Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jan 14;71(Pt 2):m24–m25. doi: 10.1107/S2056989015000201

Crystal structure of bis­(azido-κN)bis­[2,5-bis­(pyridin-2-yl)-1,3,4-thia­diazole-κ2 N 2,N 3]nickel(II)

Abdelhakim Laachir a, Fouad Bentiss b,*, Salaheddine Guesmi a, Mohamed Saadi c, Lahcen El Ammari c
PMCID: PMC4384553  PMID: 25878837

Abstract

Reaction of 2,5-bis­(pyridin-2-yl)-1,3,4-thia­diazole and sodium azide with nickel(II) triflate yielded the mononuclear title complex, [Ni(N3)2(C12H8N4S)2]. The NiII ion is located on a centre of symmetry and is octa­hedrally coordinated by four N atoms of the two bidentate heterocyclic ligands in the equatorial plane. The axial positions are occupied by the N atoms of two almost linear azide ions [N—N—N = 178.8 (2)°]. The thia­diazole and pyridine rings of the heterocyclic ligand are almost coplanar, with a maximum deviation from the mean plane of 0.0802 (9) Å. The cohesion of the crystal structure is ensured by π–π inter­actions between parallel pyridine rings of neighbouring mol­ecules [centroid-to-centroid distance = 3.6413 (14) Å], leading to a layered arrangement of the mol­ecules parallel to (001).

Keywords: crystal structure; mononuclear nickel(II) complex; 1,3,4-thia­diazole; azide ligand; π–π inter­actions

Related literature  

2,5-Bis(pyridin-2-yl)-1,3,4-thia­diazole has been used as a bidentate or tetra­dentate ligand forming mononuclear (Bentiss et al., 2004, 2011a , 2012; Zheng et al., 2006) or dinuclear complexes (Laachir et al., 2013). Coordination of the azide ion to transition metals results in compounds with inter­esting magnetic properties (Machura et al., 2011; Świtlicka-Olszewska et al., 2014). The iron salt with the same heterocyclic ligand and thio­cyanate as the pseudohalide was reported by Klingele et al. (2010). For the crystal structure of the related tetra­fluorido­borate salt of [Ni(C12H8N4S)2(H2O)2], see: Bentiss et al. (2011b ). For the synthesis of the heterocyclic ligand, see: Lebrini et al. (2005).graphic file with name e-71-00m24-scheme1.jpg

Experimental  

Crystal data  

  • [Ni(N3)2(C12H8N4S)2]

  • M r = 623.34

  • Monoclinic, Inline graphic

  • a = 7.7981 (3) Å

  • b = 8.2410 (3) Å

  • c = 20.1555 (7) Å

  • β = 93.141 (2)°

  • V = 1293.33 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.96 mm−1

  • T = 296 K

  • 0.39 × 0.31 × 0.18 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.640, T max = 0.747

  • 15710 measured reflections

  • 3077 independent reflections

  • 2643 reflections with I > 2σ(I)

  • R int = 0.033

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.100

  • S = 1.04

  • 3077 reflections

  • 187 parameters

  • H-atom parameters constrained

  • Δρmax = 1.25 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015000201/wm5108sup1.cif

e-71-00m24-sup1.cif (20.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015000201/wm5108Isup2.hkl

e-71-00m24-Isup2.hkl (151KB, hkl)

x y z . DOI: 10.1107/S2056989015000201/wm5108fig1.tif

The mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as spheres of arbitrary radius. [Symmetry code: (i) −x + 2, −y + 1, −z + 2.]

. DOI: 10.1107/S2056989015000201/wm5108fig2.tif

The crystal packing of the title compound, showing inter­molecular π–π inter­actions between pyridyl rings (dashed green lines).

CCDC reference: 1042351

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

supplementary crystallographic information

S1. Experimental

The 2,5-bis(2-pyridyl)-1,3,4-thiadiazole ligand (noted L) was synthesized as described previously by Lebrini et al. (2005). Ni2L2(N3)2 was obtained in bulk quantity by dropwise addition of an aqueous solution of NaN3 (0.4 mmol, 26 mg) to an ethanol/water solution of L (0.1 mmol, 24 mg) and Ni(O3SCF3)2 (0.1 mmol, 36 mg) under constant stirring at room temperature. An orange coloured solid was precipitated, filtered and washed with cold ethanol. Single crystals of Ni2L2(N3)2 were grown by slow interdiffusion of a solution of Ni(O3SCF3)2 and L in acetonitrile into NaN3 dissolved in water. Orange block-shaped single crystals appeared after one month. The crystals were washed with water and dried under vacuum (yield 50%).

CAUTION. Azide compounds are potentially explosive. Only a small amount of material should be prepared and handled with care.

S2. Refinement

H atoms were located in a difference map and treated as riding with C—H = 0.96 Å and with Uiso(H) = 1.2Ueq(C). The highest electron density was found 1.65 Å from atom H1. The vicinity of this peak to the H1 atom and the requirement for electroneutrality made it seem possible that this electron density might be associated with an underoccupied water molecule. However, the Ueq value of the so modelled O atom (occupancy < 0.05) refined to negative values and hence this electron density was not considered in the final model.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as spheres of arbitrary radius. [Symmetry code: (i) -x + 2, -y + 1, -z + 2.]

Fig. 2.

Fig. 2.

The crystal packing of the title compound, showing intermolecular π–π interactions between pyridyl rings (dashed green lines).

Crystal data

[Ni(N3)2(C12H8N4S)2] F(000) = 636
Mr = 623.34 Dx = 1.601 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3077 reflections
a = 7.7981 (3) Å θ = 2.6–27.9°
b = 8.2410 (3) Å µ = 0.96 mm1
c = 20.1555 (7) Å T = 296 K
β = 93.141 (2)° Block, orange
V = 1293.33 (8) Å3 0.39 × 0.31 × 0.18 mm
Z = 2

Data collection

Bruker APEXII CCD diffractometer 3077 independent reflections
Radiation source: fine-focus sealed tube 2643 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.033
φ and ω scans θmax = 27.9°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −10→9
Tmin = 0.640, Tmax = 0.747 k = −10→10
15710 measured reflections l = −26→26

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0522P)2 + 0.8063P] where P = (Fo2 + 2Fc2)/3
3077 reflections (Δ/σ)max < 0.001
187 parameters Δρmax = 1.25 e Å3
0 restraints Δρmin = −0.35 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 1.3016 (3) 0.4676 (3) 0.90640 (11) 0.0356 (5)
H1 1.3538 0.4022 0.9392 0.043*
C2 1.3853 (3) 0.4935 (3) 0.84813 (12) 0.0397 (5)
H2 1.4916 0.4460 0.8423 0.048*
C3 1.3091 (3) 0.5902 (3) 0.79925 (10) 0.0380 (5)
H3 1.3630 0.6089 0.7599 0.046*
C4 1.1511 (3) 0.6589 (3) 0.80960 (10) 0.0350 (4)
H4 1.0966 0.7246 0.7774 0.042*
C5 1.0759 (2) 0.6281 (2) 0.86873 (9) 0.0292 (4)
C6 0.9114 (3) 0.6956 (3) 0.88563 (9) 0.0304 (4)
C7 0.6422 (2) 0.8193 (2) 0.90011 (10) 0.0313 (4)
C8 0.4793 (3) 0.9088 (3) 0.89219 (11) 0.0336 (4)
C9 0.3101 (4) 1.0642 (4) 0.82288 (15) 0.0575 (7)
H9 0.2915 1.1167 0.7823 0.069*
C10 0.1844 (3) 1.0747 (3) 0.86751 (15) 0.0536 (7)
H10 0.0843 1.1332 0.8575 0.064*
C11 0.2099 (3) 0.9966 (3) 0.92746 (14) 0.0498 (6)
H11 0.1274 1.0021 0.9590 0.060*
C12 0.3601 (3) 0.9095 (3) 0.94026 (11) 0.0401 (5)
H12 0.3799 0.8534 0.9800 0.048*
N1 1.1488 (2) 0.5333 (2) 0.91692 (8) 0.0298 (4)
N2 0.8473 (2) 0.6603 (2) 0.94235 (8) 0.0313 (4)
N3 0.6911 (2) 0.7303 (2) 0.95059 (8) 0.0320 (4)
N4 0.4563 (3) 0.9844 (2) 0.83359 (11) 0.0463 (5)
N5 0.8723 (3) 0.3030 (2) 0.95247 (9) 0.0427 (4)
N6 0.8332 (2) 0.3118 (2) 0.89483 (9) 0.0385 (4)
N7 0.7973 (3) 0.3188 (3) 0.83827 (11) 0.0645 (7)
S1 0.78523 (7) 0.82456 (7) 0.83744 (3) 0.03745 (15)
Ni1 1.0000 0.5000 1.0000 0.02650 (12)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0333 (11) 0.0420 (11) 0.0319 (10) 0.0063 (9) 0.0056 (8) 0.0008 (9)
C2 0.0340 (11) 0.0477 (13) 0.0387 (12) 0.0036 (9) 0.0120 (9) −0.0044 (9)
C3 0.0386 (11) 0.0478 (13) 0.0288 (10) −0.0037 (10) 0.0128 (8) −0.0036 (9)
C4 0.0374 (11) 0.0451 (12) 0.0228 (9) 0.0007 (9) 0.0050 (8) 0.0023 (8)
C5 0.0301 (9) 0.0351 (10) 0.0226 (9) 0.0005 (8) 0.0046 (7) −0.0011 (7)
C6 0.0309 (9) 0.0385 (11) 0.0219 (9) 0.0017 (8) 0.0008 (7) 0.0026 (8)
C7 0.0290 (9) 0.0367 (10) 0.0283 (9) 0.0022 (8) 0.0027 (7) 0.0006 (8)
C8 0.0291 (10) 0.0329 (10) 0.0385 (11) 0.0033 (8) 0.0006 (8) −0.0013 (8)
C9 0.0508 (15) 0.0563 (16) 0.0656 (17) 0.0155 (13) 0.0046 (13) 0.0247 (14)
C10 0.0362 (12) 0.0439 (14) 0.081 (2) 0.0158 (11) 0.0015 (12) −0.0001 (13)
C11 0.0355 (12) 0.0543 (15) 0.0608 (16) −0.0010 (10) 0.0129 (11) −0.0183 (12)
C12 0.0398 (12) 0.0451 (13) 0.0354 (11) −0.0025 (10) 0.0021 (9) −0.0026 (9)
N1 0.0312 (8) 0.0357 (9) 0.0229 (8) 0.0022 (7) 0.0045 (6) 0.0003 (6)
N2 0.0298 (8) 0.0410 (9) 0.0235 (8) 0.0063 (7) 0.0045 (6) 0.0019 (7)
N3 0.0283 (8) 0.0407 (9) 0.0271 (8) 0.0072 (7) 0.0029 (6) 0.0014 (7)
N4 0.0380 (10) 0.0508 (12) 0.0507 (12) 0.0098 (9) 0.0090 (9) 0.0182 (9)
N5 0.0501 (11) 0.0467 (11) 0.0315 (9) −0.0058 (9) 0.0040 (8) −0.0017 (8)
N6 0.0304 (9) 0.0464 (11) 0.0387 (10) 0.0060 (8) 0.0015 (7) −0.0129 (8)
N7 0.0631 (15) 0.0907 (19) 0.0379 (12) 0.0154 (13) −0.0121 (10) −0.0185 (12)
S1 0.0343 (3) 0.0496 (3) 0.0289 (3) 0.0091 (2) 0.00513 (19) 0.0117 (2)
Ni1 0.02602 (19) 0.0358 (2) 0.01789 (17) 0.00586 (14) 0.00320 (12) 0.00259 (13)

Geometric parameters (Å, º)

C1—N1 1.336 (3) C9—N4 1.324 (3)
C1—C2 1.391 (3) C9—C10 1.369 (4)
C1—H1 0.9300 C9—H9 0.9300
C2—C3 1.376 (3) C10—C11 1.374 (4)
C2—H2 0.9300 C10—H10 0.9300
C3—C4 1.382 (3) C11—C12 1.386 (3)
C3—H3 0.9300 C11—H11 0.9300
C4—C5 1.380 (3) C12—H12 0.9300
C4—H4 0.9300 N1—Ni1 2.1069 (17)
C5—N1 1.348 (2) N2—N3 1.366 (2)
C5—C6 1.456 (3) N2—Ni1 2.0885 (16)
C6—N2 1.305 (3) N5—N6 1.187 (3)
C6—S1 1.714 (2) N5—Ni1 2.1075 (19)
C7—N3 1.295 (2) N6—N7 1.160 (3)
C7—C8 1.470 (3) Ni1—N2i 2.0885 (16)
C7—S1 1.731 (2) Ni1—N1i 2.1069 (17)
C8—N4 1.339 (3) Ni1—N5i 2.108 (2)
C8—C12 1.379 (3)
N1—C1—C2 122.4 (2) C10—C11—H11 120.5
N1—C1—H1 118.8 C12—C11—H11 120.5
C2—C1—H1 118.8 C8—C12—C11 117.8 (2)
C3—C2—C1 119.3 (2) C8—C12—H12 121.1
C3—C2—H2 120.4 C11—C12—H12 121.1
C1—C2—H2 120.4 C1—N1—C5 117.71 (18)
C2—C3—C4 118.9 (2) C1—N1—Ni1 127.46 (15)
C2—C3—H3 120.6 C5—N1—Ni1 114.79 (13)
C4—C3—H3 120.6 C6—N2—N3 113.55 (16)
C5—C4—C3 118.63 (19) C6—N2—Ni1 113.19 (13)
C5—C4—H4 120.7 N3—N2—Ni1 133.19 (13)
C3—C4—H4 120.7 C7—N3—N2 111.69 (16)
N1—C5—C4 123.14 (19) C9—N4—C8 116.6 (2)
N1—C5—C6 113.27 (17) N6—N5—Ni1 119.16 (16)
C4—C5—C6 123.58 (18) N7—N6—N5 178.8 (2)
N2—C6—C5 120.32 (18) C6—S1—C7 86.77 (9)
N2—C6—S1 113.49 (15) N2—Ni1—N2i 180.00 (7)
C5—C6—S1 126.18 (15) N2—Ni1—N1 78.32 (6)
N3—C7—C8 125.80 (19) N2i—Ni1—N1 101.68 (6)
N3—C7—S1 114.47 (15) N2—Ni1—N1i 101.68 (6)
C8—C7—S1 119.72 (15) N2i—Ni1—N1i 78.32 (6)
N4—C8—C12 123.7 (2) N1—Ni1—N1i 180.000 (1)
N4—C8—C7 113.74 (19) N2—Ni1—N5 89.63 (8)
C12—C8—C7 122.5 (2) N2i—Ni1—N5 90.37 (8)
N4—C9—C10 124.4 (3) N1—Ni1—N5 90.35 (7)
N4—C9—H9 117.8 N1i—Ni1—N5 89.65 (7)
C10—C9—H9 117.8 N2—Ni1—N5i 90.37 (8)
C9—C10—C11 118.3 (2) N2i—Ni1—N5i 89.63 (8)
C9—C10—H10 120.8 N1—Ni1—N5i 89.65 (7)
C11—C10—H10 120.8 N1i—Ni1—N5i 90.35 (7)
C10—C11—C12 119.1 (2) N5—Ni1—N5i 179.998 (1)

Symmetry code: (i) −x+2, −y+1, −z+2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: WM5108).

References

  1. Bentiss, F., Capet, F., Lagrenée, M., Saadi, M. & El Ammari, L. (2011a). Acta Cryst. E67, m1052–m1053. [DOI] [PMC free article] [PubMed]
  2. Bentiss, F., Capet, F., Lagrenée, M., Saadi, M. & El Ammari, L. (2011b). Acta Cryst. E67, m834–m835. [DOI] [PMC free article] [PubMed]
  3. Bentiss, F., Lagrenée, M., Vezin, H., Wignacourt, J. P. & Holt, E. M. (2004). Polyhedron, 23, 1903–1907. [DOI] [PubMed]
  4. Bentiss, F., Outirite, M., Lagrenée, M., Saadi, M. & El Ammari, L. (2012). Acta Cryst. E68, m360–m361. [DOI] [PMC free article] [PubMed]
  5. Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Klingele, J., Kaase, D., Klingele, M. H., Lach, J. & Demeshko, S. (2010). Dalton Trans. 39, 1689–1691. [DOI] [PubMed]
  8. Laachir, A., Bentiss, F., Guesmi, S., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, m351–m352. [DOI] [PMC free article] [PubMed]
  9. Lebrini, M., Bentiss, F. & Lagrenée, M. (2005). J. Heterocycl. Chem. 42, 991–994.
  10. Machura, B., Świtlicka, A., Nawrot, I., Mroziński, J. & Michalik, K. (2011). Polyhedron, 30, 2815–2823.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Świtlicka-Olszewska, A., Machura, B. & Mroziński, J. (2014). Inorg. Chem. Commun. 43, 86–89.
  13. Zheng, X.-F., Wan, X.-S., Liu, W., Niu, C.-Y. & Kou, C.-H. (2006). Z. Kristallogr., 221, 543–544.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015000201/wm5108sup1.cif

e-71-00m24-sup1.cif (20.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015000201/wm5108Isup2.hkl

e-71-00m24-Isup2.hkl (151KB, hkl)

x y z . DOI: 10.1107/S2056989015000201/wm5108fig1.tif

The mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as spheres of arbitrary radius. [Symmetry code: (i) −x + 2, −y + 1, −z + 2.]

. DOI: 10.1107/S2056989015000201/wm5108fig2.tif

The crystal packing of the title compound, showing inter­molecular π–π inter­actions between pyridyl rings (dashed green lines).

CCDC reference: 1042351

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES