Abstract
Reaction of 2,5-bis(pyridin-2-yl)-1,3,4-thiadiazole and sodium azide with nickel(II) triflate yielded the mononuclear title complex, [Ni(N3)2(C12H8N4S)2]. The NiII ion is located on a centre of symmetry and is octahedrally coordinated by four N atoms of the two bidentate heterocyclic ligands in the equatorial plane. The axial positions are occupied by the N atoms of two almost linear azide ions [N—N—N = 178.8 (2)°]. The thiadiazole and pyridine rings of the heterocyclic ligand are almost coplanar, with a maximum deviation from the mean plane of 0.0802 (9) Å. The cohesion of the crystal structure is ensured by π–π interactions between parallel pyridine rings of neighbouring molecules [centroid-to-centroid distance = 3.6413 (14) Å], leading to a layered arrangement of the molecules parallel to (001).
Keywords: crystal structure; mononuclear nickel(II) complex; 1,3,4-thiadiazole; azide ligand; π–π interactions
Related literature
2,5-Bis(pyridin-2-yl)-1,3,4-thiadiazole has been used as a bidentate or tetradentate ligand forming mononuclear (Bentiss et al., 2004 ▸, 2011a
▸, 2012 ▸; Zheng et al., 2006 ▸) or dinuclear complexes (Laachir et al., 2013 ▸). Coordination of the azide ion to transition metals results in compounds with interesting magnetic properties (Machura et al., 2011 ▸; Świtlicka-Olszewska et al., 2014 ▸). The iron salt with the same heterocyclic ligand and thiocyanate as the pseudohalide was reported by Klingele et al. (2010 ▸). For the crystal structure of the related tetrafluoridoborate salt of [Ni(C12H8N4S)2(H2O)2], see: Bentiss et al. (2011b
▸). For the synthesis of the heterocyclic ligand, see: Lebrini et al. (2005 ▸).
Experimental
Crystal data
[Ni(N3)2(C12H8N4S)2]
M r = 623.34
Monoclinic,
a = 7.7981 (3) Å
b = 8.2410 (3) Å
c = 20.1555 (7) Å
β = 93.141 (2)°
V = 1293.33 (8) Å3
Z = 2
Mo Kα radiation
μ = 0.96 mm−1
T = 296 K
0.39 × 0.31 × 0.18 mm
Data collection
Bruker APEXII CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2009 ▸) T min = 0.640, T max = 0.747
15710 measured reflections
3077 independent reflections
2643 reflections with I > 2σ(I)
R int = 0.033
Refinement
R[F 2 > 2σ(F 2)] = 0.036
wR(F 2) = 0.100
S = 1.04
3077 reflections
187 parameters
H-atom parameters constrained
Δρmax = 1.25 e Å−3
Δρmin = −0.35 e Å−3
Data collection: APEX2 (Bruker, 2009 ▸); cell refinement: SAINT (Bruker, 2009 ▸); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▸); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▸); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012 ▸); software used to prepare material for publication: WinGX (Farrugia, 2012 ▸).
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015000201/wm5108sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015000201/wm5108Isup2.hkl
x y z . DOI: 10.1107/S2056989015000201/wm5108fig1.tif
The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as spheres of arbitrary radius. [Symmetry code: (i) −x + 2, −y + 1, −z + 2.]
. DOI: 10.1107/S2056989015000201/wm5108fig2.tif
The crystal packing of the title compound, showing intermolecular π–π interactions between pyridyl rings (dashed green lines).
CCDC reference: 1042351
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.
supplementary crystallographic information
S1. Experimental
The 2,5-bis(2-pyridyl)-1,3,4-thiadiazole ligand (noted L) was synthesized as described previously by Lebrini et al. (2005). Ni2L2(N3)2 was obtained in bulk quantity by dropwise addition of an aqueous solution of NaN3 (0.4 mmol, 26 mg) to an ethanol/water solution of L (0.1 mmol, 24 mg) and Ni(O3SCF3)2 (0.1 mmol, 36 mg) under constant stirring at room temperature. An orange coloured solid was precipitated, filtered and washed with cold ethanol. Single crystals of Ni2L2(N3)2 were grown by slow interdiffusion of a solution of Ni(O3SCF3)2 and L in acetonitrile into NaN3 dissolved in water. Orange block-shaped single crystals appeared after one month. The crystals were washed with water and dried under vacuum (yield 50%).
CAUTION. Azide compounds are potentially explosive. Only a small amount of material should be prepared and handled with care.
S2. Refinement
H atoms were located in a difference map and treated as riding with C—H = 0.96 Å and with Uiso(H) = 1.2Ueq(C). The highest electron density was found 1.65 Å from atom H1. The vicinity of this peak to the H1 atom and the requirement for electroneutrality made it seem possible that this electron density might be associated with an underoccupied water molecule. However, the Ueq value of the so modelled O atom (occupancy < 0.05) refined to negative values and hence this electron density was not considered in the final model.
Figures
Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as spheres of arbitrary radius. [Symmetry code: (i) -x + 2, -y + 1, -z + 2.]
Fig. 2.

The crystal packing of the title compound, showing intermolecular π–π interactions between pyridyl rings (dashed green lines).
Crystal data
| [Ni(N3)2(C12H8N4S)2] | F(000) = 636 |
| Mr = 623.34 | Dx = 1.601 Mg m−3 |
| Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: -P 2ybc | Cell parameters from 3077 reflections |
| a = 7.7981 (3) Å | θ = 2.6–27.9° |
| b = 8.2410 (3) Å | µ = 0.96 mm−1 |
| c = 20.1555 (7) Å | T = 296 K |
| β = 93.141 (2)° | Block, orange |
| V = 1293.33 (8) Å3 | 0.39 × 0.31 × 0.18 mm |
| Z = 2 |
Data collection
| Bruker APEXII CCD diffractometer | 3077 independent reflections |
| Radiation source: fine-focus sealed tube | 2643 reflections with I > 2σ(I) |
| Graphite monochromator | Rint = 0.033 |
| φ and ω scans | θmax = 27.9°, θmin = 2.6° |
| Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −10→9 |
| Tmin = 0.640, Tmax = 0.747 | k = −10→10 |
| 15710 measured reflections | l = −26→26 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.100 | H-atom parameters constrained |
| S = 1.04 | w = 1/[σ2(Fo2) + (0.0522P)2 + 0.8063P] where P = (Fo2 + 2Fc2)/3 |
| 3077 reflections | (Δ/σ)max < 0.001 |
| 187 parameters | Δρmax = 1.25 e Å−3 |
| 0 restraints | Δρmin = −0.35 e Å−3 |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| C1 | 1.3016 (3) | 0.4676 (3) | 0.90640 (11) | 0.0356 (5) | |
| H1 | 1.3538 | 0.4022 | 0.9392 | 0.043* | |
| C2 | 1.3853 (3) | 0.4935 (3) | 0.84813 (12) | 0.0397 (5) | |
| H2 | 1.4916 | 0.4460 | 0.8423 | 0.048* | |
| C3 | 1.3091 (3) | 0.5902 (3) | 0.79925 (10) | 0.0380 (5) | |
| H3 | 1.3630 | 0.6089 | 0.7599 | 0.046* | |
| C4 | 1.1511 (3) | 0.6589 (3) | 0.80960 (10) | 0.0350 (4) | |
| H4 | 1.0966 | 0.7246 | 0.7774 | 0.042* | |
| C5 | 1.0759 (2) | 0.6281 (2) | 0.86873 (9) | 0.0292 (4) | |
| C6 | 0.9114 (3) | 0.6956 (3) | 0.88563 (9) | 0.0304 (4) | |
| C7 | 0.6422 (2) | 0.8193 (2) | 0.90011 (10) | 0.0313 (4) | |
| C8 | 0.4793 (3) | 0.9088 (3) | 0.89219 (11) | 0.0336 (4) | |
| C9 | 0.3101 (4) | 1.0642 (4) | 0.82288 (15) | 0.0575 (7) | |
| H9 | 0.2915 | 1.1167 | 0.7823 | 0.069* | |
| C10 | 0.1844 (3) | 1.0747 (3) | 0.86751 (15) | 0.0536 (7) | |
| H10 | 0.0843 | 1.1332 | 0.8575 | 0.064* | |
| C11 | 0.2099 (3) | 0.9966 (3) | 0.92746 (14) | 0.0498 (6) | |
| H11 | 0.1274 | 1.0021 | 0.9590 | 0.060* | |
| C12 | 0.3601 (3) | 0.9095 (3) | 0.94026 (11) | 0.0401 (5) | |
| H12 | 0.3799 | 0.8534 | 0.9800 | 0.048* | |
| N1 | 1.1488 (2) | 0.5333 (2) | 0.91692 (8) | 0.0298 (4) | |
| N2 | 0.8473 (2) | 0.6603 (2) | 0.94235 (8) | 0.0313 (4) | |
| N3 | 0.6911 (2) | 0.7303 (2) | 0.95059 (8) | 0.0320 (4) | |
| N4 | 0.4563 (3) | 0.9844 (2) | 0.83359 (11) | 0.0463 (5) | |
| N5 | 0.8723 (3) | 0.3030 (2) | 0.95247 (9) | 0.0427 (4) | |
| N6 | 0.8332 (2) | 0.3118 (2) | 0.89483 (9) | 0.0385 (4) | |
| N7 | 0.7973 (3) | 0.3188 (3) | 0.83827 (11) | 0.0645 (7) | |
| S1 | 0.78523 (7) | 0.82456 (7) | 0.83744 (3) | 0.03745 (15) | |
| Ni1 | 1.0000 | 0.5000 | 1.0000 | 0.02650 (12) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| C1 | 0.0333 (11) | 0.0420 (11) | 0.0319 (10) | 0.0063 (9) | 0.0056 (8) | 0.0008 (9) |
| C2 | 0.0340 (11) | 0.0477 (13) | 0.0387 (12) | 0.0036 (9) | 0.0120 (9) | −0.0044 (9) |
| C3 | 0.0386 (11) | 0.0478 (13) | 0.0288 (10) | −0.0037 (10) | 0.0128 (8) | −0.0036 (9) |
| C4 | 0.0374 (11) | 0.0451 (12) | 0.0228 (9) | 0.0007 (9) | 0.0050 (8) | 0.0023 (8) |
| C5 | 0.0301 (9) | 0.0351 (10) | 0.0226 (9) | 0.0005 (8) | 0.0046 (7) | −0.0011 (7) |
| C6 | 0.0309 (9) | 0.0385 (11) | 0.0219 (9) | 0.0017 (8) | 0.0008 (7) | 0.0026 (8) |
| C7 | 0.0290 (9) | 0.0367 (10) | 0.0283 (9) | 0.0022 (8) | 0.0027 (7) | 0.0006 (8) |
| C8 | 0.0291 (10) | 0.0329 (10) | 0.0385 (11) | 0.0033 (8) | 0.0006 (8) | −0.0013 (8) |
| C9 | 0.0508 (15) | 0.0563 (16) | 0.0656 (17) | 0.0155 (13) | 0.0046 (13) | 0.0247 (14) |
| C10 | 0.0362 (12) | 0.0439 (14) | 0.081 (2) | 0.0158 (11) | 0.0015 (12) | −0.0001 (13) |
| C11 | 0.0355 (12) | 0.0543 (15) | 0.0608 (16) | −0.0010 (10) | 0.0129 (11) | −0.0183 (12) |
| C12 | 0.0398 (12) | 0.0451 (13) | 0.0354 (11) | −0.0025 (10) | 0.0021 (9) | −0.0026 (9) |
| N1 | 0.0312 (8) | 0.0357 (9) | 0.0229 (8) | 0.0022 (7) | 0.0045 (6) | 0.0003 (6) |
| N2 | 0.0298 (8) | 0.0410 (9) | 0.0235 (8) | 0.0063 (7) | 0.0045 (6) | 0.0019 (7) |
| N3 | 0.0283 (8) | 0.0407 (9) | 0.0271 (8) | 0.0072 (7) | 0.0029 (6) | 0.0014 (7) |
| N4 | 0.0380 (10) | 0.0508 (12) | 0.0507 (12) | 0.0098 (9) | 0.0090 (9) | 0.0182 (9) |
| N5 | 0.0501 (11) | 0.0467 (11) | 0.0315 (9) | −0.0058 (9) | 0.0040 (8) | −0.0017 (8) |
| N6 | 0.0304 (9) | 0.0464 (11) | 0.0387 (10) | 0.0060 (8) | 0.0015 (7) | −0.0129 (8) |
| N7 | 0.0631 (15) | 0.0907 (19) | 0.0379 (12) | 0.0154 (13) | −0.0121 (10) | −0.0185 (12) |
| S1 | 0.0343 (3) | 0.0496 (3) | 0.0289 (3) | 0.0091 (2) | 0.00513 (19) | 0.0117 (2) |
| Ni1 | 0.02602 (19) | 0.0358 (2) | 0.01789 (17) | 0.00586 (14) | 0.00320 (12) | 0.00259 (13) |
Geometric parameters (Å, º)
| C1—N1 | 1.336 (3) | C9—N4 | 1.324 (3) |
| C1—C2 | 1.391 (3) | C9—C10 | 1.369 (4) |
| C1—H1 | 0.9300 | C9—H9 | 0.9300 |
| C2—C3 | 1.376 (3) | C10—C11 | 1.374 (4) |
| C2—H2 | 0.9300 | C10—H10 | 0.9300 |
| C3—C4 | 1.382 (3) | C11—C12 | 1.386 (3) |
| C3—H3 | 0.9300 | C11—H11 | 0.9300 |
| C4—C5 | 1.380 (3) | C12—H12 | 0.9300 |
| C4—H4 | 0.9300 | N1—Ni1 | 2.1069 (17) |
| C5—N1 | 1.348 (2) | N2—N3 | 1.366 (2) |
| C5—C6 | 1.456 (3) | N2—Ni1 | 2.0885 (16) |
| C6—N2 | 1.305 (3) | N5—N6 | 1.187 (3) |
| C6—S1 | 1.714 (2) | N5—Ni1 | 2.1075 (19) |
| C7—N3 | 1.295 (2) | N6—N7 | 1.160 (3) |
| C7—C8 | 1.470 (3) | Ni1—N2i | 2.0885 (16) |
| C7—S1 | 1.731 (2) | Ni1—N1i | 2.1069 (17) |
| C8—N4 | 1.339 (3) | Ni1—N5i | 2.108 (2) |
| C8—C12 | 1.379 (3) | ||
| N1—C1—C2 | 122.4 (2) | C10—C11—H11 | 120.5 |
| N1—C1—H1 | 118.8 | C12—C11—H11 | 120.5 |
| C2—C1—H1 | 118.8 | C8—C12—C11 | 117.8 (2) |
| C3—C2—C1 | 119.3 (2) | C8—C12—H12 | 121.1 |
| C3—C2—H2 | 120.4 | C11—C12—H12 | 121.1 |
| C1—C2—H2 | 120.4 | C1—N1—C5 | 117.71 (18) |
| C2—C3—C4 | 118.9 (2) | C1—N1—Ni1 | 127.46 (15) |
| C2—C3—H3 | 120.6 | C5—N1—Ni1 | 114.79 (13) |
| C4—C3—H3 | 120.6 | C6—N2—N3 | 113.55 (16) |
| C5—C4—C3 | 118.63 (19) | C6—N2—Ni1 | 113.19 (13) |
| C5—C4—H4 | 120.7 | N3—N2—Ni1 | 133.19 (13) |
| C3—C4—H4 | 120.7 | C7—N3—N2 | 111.69 (16) |
| N1—C5—C4 | 123.14 (19) | C9—N4—C8 | 116.6 (2) |
| N1—C5—C6 | 113.27 (17) | N6—N5—Ni1 | 119.16 (16) |
| C4—C5—C6 | 123.58 (18) | N7—N6—N5 | 178.8 (2) |
| N2—C6—C5 | 120.32 (18) | C6—S1—C7 | 86.77 (9) |
| N2—C6—S1 | 113.49 (15) | N2—Ni1—N2i | 180.00 (7) |
| C5—C6—S1 | 126.18 (15) | N2—Ni1—N1 | 78.32 (6) |
| N3—C7—C8 | 125.80 (19) | N2i—Ni1—N1 | 101.68 (6) |
| N3—C7—S1 | 114.47 (15) | N2—Ni1—N1i | 101.68 (6) |
| C8—C7—S1 | 119.72 (15) | N2i—Ni1—N1i | 78.32 (6) |
| N4—C8—C12 | 123.7 (2) | N1—Ni1—N1i | 180.000 (1) |
| N4—C8—C7 | 113.74 (19) | N2—Ni1—N5 | 89.63 (8) |
| C12—C8—C7 | 122.5 (2) | N2i—Ni1—N5 | 90.37 (8) |
| N4—C9—C10 | 124.4 (3) | N1—Ni1—N5 | 90.35 (7) |
| N4—C9—H9 | 117.8 | N1i—Ni1—N5 | 89.65 (7) |
| C10—C9—H9 | 117.8 | N2—Ni1—N5i | 90.37 (8) |
| C9—C10—C11 | 118.3 (2) | N2i—Ni1—N5i | 89.63 (8) |
| C9—C10—H10 | 120.8 | N1—Ni1—N5i | 89.65 (7) |
| C11—C10—H10 | 120.8 | N1i—Ni1—N5i | 90.35 (7) |
| C10—C11—C12 | 119.1 (2) | N5—Ni1—N5i | 179.998 (1) |
Symmetry code: (i) −x+2, −y+1, −z+2.
Footnotes
Supporting information for this paper is available from the IUCr electronic archives (Reference: WM5108).
References
- Bentiss, F., Capet, F., Lagrenée, M., Saadi, M. & El Ammari, L. (2011a). Acta Cryst. E67, m1052–m1053. [DOI] [PMC free article] [PubMed]
- Bentiss, F., Capet, F., Lagrenée, M., Saadi, M. & El Ammari, L. (2011b). Acta Cryst. E67, m834–m835. [DOI] [PMC free article] [PubMed]
- Bentiss, F., Lagrenée, M., Vezin, H., Wignacourt, J. P. & Holt, E. M. (2004). Polyhedron, 23, 1903–1907. [DOI] [PubMed]
- Bentiss, F., Outirite, M., Lagrenée, M., Saadi, M. & El Ammari, L. (2012). Acta Cryst. E68, m360–m361. [DOI] [PMC free article] [PubMed]
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Klingele, J., Kaase, D., Klingele, M. H., Lach, J. & Demeshko, S. (2010). Dalton Trans. 39, 1689–1691. [DOI] [PubMed]
- Laachir, A., Bentiss, F., Guesmi, S., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, m351–m352. [DOI] [PMC free article] [PubMed]
- Lebrini, M., Bentiss, F. & Lagrenée, M. (2005). J. Heterocycl. Chem. 42, 991–994.
- Machura, B., Świtlicka, A., Nawrot, I., Mroziński, J. & Michalik, K. (2011). Polyhedron, 30, 2815–2823.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Świtlicka-Olszewska, A., Machura, B. & Mroziński, J. (2014). Inorg. Chem. Commun. 43, 86–89.
- Zheng, X.-F., Wan, X.-S., Liu, W., Niu, C.-Y. & Kou, C.-H. (2006). Z. Kristallogr., 221, 543–544.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015000201/wm5108sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015000201/wm5108Isup2.hkl
x y z . DOI: 10.1107/S2056989015000201/wm5108fig1.tif
The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as spheres of arbitrary radius. [Symmetry code: (i) −x + 2, −y + 1, −z + 2.]
. DOI: 10.1107/S2056989015000201/wm5108fig2.tif
The crystal packing of the title compound, showing intermolecular π–π interactions between pyridyl rings (dashed green lines).
CCDC reference: 1042351
Additional supporting information: crystallographic information; 3D view; checkCIF report
