Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jan 31;71(Pt 2):m44–m45. doi: 10.1107/S2056989015001310

Crystal structure of bis­[μ-meth­oxy(pyridin-2-yl)methano­lato-κ3 N,O:O]bis[chlorido­copper(II)]

Sujirat Boonlue a, Anchalee Sirikulkajorn a, Kittipong Chainok b,*
PMCID: PMC4384564  PMID: 25878848

Abstract

The racemic title compound, [Cu2(C7H8NO2)2Cl2], is composed of dinuclear mol­ecules in which meth­oxy(pyridin-2-yl)methano­late ligands bridge two symmetry-related CuII ions. Each CuII ion is coordinated in a square-planar geometry by one Cl atom, the N and O atoms of the bidentate ligand and the bridging O atom of the centrosymmetrically related bidentate ligand. The separation between the two CuII atoms is 3.005 (1) Å. In the crystal, non-classical C—H⋯O hydrogen bonds, weak π–π stacking [centroid–centroid distance = 4.073 (1) Å] and weak electrostatic Cu⋯Cl inter­actions [3.023 (1) Å] link the dinuclear mol­ecules into chains running parallel to the b axis. These chains are further connected by weak C—H⋯Cl hydrogen bonds directed approximately along the a axis, forming a three-dimensional supra­molecular network.

Keywords: crystal structure, hydrogen bonds, copper(II), Cu⋯Cl inter­action, π–π stacking

Related literature  

For related structures and applications of transition metal compounds with the meth­oxy-2-pyridyl­methano­late ligand, see: Pijper et al. (2010); Mondal et al. (2009); Drew et al. (2008); Wang et al. (2003); Guidote et al. (2001). graphic file with name e-71-00m44-scheme1.jpg

Experimental  

Crystal data  

  • [Cu2(C7H8NO2)2Cl2]

  • M r = 474.29

  • Monoclinic, Inline graphic

  • a = 10.5568 (14) Å

  • b = 4.0728 (6) Å

  • c = 19.257 (3) Å

  • β = 95.280 (3)°

  • V = 824.5 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.92 mm−1

  • T = 298 K

  • 0.16 × 0.10 × 0.06 mm

Data collection  

  • Bruker D8 QUEST CMOS diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2014) T min = 0.645, T max = 0.745

  • 7703 measured reflections

  • 1485 independent reflections

  • 1030 reflections with I > 2σ(I)

  • R int = 0.091

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.108

  • S = 1.04

  • 1485 reflections

  • 110 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.42 e Å−3

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2015a ); program(s) used to refine structure: SHELXL97 (Sheldrick, 2015b ); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010), enCIFer (Allen et al., 2004) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015001310/cq2013sup1.cif

e-71-00m44-sup1.cif (261.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015001310/cq2013Isup2.hkl

e-71-00m44-Isup2.hkl (82KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015001310/cq2013Isup3.cdx

. DOI: 10.1107/S2056989015001310/cq2013fig1.tif

A view of the dinuclear mol­ecule of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

b . DOI: 10.1107/S2056989015001310/cq2013fig2.tif

Partial packing diagram of the title compound showing a mol­ecular one-dimensional chain running parallel to the b axis assembled from dinuclear mol­ecules linked together through non-classical C—H⋯O hydrogen bonds, weak π-π stacking and weak electrostatic Cu⋯Cl inter­actions (dashed lines). Hydrogen atoms not involved in the hydrogen bonding inter­actions are omitted for clarity.

. DOI: 10.1107/S2056989015001310/cq2013fig3.tif

A view of the weak C—H⋯Cl hydrogen bonding network between adjacent dinuclear mol­ecules in the title compound which serve to connect the chains into a three-dimensional architecture.

CCDC reference: 1044740

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
C2H2Cl1i 0.93 2.90 3.756(6) 154
C3H3O2ii 0.93 2.65 3.517(7) 156
C6H6O2iii 0.98 2.59 3.548(8) 165

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This research was financially supported by research career development grant (No. RSA5780056) from the Thailand Research Fund.

supplementary crystallographic information

S1. Synthesis and crystallization

The title compound was obtained unexpectedly from the reaction of copper(I) chloride and 4-iodo-N-(2-pyridyl­methyl­ene)aniline in a mixed solvent of aceto­nitrile and di­chloro­methane. Typically, a solution of 4-iodo-N-(2-pyridyl­methyl­ene)aniline (61.6 mg, 0.2 mmol) in dry di­chloro­methane (2 ml) was placed in a test tube. A mixture of aceto­nitrile and di­chloro­methane solution (6 ml, 1:1, v/v) was carefully added on the top. A solution of CuCl (19.8 mg, 0.2 mmol) in dry aceto­nitrile (2 ml) was then carefully layered on the top of the aceto­nitrile/di­chloro­methane mixed solution. After slow diffusion at room temperature for 2 days, pale-green plate shaped crystals of the title compound were obtained.

S2. Refinement

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C—H) = 0.93 Å for aromatic CH groups, 0.96 Å for non-aromatic CH groups and 0.98 Å for CH3 groups. The Uiso were constrained to be 1.5Ueq of the carrier atom for methy H atoms and 1.2Ueq for the remaining H atoms.

Figures

Fig. 1.

Fig. 1.

A view of the dinuclear molecule of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Partial packing diagram of the title compound showing a molecular one-dimensional chain running parallel to the b axis assembled from dinuclear molecules linked together through non-classical C—H···O hydrogen bonds, weak π-π stacking and weak electrostatic Cu···Cl interactions (dashed lines). Hydrogen atoms not involved in the hydrogen bonding interactions are omitted for clarity.

Fig. 3.

Fig. 3.

A view of the weak C—H···Cl hydrogen bonding network between adjacent dinuclear molecules in the title compound which serve to connect the chains into a three-dimensional architecture.

Crystal data

[Cu2(C7H8NO2)2Cl2] F(000) = 476
Mr = 474.29 Dx = 1.910 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 10.5568 (14) Å Cell parameters from 546 reflections
b = 4.0728 (6) Å θ = 3.6–25.4°
c = 19.257 (3) Å µ = 2.92 mm1
β = 95.280 (3)° T = 298 K
V = 824.5 (2) Å3 Plate, pale-green
Z = 2 0.16 × 0.10 × 0.06 mm

Data collection

Bruker D8 QUEST CMOS diffractometer 1485 independent reflections
Radiation source: fine-focus sealed tube 1030 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.091
Detector resolution: 0 pixels mm-1 θmax = 25.4°, θmin = 3.6°
φ and ω scans h = −12→12
Absorption correction: multi-scan (SADABS; Bruker, 2014) k = −4→4
Tmin = 0.645, Tmax = 0.745 l = −23→23
7703 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0544P)2 + 0.5475P] where P = (Fo2 + 2Fc2)/3
1485 reflections (Δ/σ)max = 0.001
110 parameters Δρmax = 0.52 e Å3
0 restraints Δρmin = −0.42 e Å3
0 constraints

Special details

Experimental. SADABS-2014/4 (Bruker,2014/4) was used for absorption correction. wR2(int) was 0.0681 before and 0.0535 after correction. The Ratio of minimum to maximum transmission is 0.8650. The λ/2 correction factor is 0.00150.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.36725 (5) 0.3633 (2) 0.49239 (3) 0.0376 (3)
Cl1 0.25368 (12) −0.0100 (4) 0.42980 (7) 0.0431 (4)
O1 0.4853 (3) 0.5904 (12) 0.55882 (18) 0.0542 (13)
O2 0.4934 (3) 0.5112 (11) 0.6792 (2) 0.0491 (11)
N1 0.2501 (3) 0.4522 (11) 0.5649 (2) 0.0301 (11)
C1 0.1248 (4) 0.3804 (15) 0.5620 (3) 0.0371 (14)
H1 0.0886 0.2558 0.5248 0.044*
C2 0.0492 (5) 0.4839 (17) 0.6114 (3) 0.0486 (17)
H2 −0.0368 0.4299 0.6080 0.058*
C3 0.1015 (5) 0.6680 (17) 0.6662 (3) 0.0470 (16)
H3 0.0515 0.7428 0.7003 0.056*
C4 0.2300 (5) 0.7412 (15) 0.6700 (3) 0.0399 (14)
H4 0.2677 0.8658 0.7067 0.048*
C5 0.3014 (4) 0.6271 (14) 0.6186 (2) 0.0304 (12)
C6 0.4438 (4) 0.6921 (15) 0.6201 (3) 0.0336 (13)
H6 0.4613 0.9267 0.6272 0.040*
C7 0.6176 (5) 0.6071 (19) 0.7070 (3) 0.0587 (19)
H7A 0.6792 0.5237 0.6779 0.088*
H7B 0.6344 0.5200 0.7532 0.088*
H7C 0.6227 0.8424 0.7086 0.088*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0240 (3) 0.0552 (5) 0.0340 (4) −0.0123 (3) 0.0041 (2) −0.0096 (4)
Cl1 0.0392 (7) 0.0395 (9) 0.0504 (9) −0.0114 (7) 0.0034 (6) −0.0065 (7)
O1 0.0265 (18) 0.099 (4) 0.038 (2) −0.020 (2) 0.0092 (16) −0.025 (2)
O2 0.037 (2) 0.051 (3) 0.057 (3) −0.0029 (19) −0.0100 (18) 0.010 (2)
N1 0.026 (2) 0.032 (3) 0.032 (2) −0.0024 (19) 0.0013 (18) 0.006 (2)
C1 0.025 (2) 0.044 (4) 0.041 (3) −0.002 (3) 0.000 (2) 0.007 (3)
C2 0.024 (3) 0.060 (4) 0.063 (4) −0.003 (3) 0.013 (3) 0.014 (4)
C3 0.042 (3) 0.050 (4) 0.052 (4) 0.013 (3) 0.020 (3) 0.008 (4)
C4 0.045 (3) 0.033 (4) 0.043 (3) 0.003 (3) 0.010 (3) −0.001 (3)
C5 0.030 (2) 0.028 (3) 0.033 (3) 0.000 (2) 0.001 (2) 0.011 (3)
C6 0.028 (2) 0.038 (4) 0.034 (3) −0.002 (2) 0.000 (2) 0.002 (3)
C7 0.042 (3) 0.073 (5) 0.058 (4) −0.011 (3) −0.009 (3) 0.013 (4)

Geometric parameters (Å, º)

Cu1—Cu1i 3.0051 (12) C1—C2 1.365 (7)
Cu1—Cl1 2.2215 (15) C2—H2 0.9300
Cu1—O1i 1.927 (3) C2—C3 1.368 (8)
Cu1—O1 1.937 (4) C3—H3 0.9300
Cu1—N1 1.982 (4) C3—C4 1.385 (7)
O1—Cu1i 1.927 (3) C4—H4 0.9300
O1—C6 1.361 (6) C4—C5 1.378 (7)
O2—C6 1.415 (6) C5—C6 1.524 (6)
O2—C7 1.424 (6) C6—H6 0.9800
N1—C1 1.351 (6) C7—H7A 0.9600
N1—C5 1.330 (6) C7—H7B 0.9600
C1—H1 0.9300 C7—H7C 0.9600
Cl1—Cu1—Cu1i 139.33 (5) C3—C2—H2 120.4
O1—Cu1—Cu1i 38.82 (10) C2—C3—H3 120.6
O1i—Cu1—Cu1i 39.07 (11) C2—C3—C4 118.8 (5)
O1i—Cu1—Cl1 102.14 (12) C4—C3—H3 120.6
O1—Cu1—Cl1 165.33 (16) C3—C4—H4 120.4
O1i—Cu1—O1 77.89 (16) C5—C4—C3 119.2 (5)
O1—Cu1—N1 81.54 (15) C5—C4—H4 120.4
O1i—Cu1—N1 158.20 (18) N1—C5—C4 121.9 (5)
N1—Cu1—Cu1i 120.03 (12) N1—C5—C6 116.0 (4)
N1—Cu1—Cl1 99.59 (13) C4—C5—C6 122.1 (5)
Cu1i—O1—Cu1 102.11 (16) O1—C6—O2 114.5 (5)
C6—O1—Cu1 118.6 (3) O1—C6—C5 109.0 (4)
C6—O1—Cu1i 138.9 (3) O1—C6—H6 110.2
C6—O2—C7 114.8 (4) O2—C6—C5 102.5 (4)
C1—N1—Cu1 127.1 (4) O2—C6—H6 110.2
C5—N1—Cu1 114.2 (3) C5—C6—H6 110.2
C5—N1—C1 118.4 (4) O2—C7—H7A 109.5
N1—C1—H1 118.7 O2—C7—H7B 109.5
N1—C1—C2 122.5 (5) O2—C7—H7C 109.5
C2—C1—H1 118.7 H7A—C7—H7B 109.5
C1—C2—H2 120.4 H7A—C7—H7C 109.5
C1—C2—C3 119.1 (5) H7B—C7—H7C 109.5
Cu1—O1—C6—O2 108.4 (4) C1—N1—C5—C6 178.4 (5)
Cu1i—O1—C6—O2 −79.8 (7) C1—C2—C3—C4 −0.6 (9)
Cu1—O1—C6—C5 −5.7 (6) C2—C3—C4—C5 0.0 (9)
Cu1i—O1—C6—C5 166.1 (4) C3—C4—C5—N1 1.0 (8)
Cu1—N1—C1—C2 −172.6 (4) C3—C4—C5—C6 −178.8 (5)
Cu1—N1—C5—C4 172.9 (4) C4—C5—C6—O1 −171.8 (5)
Cu1—N1—C5—C6 −7.4 (6) C4—C5—C6—O2 66.5 (7)
N1—C1—C2—C3 0.2 (9) C5—N1—C1—C2 0.8 (8)
N1—C5—C6—O1 8.4 (7) C7—O2—C6—O1 81.5 (6)
N1—C5—C6—O2 −113.2 (5) C7—O2—C6—C5 −160.6 (5)
C1—N1—C5—C4 −1.4 (8)

Symmetry code: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C2—H2···Cl1ii 0.93 2.90 3.756 (6) 154
C3—H3···O2iii 0.93 2.65 3.517 (7) 156
C6—H6···O2iv 0.98 2.59 3.548 (8) 165

Symmetry codes: (ii) −x, −y, −z+1; (iii) −x+1/2, y+1/2, −z+3/2; (iv) x, y+1, z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: CQ2013).

References

  1. Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
  2. Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2014). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  5. Drew, M. G. B., Nag, S., Pal, P. K. & Datta, D. (2008). Inorg. Chim. Acta, 361, 2562–2567.
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Guidote, A. M. Jr, Ando, K., Kurusu, Y., Nagao, H. & Masuyama, Y. (2001). Inorg. Chim. Acta, 314, 27–36.
  8. Mondal, K. C., Sengupta, O. & Mukherjee, P. S. (2009). Inorg. Chem. Commun. 12, 682–685.
  9. Pijper, D., Saisaha, P., de Boer, J. W., Hoen, R., Smit, C., Meetsma, A., Hage, R., van Summeren, R. P., Alsters, P. L., Feringa, B. L. & Browne, W. R. (2010). Dalton Trans. 39, 10375–10381. [DOI] [PubMed]
  10. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  11. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  12. Wang, W., Spingler, B. & Alberto, R. (2003). Inorg. Chim. Acta, 355, 386–393.
  13. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015001310/cq2013sup1.cif

e-71-00m44-sup1.cif (261.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015001310/cq2013Isup2.hkl

e-71-00m44-Isup2.hkl (82KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015001310/cq2013Isup3.cdx

. DOI: 10.1107/S2056989015001310/cq2013fig1.tif

A view of the dinuclear mol­ecule of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

b . DOI: 10.1107/S2056989015001310/cq2013fig2.tif

Partial packing diagram of the title compound showing a mol­ecular one-dimensional chain running parallel to the b axis assembled from dinuclear mol­ecules linked together through non-classical C—H⋯O hydrogen bonds, weak π-π stacking and weak electrostatic Cu⋯Cl inter­actions (dashed lines). Hydrogen atoms not involved in the hydrogen bonding inter­actions are omitted for clarity.

. DOI: 10.1107/S2056989015001310/cq2013fig3.tif

A view of the weak C—H⋯Cl hydrogen bonding network between adjacent dinuclear mol­ecules in the title compound which serve to connect the chains into a three-dimensional architecture.

CCDC reference: 1044740

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES