8) 0.0076 (7) −0.0009 (6) 0.0030 (7)

Geometric parameters (Å, º)

Cl—C7 1.7450 (13) C16—H16A 0.9700
O1—C2 1.3936 (15) C16—H16B 0.9700
O1—C3 1.3985 (16) C10—C3 1.3856 (18)
O2S—C2S 1.2529 (15) C10—C11 1.387 (2)
O1S—C2S 1.2623 (15) C10—H10 0.9300
N3—C15 1.4918 (15) C13—C12 1.3866 (18)
N3—C17 1.4919 (16) C13—H13 0.9300
N3—H2N3 0.938 (17) C14—H14A 0.9700
N3—H1N3 0.908 (16) C14—H14B 0.9700
N2—C5 1.3916 (15) C12—C11 1.388 (2)
N2—C14 1.4618 (15) C12—H12 0.9300
N2—C16 1.4716 (15) C1S—H1S1 0.9600
N1—C5 1.2863 (16) C1S—H1S2 0.9600
N1—C4 1.4044 (16) C1S—H1S3 0.9600
C4—C13 1.4006 (19) C11—H11 0.9300
C4—C3 1.4010 (19) O4S—C3S 1.2125 (16)
C6—C7 1.3852 (17) O3S—C3S 1.3256 (16)
C6—C1 1.4005 (17) O3S—H1S 0.94 (2)
C6—H6 0.9300 C4S—C3S 1.5019 (19)
C2S—C1S 1.5027 (17) C4S—H4S1 0.9600
C5—C1 1.4905 (17) C4S—H4S2 0.9600
C2—C9 1.3854 (18) C4S—H4S3 0.9600
C2—C1 1.3929 (17) C6S—C7S 1.520 (2)
C8—C9 1.3845 (19) C6S—C5S 1.523 (2)
C8—C7 1.3867 (19) C6S—H6S1 0.9700
C8—H8 0.9300 C6S—H6S2 0.9700
C15—C14 1.5156 (16) C5S—C7Si 1.527 (2)
C15—H15A 0.9700 C5S—H5S1 0.9700
C15—H15B 0.9700 C5S—H5S2 0.9700
C17—C16 1.5164 (16) C7S—C5Si 1.527 (2)
C17—H17A 0.9700 C7S—H7S1 0.9700
C17—H17B 0.9700 C7S—H7S2 0.9700
C9—H9 0.9300
C2—O1—C3 111.72 (9) C3—C10—C11 119.77 (13)
C15—N3—C17 110.86 (9) C3—C10—H10 120.1
C15—N3—H2N3 110.0 (10) C11—C10—H10 120.1
C17—N3—H2N3 111.0 (10) C10—C3—O1 118.21 (12)
C15—N3—H1N3 109.7 (9) C10—C3—C4 121.72 (13)
C17—N3—H1N3 110.1 (10) O1—C3—C4 119.99 (11)
H2N3—N3—H1N3 105.1 (13) C12—C13—C4 121.16 (13)
C5—N2—C14 116.76 (10) C12—C13—H13 119.4
C5—N2—C16 117.53 (10) C4—C13—H13 119.4
C14—N2—C16 112.18 (9) N2—C14—C15 108.33 (9)
C5—N1—C4 123.41 (11) N2—C14—H14A 110.0
C13—C4—C3 117.37 (12) C15—C14—H14A 110.0
C13—C4—N1 117.62 (12) N2—C14—H14B 110.0
C3—C4—N1 124.68 (12) C15—C14—H14B 110.0
C7—C6—C1 119.10 (12) H14A—C14—H14B 108.4
C7—C6—H6 120.4 C13—C12—C11 120.26 (13)
C1—C6—H6 120.4 C13—C12—H12 119.9
O2S—C2S—O1S 122.84 (11) C11—C12—H12 119.9
O2S—C2S—C1S 119.38 (11) C2S—C1S—H1S1 109.5
O1S—C2S—C1S 117.79 (11) C2S—C1S—H1S2 109.5
N1—C5—N2 118.38 (11) H1S1—C1S—H1S2 109.5
N1—C5—C1 126.41 (11) C2S—C1S—H1S3 109.5
N2—C5—C1 114.71 (10) H1S1—C1S—H1S3 109.5
C9—C2—C1 121.55 (12) H1S2—C1S—H1S3 109.5
C9—C2—O1 118.71 (11) C10—C11—C12 119.73 (13)
C1—C2—O1 119.72 (11) C10—C11—H11 120.1
C9—C8—C7 119.01 (12) C12—C11—H11 120.1
C9—C8—H8 120.5 C3S—O3S—H1S 110.1 (14)
C7—C8—H8 120.5 C3S—C4S—H4S1 109.5
N3—C15—C14 109.42 (10) C3S—C4S—H4S2 109.5
N3—C15—H15A 109.8 H4S1—C4S—H4S2 109.5
C14—C15—H15A 109.8 C3S—C4S—H4S3 109.5
N3—C15—H15B 109.8 H4S1—C4S—H4S3 109.5
C14—C15—H15B 109.8 H4S2—C4S—H4S3 109.5
H15A—C15—H15B 108.2 O4S—C3S—O3S 119.90 (12)
C2—C1—C6 118.71 (11) O4S—C3S—C4S 123.51 (13)
C2—C1—C5 121.06 (11) O3S—C3S—C4S 116.59 (11)
C6—C1—C5 120.13 (11) C7S—C6S—C5S 111.54 (13)
N3—C17—C16 109.77 (9) C7S—C6S—H6S1 109.3
N3—C17—H17A 109.7 C5S—C6S—H6S1 109.3
C16—C17—H17A 109.7 C7S—C6S—H6S2 109.3
N3—C17—H17B 109.7 C5S—C6S—H6S2 109.3
C16—C17—H17B 109.7 H6S1—C6S—H6S2 108.0
H17A—C17—H17B 108.2 C6S—C5S—C7Si 110.96 (13)
C6—C7—C8 121.92 (12) C6S—C5S—H5S1 109.4
C6—C7—Cl 118.96 (10) C7Si—C5S—H5S1 109.4
C8—C7—Cl 119.13 (10) C6S—C5S—H5S2 109.4
C8—C9—C2 119.70 (12) C7Si—C5S—H5S2 109.4
C8—C9—H9 120.2 H5S1—C5S—H5S2 108.0
C2—C9—H9 120.2 C6S—C7S—C5Si 111.37 (13)
N2—C16—C17 110.55 (10) C6S—C7S—H7S1 109.4
N2—C16—H16A 109.5 C5Si—C7S—H7S1 109.4
C17—C16—H16A 109.5 C6S—C7S—H7S2 109.4
N2—C16—H16B 109.5 C5Si—C7S—H7S2 109.4
C17—C16—H16B 109.5 H7S1—C7S—H7S2 108.0
H16A—C16—H16B 108.1
C5—N1—C4—C13 148.72 (12) C9—C8—C7—Cl 178.58 (9)
C5—N1—C4—C3 −38.18 (18) C7—C8—C9—C2 0.34 (18)
C4—N1—C5—N2 −175.55 (11) C1—C2—C9—C8 0.53 (18)
C4—N1—C5—C1 −4.1 (2) O1—C2—C9—C8 178.70 (11)
C14—N2—C5—N1 10.69 (16) C5—N2—C16—C17 −162.34 (10)
C16—N2—C5—N1 −127.00 (12) C14—N2—C16—C17 58.13 (12)
C14—N2—C5—C1 −161.70 (10) N3—C17—C16—N2 −54.59 (12)
C16—N2—C5—C1 60.61 (14) C11—C10—C3—O1 −177.05 (11)
C3—O1—C2—C9 111.88 (12) C11—C10—C3—C4 −0.4 (2)
C3—O1—C2—C1 −69.92 (13) C2—O1—C3—C10 −117.96 (12)
C17—N3—C15—C14 −59.51 (12) C2—O1—C3—C4 65.30 (14)
C9—C2—C1—C6 −0.46 (17) C13—C4—C3—C10 0.51 (18)
O1—C2—C1—C6 −178.62 (10) N1—C4—C3—C10 −172.60 (12)
C9—C2—C1—C5 −176.70 (11) C13—C4—C3—O1 177.14 (11)
O1—C2—C1—C5 5.14 (17) N1—C4—C3—O1 4.02 (18)
C7—C6—C1—C2 −0.46 (17) C3—C4—C13—C12 0.09 (18)
C7—C6—C1—C5 175.81 (11) N1—C4—C13—C12 173.70 (12)
N1—C5—C1—C2 38.92 (18) C5—N2—C14—C15 159.85 (10)
N2—C5—C1—C2 −149.41 (11) C16—N2—C14—C15 −60.29 (12)
N1—C5—C1—C6 −137.27 (13) N3—C15—C14—N2 60.12 (12)
N2—C5—C1—C6 34.41 (16) C4—C13—C12—C11 −0.8 (2)
C15—N3—C17—C16 56.29 (12) C3—C10—C11—C12 −0.4 (2)
C1—C6—C7—C8 1.35 (18) C13—C12—C11—C10 1.0 (2)
C1—C6—C7—Cl −178.52 (9) C7S—C6S—C5S—C7Si −55.20 (19)
C9—C8—C7—C6 −1.29 (18) C5S—C6S—C7S—C5Si 55.42 (18)

Symmetry code: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N3—H1N3···O1S 0.91 (2) 1.86 (2) 2.7664 (13) 175 (2)
O3S—H1S···O2Sii 0.94 (2) 1.61 (2) 2.5375 (13) 171 (2)
N3—H2N3···O1Siii 0.94 (2) 1.82 (2) 2.7292 (14) 162 (1)
C1S—H1S1···O3Siii 0.96 2.42 3.3778 (18) 172
C14—H14A···O1iv 0.97 2.59 3.2448 (15) 125
C17—H17A···O4Siv 0.97 2.32 3.2314 (15) 155

Symmetry codes: (ii) x, −y+1/2, z+1/2; (iii) −x, y−1/2, −z+1/2; (iv) x, y−1, z.

References

  1. Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
  2. Bhardwaj, R. M. & Florence, A. J. (2013). Acta Cryst. E69, o752–o753. [DOI] [PMC free article] [PubMed]
  3. Bhardwaj, R. M., Johnston, B. F., Oswald, I. D. H. & Florence, A. J. (2013). Acta Cryst. C69, 1273–1278. [DOI] [PubMed]
  4. Bhardwaj, R. M., Price, L. S., Price, S. L., Reutzel-Edens, S. M., Miller, G. J., Oswald, I. D. H., Johnston, B. & Florence, A. J. (2013). Cryst. Growth Des. 13, 1602–1617.
  5. Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Cosulich, D. B. & Lovell, F. M. (1977). Acta Cryst. B33, 1147–1154.
  7. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  8. Florence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci. 92, 1930–1938. [DOI] [PubMed]
  9. Greenbla, E. & Osterber, A. (1968). Fed. Proc. 27, 438.
  10. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989014028096/su5039sup1.cif

e-71-00139-sup1.cif (32.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014028096/su5039Isup2.hkl

e-71-00139-Isup2.hkl (233.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989014028096/su5039Isup3.mol

Supporting information file. DOI: 10.1107/S2056989014028096/su5039Isup4.cml

CCDC reference: 1040948

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES