Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jan 28;71(Pt 2):m37. doi: 10.1107/S205698901500136X

Crystal structure of bis­[1,3-bis­(di­phenyl­phosphan­yl)propane-κ2 P,P′]platinum(II) dichloride chloro­form penta­solvate

Bradley G Anderson a, Sarah A Hoyte a,*, John L Spencer a
PMCID: PMC4384563  PMID: 25878844

Abstract

In the title compound, [Pt{Ph2P(CH2)3PPh2}2]Cl2·5CHCl3, the PtII cations, located on a centre of inversion, is coordinated by two chelating diphosphane ligands in a geometry which is close to square-planar. The chelate rings adopt a chair conformation. The PtII cations are arranged in layers separated by Cl anions as well as CHCl3 solvent mol­ecules. While this complex has been reported previously [Anderson et al. (1983). Inorg. Chim. Acta, 76, L251–L252], this is the first time a structure has been determined.

Keywords: crystal structure; 1,3-bis­(di­phenyl­phosphan­yl)propane; platinum(II) complex

Related literature  

For structures of related group 10 M 2+ bis-diphosphane complexes, see: Pahor & Bruno (1977); Engelhardt et al. (1984); Ferguson et al. (1993); Berning et al. (1999); Raebiger et al. (2004); Fischer (2006). The corresponding Pt0 complex [Pt(dppp)2] [dppp is 1,3-bis­(di­phenyl­phosphan­yl)propane] has been reported by Asker et al. (1990). For a previous report of the title compound, see: Anderson et al. (1983). graphic file with name e-71-00m37-scheme1.jpg

Experimental  

Crystal data  

  • [Pt(C27H26P2)2]Cl2·5CHCl3

  • M r = 1687.67

  • Orthorhombic, Inline graphic

  • a = 26.2042 (9) Å

  • b = 15.3120 (5) Å

  • c = 16.7930 (5) Å

  • V = 6738.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.89 mm−1

  • T = 160 K

  • 0.60 × 0.38 × 0.28 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007) T min = 0.562, T max = 0.746

  • 179974 measured reflections

  • 10325 independent reflections

  • 7580 reflections with I > 2σ(I)

  • R int = 0.063

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.073

  • S = 1.20

  • 10325 reflections

  • 385 parameters

  • H-atom parameters constrained

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.97 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698901500136X/gg2144sup1.cif

e-71-00m37-sup1.cif (32.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901500136X/gg2144Isup2.hkl

e-71-00m37-Isup2.hkl (565.5KB, hkl)

ORTEP 2 2 3 2 2 2 . DOI: 10.1107/S205698901500136X/gg2144fig1.tif

ORTEP diagram of [Pt(Ph2P(C2H3)PPh2)2]Cl2 showing 50% probability ellipsoids. H atoms have been omitted for clarity.

CCDC reference: 1044833

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Dr Jan Wikaira at the University of Canterbury, New Zealand, for collection of the single-crystal X-ray data.

supplementary crystallographic information

S1. Comment

When [PtCl2(SEt2)2] is reacted with bicyclopropylidene, this results in the formation of the β-chloroalkyl complex [Pt(C(CH2)2C(CH2)2Cl)Cl(SEt2)2] after 5 days. When dppp (Ph2P(CH2)3PPh2) was added in an attempt to make a phosphine β-chloroalkyl complex, the β-chloroalkyl ligand undergoes a β-chloride elimination to regenerate the alkene and [Pt(dppp)2]Cl2 is formed. While this complex has been reported previously (Anderson et al., 1983), this is the first time a structure has been obtained (Fig. 1).

The asymmetric unit contains only half of the molecule, consisting of a complete dppp ligand as well as one of the Cl- counter ions and half of the five CDCl3 solvent molecules. The platinum is close to square planar, with a P1—Pt—P2 angle of 87.23 (3)°. This is smaller than the corresponding angle in the Pt(0) complex [Pt(dppp)2] (97.76 (4)°) (Asker et al., 1990). The Pt—P bond lengths are 2.3648 (7) and 2.3790 (8) Å, longer than those in [Pt(dppp)2] (2.286 (1) Å). The chelate ring has a 'chair' conformation, typical for dppp complexes. In [Pt(dppp)2]Cl2, the chelate two rings are rotated by 180° relative to each other, while in [Pt(dppp)2] the rings are rotated by 87.20 (2)° (according to the PtP1P2 planes). While [Pt(dppp)2]Cl2 crystallized as a CDCl3 solvate in the orthorhombic Pccn space group, [Pt(dppp)2] crystallized solvent-free from tetrahydrofuran in the monoclinic C2/c space group. The Cl- counter ion is separated by 4.197 Å from the Pt, showing that it is not coordinated. The [Pt(dppp)2]2+ ions are arranged in two-dimensional layers, with the Cl- anions and solvent between the layers.

S2. Experimental

[PtCl2(SEt2)2] (50 mg, 0.11 mmol) was dissolved in CDCl3 (0.5 ml) in an NMR tube under Ar and 5 equiv. bicyclopropylidene added (50 µL, 0.54 mmol). The reaction was stirred for 5 days, resulting in the formation of trans-[Pt(C(CH2)2C(CH2)2Cl)Cl(SEt2)2]. The solution was frozen in liquid N2, and a solution of dppp (90 mg, 0.22 mmol) in CDCl3 (0.5 ml) added. Crystals of [Pt(dppp)2]Cl2 formed as the solution warmed to RT.

S3. Refinement

All H atoms were positioned geometrically and refined using a riding model, with aromatic C—H = 0.93 Å, methylene C—H = 0.97 Å, and tertiary C—H = 0.98 Å. Uiso(H) = 1.2. A chloroform solvent molecule was found to be disordered about a 2-fold axis, and was refined by suppressing the symmetry restriction with a 'PART -1' instruction.

Figures

Fig. 1.

Fig. 1.

: ORTEP diagram of [Pt(Ph2P(C2H3)PPh2)2]Cl2 showing 50% probability ellipsoids. H atoms have been omitted for clarity.

Crystal data

[Pt(C27H26P2)2]Cl2·5CHCl3 F(000) = 3352.00
Mr = 1687.67 Dx = 1.664 Mg m3
Orthorhombic, Pccn Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2ac Cell parameters from 9982 reflections
a = 26.2042 (9) Å θ = 2.4–30.5°
b = 15.3120 (5) Å µ = 2.89 mm1
c = 16.7930 (5) Å T = 160 K
V = 6738.0 (4) Å3 Block, colourless
Z = 4 0.6 × 0.38 × 0.28 mm

Data collection

Bruker APEXII CCD diffractometer 10325 independent reflections
Radiation source: fine-focus sealed tube 7580 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.063
φ and ω scans θmax = 30.6°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2007) h = −37→37
Tmin = 0.562, Tmax = 0.746 k = −21→21
179974 measured reflections l = −23→24

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073 H-atom parameters constrained
S = 1.20 w = 1/[σ2(Fo2) + (0.P)2 + 21.821P] where P = (Fo2 + 2Fc2)/3
10325 reflections (Δ/σ)max = 0.001
385 parameters Δρmax = 0.73 e Å3
0 restraints Δρmin = −0.97 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Pt1 0.5000 0.0000 0.0000 0.01283 (4)
P2 0.49876 (3) 0.10087 (5) 0.10661 (4) 0.01623 (14)
P1 0.48568 (3) −0.11136 (5) 0.09623 (4) 0.01524 (15)
C4 0.41837 (12) −0.1208 (2) 0.11952 (18) 0.0178 (6)
C3 0.52924 (13) 0.0645 (2) 0.19883 (18) 0.0210 (6)
H3A 0.5648 0.0519 0.1875 0.025*
H3B 0.5284 0.1123 0.2367 0.025*
C18 0.53826 (15) 0.3596 (2) 0.1019 (2) 0.0278 (8)
H18 0.5219 0.4133 0.1061 0.033*
C1 0.51746 (13) −0.0980 (2) 0.19268 (17) 0.0194 (6)
H1A 0.5082 −0.1472 0.2261 0.023*
H1B 0.5540 −0.1009 0.1841 0.023*
C21 0.58744 (13) 0.1990 (2) 0.0910 (2) 0.0234 (7)
H21 0.6040 0.1453 0.0886 0.028*
C2 0.50582 (13) −0.0150 (2) 0.23790 (17) 0.0211 (7)
H2A 0.5188 −0.0202 0.2918 0.025*
H2B 0.4691 −0.0074 0.2410 0.025*
C9 0.40155 (13) −0.1654 (2) 0.18772 (19) 0.0219 (7)
H9 0.4251 −0.1879 0.2237 0.026*
C22 0.43463 (13) 0.1321 (2) 0.13539 (19) 0.0203 (6)
C14 0.49389 (16) −0.3787 (2) 0.0796 (2) 0.0299 (8)
H14 0.4719 −0.4262 0.0833 0.036*
C5 0.38263 (13) −0.0870 (2) 0.0673 (2) 0.0239 (7)
H5 0.3934 −0.0568 0.0222 0.029*
C8 0.34994 (14) −0.1758 (3) 0.2012 (2) 0.0294 (8)
H8 0.3389 −0.2057 0.2461 0.035*
C16 0.53416 (12) 0.2026 (2) 0.09712 (18) 0.0183 (6)
C19 0.59096 (16) 0.3563 (3) 0.0944 (2) 0.0316 (8)
H19 0.6099 0.4077 0.0932 0.038*
C17 0.50980 (13) 0.2833 (2) 0.10331 (18) 0.0217 (7)
H17 0.4745 0.2859 0.1084 0.026*
C11 0.56005 (14) −0.2376 (2) 0.0705 (2) 0.0251 (7)
H11 0.5824 −0.1905 0.0679 0.030*
C10 0.50772 (13) −0.22317 (19) 0.07887 (17) 0.0189 (6)
C6 0.33060 (14) −0.0978 (3) 0.0817 (2) 0.0352 (9)
H6 0.3068 −0.0752 0.0463 0.042*
C12 0.57854 (16) −0.3223 (3) 0.0660 (2) 0.0326 (9)
H12 0.6134 −0.3320 0.0598 0.039*
C15 0.47444 (14) −0.2942 (2) 0.08337 (18) 0.0214 (7)
H15 0.4395 −0.2852 0.0888 0.026*
C23 0.39470 (13) 0.1199 (2) 0.0827 (2) 0.0236 (7)
H23 0.4008 0.0938 0.0336 0.028*
C20 0.61522 (15) 0.2762 (2) 0.0886 (2) 0.0291 (8)
H20 0.6505 0.2741 0.0830 0.035*
C7 0.31462 (15) −0.1420 (3) 0.1484 (2) 0.0352 (9)
H7 0.2799 −0.1492 0.1581 0.042*
C13 0.54565 (17) −0.3923 (3) 0.0706 (2) 0.0350 (9)
H13 0.5583 −0.4489 0.0676 0.042*
C26 0.37622 (16) 0.1975 (3) 0.2287 (3) 0.0365 (9)
H26 0.3698 0.2235 0.2778 0.044*
C24 0.34563 (15) 0.1462 (3) 0.1022 (3) 0.0343 (9)
H24 0.3189 0.1377 0.0665 0.041*
C27 0.42495 (15) 0.1714 (3) 0.2095 (2) 0.0288 (8)
H27 0.4515 0.1798 0.2455 0.035*
C25 0.33674 (16) 0.1853 (3) 0.1753 (3) 0.0414 (10)
H25 0.3039 0.2034 0.1885 0.050*
Cl1 0.35882 (4) 0.04388 (8) −0.11105 (5) 0.0380 (2)
Cl3B 0.31059 (4) 0.01417 (7) 0.32358 (6) 0.0371 (2)
Cl2A 0.21666 (4) 0.05178 (8) 0.17673 (6) 0.0434 (3)
Cl2B 0.24294 (5) −0.13417 (8) 0.34282 (7) 0.0475 (3)
Cl3A 0.14625 (5) −0.09321 (7) 0.16878 (7) 0.0430 (2)
Cl1A 0.11366 (4) 0.07947 (8) 0.12128 (7) 0.0447 (3)
Cl1B 0.29044 (4) −0.05640 (10) 0.48005 (6) 0.0523 (3)
C1B 0.26446 (14) −0.0355 (3) 0.3849 (2) 0.0328 (8)
H1BA 0.2354 0.0042 0.3907 0.039*
C1A 0.15290 (14) 0.0195 (3) 0.1870 (2) 0.0304 (8)
H1AA 0.1420 0.0315 0.2417 0.036*
C1C 0.2657 (3) 0.2740 (5) 0.4313 (4) 0.0282 (15) 0.5
H1C 0.2954 0.3115 0.4218 0.034* 0.5
Cl3C 0.23595 (11) 0.2360 (3) 0.34548 (14) 0.0622 (9) 0.5
Cl1C 0.2171 (5) 0.3222 (11) 0.4886 (6) 0.076 (3) 0.5
Cl2C 0.2802 (3) 0.1693 (9) 0.4893 (3) 0.0494 (17) 0.5

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pt1 0.01516 (6) 0.01052 (6) 0.01280 (6) 0.00000 (7) 0.00067 (6) 0.00078 (6)
P2 0.0207 (4) 0.0126 (3) 0.0154 (3) −0.0020 (3) 0.0032 (3) −0.0003 (3)
P1 0.0192 (4) 0.0124 (3) 0.0141 (3) 0.0011 (3) 0.0022 (3) 0.0021 (3)
C4 0.0193 (15) 0.0149 (15) 0.0190 (14) −0.0017 (12) 0.0029 (11) −0.0026 (11)
C3 0.0254 (17) 0.0203 (16) 0.0174 (14) −0.0028 (13) −0.0029 (12) 0.0006 (12)
C18 0.044 (2) 0.0149 (16) 0.0248 (17) −0.0045 (15) 0.0073 (15) −0.0037 (13)
C1 0.0232 (15) 0.0188 (15) 0.0163 (13) 0.0000 (13) −0.0023 (11) 0.0029 (11)
C21 0.0261 (17) 0.0215 (17) 0.0227 (15) −0.0029 (14) −0.0008 (13) 0.0006 (13)
C2 0.0278 (18) 0.0213 (17) 0.0141 (12) −0.0034 (13) −0.0035 (12) 0.0021 (10)
C9 0.0237 (17) 0.0212 (16) 0.0208 (15) 0.0015 (13) 0.0028 (12) 0.0020 (12)
C22 0.0258 (17) 0.0141 (15) 0.0211 (15) −0.0009 (13) 0.0056 (12) 0.0026 (12)
C14 0.049 (2) 0.0157 (15) 0.0253 (16) −0.0002 (16) 0.0086 (16) 0.0042 (12)
C5 0.0250 (17) 0.0251 (18) 0.0216 (15) −0.0006 (14) −0.0015 (13) 0.0039 (13)
C8 0.0276 (19) 0.033 (2) 0.0280 (17) −0.0057 (16) 0.0099 (14) −0.0017 (15)
C16 0.0240 (16) 0.0164 (15) 0.0146 (13) −0.0049 (12) 0.0009 (11) −0.0003 (11)
C19 0.043 (2) 0.0238 (18) 0.0276 (17) −0.0149 (17) 0.0017 (16) −0.0028 (15)
C17 0.0293 (19) 0.0170 (15) 0.0188 (14) 0.0002 (13) 0.0070 (12) 0.0005 (11)
C11 0.0303 (19) 0.0194 (17) 0.0255 (16) 0.0025 (14) 0.0090 (14) 0.0037 (13)
C10 0.0283 (19) 0.0106 (13) 0.0179 (13) 0.0016 (12) 0.0056 (12) 0.0030 (10)
C6 0.0229 (18) 0.046 (2) 0.036 (2) 0.0016 (17) −0.0060 (15) 0.0019 (18)
C12 0.034 (2) 0.0257 (19) 0.038 (2) 0.0122 (16) 0.0134 (16) 0.0076 (16)
C15 0.0292 (18) 0.0194 (16) 0.0156 (14) 0.0002 (13) 0.0032 (12) 0.0016 (12)
C23 0.0254 (17) 0.0175 (16) 0.0280 (17) 0.0003 (13) 0.0041 (13) 0.0015 (13)
C20 0.0284 (19) 0.0282 (19) 0.0307 (18) −0.0084 (15) −0.0007 (15) 0.0007 (15)
C7 0.0206 (18) 0.043 (2) 0.042 (2) −0.0021 (17) 0.0045 (16) −0.0016 (18)
C13 0.053 (3) 0.0189 (18) 0.0335 (19) 0.0140 (18) 0.0129 (17) 0.0048 (15)
C26 0.037 (2) 0.033 (2) 0.039 (2) 0.0013 (18) 0.0192 (18) −0.0097 (17)
C24 0.0241 (19) 0.031 (2) 0.047 (2) −0.0007 (16) 0.0024 (17) 0.0015 (18)
C27 0.031 (2) 0.031 (2) 0.0245 (16) −0.0018 (16) 0.0088 (14) −0.0058 (14)
C25 0.027 (2) 0.035 (2) 0.063 (3) 0.0041 (17) 0.018 (2) −0.001 (2)
Cl1 0.0287 (5) 0.0622 (7) 0.0231 (4) −0.0202 (5) −0.0050 (3) 0.0069 (4)
Cl3B 0.0336 (5) 0.0431 (6) 0.0346 (5) 0.0032 (4) 0.0003 (4) 0.0038 (4)
Cl2A 0.0321 (5) 0.0565 (7) 0.0417 (5) −0.0104 (5) −0.0056 (4) 0.0056 (5)
Cl2B 0.0446 (6) 0.0378 (6) 0.0602 (7) −0.0017 (5) 0.0086 (5) −0.0088 (5)
Cl3A 0.0497 (6) 0.0355 (6) 0.0437 (5) −0.0053 (5) −0.0016 (5) 0.0020 (4)
Cl1A 0.0346 (5) 0.0484 (7) 0.0510 (6) 0.0033 (5) −0.0021 (5) 0.0146 (5)
Cl1B 0.0340 (5) 0.0915 (10) 0.0314 (5) 0.0023 (6) 0.0049 (4) 0.0052 (5)
C1B 0.0246 (19) 0.038 (2) 0.0358 (19) 0.0078 (16) 0.0004 (15) −0.0033 (17)
C1A 0.031 (2) 0.038 (2) 0.0219 (16) −0.0022 (16) 0.0035 (14) 0.0008 (14)
C1C 0.024 (4) 0.030 (4) 0.030 (3) 0.000 (3) −0.004 (3) −0.001 (3)
Cl3C 0.071 (3) 0.073 (3) 0.0421 (11) 0.0157 (19) −0.0230 (11) −0.0151 (14)
Cl1C 0.079 (6) 0.076 (5) 0.074 (5) 0.046 (4) 0.006 (4) −0.009 (3)
Cl2C 0.045 (3) 0.076 (4) 0.027 (2) 0.041 (3) 0.0020 (18) 0.005 (2)

Geometric parameters (Å, º)

Pt1—P2 2.3648 (7) C5—C6 1.395 (5)
Pt1—P2i 2.3648 (7) C8—C7 1.381 (6)
Pt1—P1 2.3790 (8) C16—C17 1.395 (4)
Pt1—P1i 2.3790 (8) C19—C20 1.385 (5)
P2—C3 1.829 (3) C11—C10 1.396 (5)
P2—C22 1.813 (3) C11—C12 1.387 (5)
P2—C16 1.820 (3) C10—C15 1.396 (4)
P1—C4 1.812 (3) C6—C7 1.374 (6)
P1—C1 1.833 (3) C12—C13 1.377 (6)
P1—C10 1.830 (3) C23—C24 1.386 (5)
C4—C9 1.404 (4) C26—C27 1.376 (5)
C4—C5 1.384 (5) C26—C25 1.382 (6)
C3—C2 1.513 (4) C24—C25 1.386 (6)
C18—C19 1.388 (5) Cl3B—C1B 1.761 (4)
C18—C17 1.387 (5) Cl2A—C1A 1.751 (4)
C1—C2 1.512 (4) Cl2B—C1B 1.760 (4)
C21—C16 1.401 (5) Cl3A—C1A 1.761 (4)
C21—C20 1.390 (5) Cl1A—C1A 1.766 (4)
C9—C8 1.380 (5) Cl1B—C1B 1.765 (4)
C22—C23 1.382 (5) C1C—Cl3C 1.739 (7)
C22—C27 1.405 (5) C1C—Cl1C 1.759 (13)
C14—C15 1.391 (5) C1C—Cl2C 1.914 (14)
C14—C13 1.381 (6)
P2—Pt1—P2i 180.0 C4—C5—C6 120.5 (3)
P2i—Pt1—P1 92.77 (3) C9—C8—C7 120.6 (3)
P2—Pt1—P1 87.23 (3) C21—C16—P2 118.7 (3)
P2—Pt1—P1i 92.77 (3) C17—C16—P2 121.2 (2)
P2i—Pt1—P1i 87.23 (3) C17—C16—C21 119.8 (3)
P1i—Pt1—P1 180.0 C20—C19—C18 119.7 (3)
C3—P2—Pt1 115.85 (11) C18—C17—C16 119.9 (3)
C22—P2—Pt1 112.76 (11) C12—C11—C10 119.8 (3)
C22—P2—C3 105.04 (15) C11—C10—P1 118.3 (2)
C22—P2—C16 105.67 (15) C11—C10—C15 119.7 (3)
C16—P2—Pt1 119.06 (10) C15—C10—P1 121.5 (3)
C16—P2—C3 96.45 (15) C7—C6—C5 119.9 (4)
C4—P1—Pt1 110.94 (11) C13—C12—C11 120.4 (4)
C4—P1—C1 105.09 (15) C14—C15—C10 119.5 (3)
C4—P1—C10 105.47 (15) C22—C23—C24 120.8 (3)
C1—P1—Pt1 116.67 (11) C19—C20—C21 120.8 (3)
C10—P1—Pt1 120.83 (10) C6—C7—C8 120.2 (4)
C10—P1—C1 95.82 (15) C12—C13—C14 120.2 (3)
C9—C4—P1 121.3 (3) C27—C26—C25 120.2 (4)
C5—C4—P1 119.5 (2) C25—C24—C23 119.3 (4)
C5—C4—C9 119.1 (3) C26—C27—C22 120.0 (4)
C2—C3—P2 115.8 (2) C26—C25—C24 120.5 (4)
C17—C18—C19 120.4 (3) Cl3B—C1B—Cl1B 110.0 (2)
C2—C1—P1 116.5 (2) Cl2B—C1B—Cl3B 110.8 (2)
C20—C21—C16 119.4 (3) Cl2B—C1B—Cl1B 109.4 (2)
C1—C2—C3 112.1 (3) Cl2A—C1A—Cl3A 110.8 (2)
C8—C9—C4 119.8 (3) Cl2A—C1A—Cl1A 110.3 (2)
C23—C22—P2 119.7 (2) Cl3A—C1A—Cl1A 110.1 (2)
C23—C22—C27 119.2 (3) Cl3C—C1C—Cl1C 105.6 (5)
C27—C22—P2 121.1 (3) Cl3C—C1C—Cl2C 103.3 (5)
C13—C14—C15 120.3 (3) Cl1C—C1C—Cl2C 102.5 (6)
Pt1—P2—C3—C2 −61.9 (3) C21—C16—C17—C18 1.2 (5)
Pt1—P2—C22—C23 −19.8 (3) C9—C4—C5—C6 −0.7 (5)
Pt1—P2—C22—C27 162.4 (3) C9—C8—C7—C6 0.2 (6)
Pt1—P2—C16—C21 −64.6 (3) C22—P2—C3—C2 63.2 (3)
Pt1—P2—C16—C17 121.4 (2) C22—P2—C16—C21 167.4 (3)
Pt1—P1—C4—C9 −163.8 (2) C22—P2—C16—C17 −6.6 (3)
Pt1—P1—C4—C5 19.2 (3) C22—C23—C24—C25 0.2 (6)
Pt1—P1—C1—C2 57.5 (3) C5—C4—C9—C8 0.8 (5)
Pt1—P1—C10—C11 62.2 (3) C5—C6—C7—C8 −0.1 (6)
Pt1—P1—C10—C15 −125.6 (2) C16—P2—C3—C2 171.3 (3)
P2—C3—C2—C1 72.9 (3) C16—P2—C22—C23 111.8 (3)
P2—C22—C23—C24 −177.6 (3) C16—P2—C22—C27 −65.9 (3)
P2—C22—C27—C26 177.6 (3) C16—C21—C20—C19 1.8 (5)
P2—C16—C17—C18 175.1 (2) C19—C18—C17—C16 0.0 (5)
P1—C4—C9—C8 −176.2 (3) C17—C18—C19—C20 −0.3 (5)
P1—C4—C5—C6 176.4 (3) C11—C10—C15—C14 0.2 (5)
P1—C1—C2—C3 −70.5 (3) C11—C12—C13—C14 0.1 (6)
P1—C10—C15—C14 −172.0 (2) C10—P1—C4—C9 63.7 (3)
C4—P1—C1—C2 −65.8 (3) C10—P1—C4—C5 −113.3 (3)
C4—P1—C10—C11 −171.2 (2) C10—P1—C1—C2 −173.6 (3)
C4—P1—C10—C15 1.1 (3) C10—C11—C12—C13 −0.7 (6)
C4—C9—C8—C7 −0.6 (6) C12—C11—C10—P1 173.0 (3)
C4—C5—C6—C7 0.3 (6) C12—C11—C10—C15 0.6 (5)
C3—P2—C22—C23 −146.9 (3) C15—C14—C13—C12 0.7 (6)
C3—P2—C22—C27 35.4 (3) C23—C22—C27—C26 −0.2 (5)
C3—P2—C16—C21 59.8 (3) C23—C24—C25—C26 −0.5 (6)
C3—P2—C16—C17 −114.2 (3) C20—C21—C16—P2 −176.1 (3)
C18—C19—C20—C21 −0.6 (6) C20—C21—C16—C17 −2.1 (5)
C1—P1—C4—C9 −36.9 (3) C13—C14—C15—C10 −0.8 (5)
C1—P1—C4—C5 146.2 (3) C27—C22—C23—C24 0.2 (5)
C1—P1—C10—C11 −63.7 (3) C27—C26—C25—C24 0.4 (7)
C1—P1—C10—C15 108.5 (3) C25—C26—C27—C22 −0.1 (6)

Symmetry code: (i) −x+1, −y, −z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: GG2144).

References

  1. Anderson, G. K., Davies, J. A. & Schoeck, D. J. (1983). Inorg. Chim. Acta, 76, L251–L252.
  2. Asker, K., Hitchcock, P., Moulding, R. & Seddon, K. (1990). Inorg. Chem. 29, 4146–4148.
  3. Berning, D. E., Noll, B. C. & DuBois, D. L. (1999). J. Am. Chem. Soc. 121, 11432–11447.
  4. Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Engelhardt, L. M., Patrick, J. M., Raston, C. L., Twiss, P. & White, A. H. (1984). Aust. J. Chem. 37, 2193–2200.
  6. Ferguson, G., Lough, A. J., McAlees, A. J. & McCrindle, R. (1993). Acta Cryst. C49, 573–576.
  7. Fischer, R., Langer, J., Malassa, A., Walter, D., Goris, H. & Vaughan, G. (2006). Chem. Commun. pp. 2510–2512. [DOI] [PubMed]
  8. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  9. Pahor, N. B. & Bruno, G. (1977). Cryst. Struct. Commun. 6, 717–722.
  10. Raebiger, J. W., Miedaner, A., Curtis, C. J., Miller, S. M., Anderson, O. P. & DuBois, D. L. (2004). J. Am. Chem. Soc. 126, 5502–5514. [DOI] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698901500136X/gg2144sup1.cif

e-71-00m37-sup1.cif (32.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901500136X/gg2144Isup2.hkl

e-71-00m37-Isup2.hkl (565.5KB, hkl)

ORTEP 2 2 3 2 2 2 . DOI: 10.1107/S205698901500136X/gg2144fig1.tif

ORTEP diagram of [Pt(Ph2P(C2H3)PPh2)2]Cl2 showing 50% probability ellipsoids. H atoms have been omitted for clarity.

CCDC reference: 1044833

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES