Abstract
The racemic title compound, [Cu2(C7H8NO2)2Cl2], is composed of dinuclear molecules in which methoxy(pyridin-2-yl)methanolate ligands bridge two symmetry-related CuII ions. Each CuII ion is coordinated in a square-planar geometry by one Cl atom, the N and O atoms of the bidentate ligand and the bridging O atom of the centrosymmetrically related bidentate ligand. The separation between the two CuII atoms is 3.005 (1) Å. In the crystal, non-classical C—H⋯O hydrogen bonds, weak π–π stacking [centroid–centroid distance = 4.073 (1) Å] and weak electrostatic Cu⋯Cl interactions [3.023 (1) Å] link the dinuclear molecules into chains running parallel to the b axis. These chains are further connected by weak C—H⋯Cl hydrogen bonds directed approximately along the a axis, forming a three-dimensional supramolecular network.
Keywords: crystal structure, hydrogen bonds, copper(II), Cu⋯Cl interaction, π–π stacking
Related literature
For related structures and applications of transition metal compounds with the methoxy-2-pyridylmethanolate ligand, see: Pijper et al. (2010 ▸); Mondal et al. (2009 ▸); Drew et al. (2008 ▸); Wang et al. (2003 ▸); Guidote et al. (2001 ▸).
Experimental
Crystal data
[Cu2(C7H8NO2)2Cl2]
M r = 474.29
Monoclinic,
a = 10.5568 (14) Å
b = 4.0728 (6) Å
c = 19.257 (3) Å
β = 95.280 (3)°
V = 824.5 (2) Å3
Z = 2
Mo Kα radiation
μ = 2.92 mm−1
T = 298 K
0.16 × 0.10 × 0.06 mm
Data collection
Bruker D8 QUEST CMOS diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2014 ▸) T min = 0.645, T max = 0.745
7703 measured reflections
1485 independent reflections
1030 reflections with I > 2σ(I)
R int = 0.091
Refinement
R[F 2 > 2σ(F 2)] = 0.045
wR(F 2) = 0.108
S = 1.04
1485 reflections
110 parameters
H-atom parameters constrained
Δρmax = 0.52 e Å−3
Δρmin = −0.42 e Å−3
Data collection: APEX2 (Bruker, 2014 ▸); cell refinement: SAINT (Bruker, 2014 ▸); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2015a ▸); program(s) used to refine structure: SHELXL97 (Sheldrick, 2015b ▸); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012 ▸) and DIAMOND (Brandenburg, 2006 ▸); software used to prepare material for publication: publCIF (Westrip, 2010 ▸), enCIFer (Allen et al., 2004 ▸) and OLEX2 (Dolomanov et al., 2009 ▸).
Supplementary Material
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015001310/cq2013sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015001310/cq2013Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989015001310/cq2013Isup3.cdx
. DOI: 10.1107/S2056989015001310/cq2013fig1.tif
A view of the dinuclear molecule of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
b . DOI: 10.1107/S2056989015001310/cq2013fig2.tif
Partial packing diagram of the title compound showing a molecular one-dimensional chain running parallel to the b axis assembled from dinuclear molecules linked together through non-classical C—H⋯O hydrogen bonds, weak π-π stacking and weak electrostatic Cu⋯Cl interactions (dashed lines). Hydrogen atoms not involved in the hydrogen bonding interactions are omitted for clarity.
. DOI: 10.1107/S2056989015001310/cq2013fig3.tif
A view of the weak C—H⋯Cl hydrogen bonding network between adjacent dinuclear molecules in the title compound which serve to connect the chains into a three-dimensional architecture.
CCDC reference: 1044740
Additional supporting information: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (, ).
DHA | DH | HA | D A | DHA |
---|---|---|---|---|
C2H2Cl1i | 0.93 | 2.90 | 3.756(6) | 154 |
C3H3O2ii | 0.93 | 2.65 | 3.517(7) | 156 |
C6H6O2iii | 0.98 | 2.59 | 3.548(8) | 165 |
Symmetry codes: (i) ; (ii)
; (iii)
.
Acknowledgments
This research was financially supported by research career development grant (No. RSA5780056) from the Thailand Research Fund.
supplementary crystallographic information
S1. Synthesis and crystallization
The title compound was obtained unexpectedly from the reaction of copper(I) chloride and 4-iodo-N-(2-pyridylmethylene)aniline in a mixed solvent of acetonitrile and dichloromethane. Typically, a solution of 4-iodo-N-(2-pyridylmethylene)aniline (61.6 mg, 0.2 mmol) in dry dichloromethane (2 ml) was placed in a test tube. A mixture of acetonitrile and dichloromethane solution (6 ml, 1:1, v/v) was carefully added on the top. A solution of CuCl (19.8 mg, 0.2 mmol) in dry acetonitrile (2 ml) was then carefully layered on the top of the acetonitrile/dichloromethane mixed solution. After slow diffusion at room temperature for 2 days, pale-green plate shaped crystals of the title compound were obtained.
S2. Refinement
All H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C—H) = 0.93 Å for aromatic CH groups, 0.96 Å for non-aromatic CH groups and 0.98 Å for CH3 groups. The Uiso were constrained to be 1.5Ueq of the carrier atom for methy H atoms and 1.2Ueq for the remaining H atoms.
Figures
Fig. 1.
A view of the dinuclear molecule of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Partial packing diagram of the title compound showing a molecular one-dimensional chain running parallel to the b axis assembled from dinuclear molecules linked together through non-classical C—H···O hydrogen bonds, weak π-π stacking and weak electrostatic Cu···Cl interactions (dashed lines). Hydrogen atoms not involved in the hydrogen bonding interactions are omitted for clarity.
Fig. 3.
A view of the weak C—H···Cl hydrogen bonding network between adjacent dinuclear molecules in the title compound which serve to connect the chains into a three-dimensional architecture.
Crystal data
[Cu2(C7H8NO2)2Cl2] | F(000) = 476 |
Mr = 474.29 | Dx = 1.910 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 10.5568 (14) Å | Cell parameters from 546 reflections |
b = 4.0728 (6) Å | θ = 3.6–25.4° |
c = 19.257 (3) Å | µ = 2.92 mm−1 |
β = 95.280 (3)° | T = 298 K |
V = 824.5 (2) Å3 | Plate, pale-green |
Z = 2 | 0.16 × 0.10 × 0.06 mm |
Data collection
Bruker D8 QUEST CMOS diffractometer | 1485 independent reflections |
Radiation source: fine-focus sealed tube | 1030 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.091 |
Detector resolution: 0 pixels mm-1 | θmax = 25.4°, θmin = 3.6° |
φ and ω scans | h = −12→12 |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | k = −4→4 |
Tmin = 0.645, Tmax = 0.745 | l = −23→23 |
7703 measured reflections |
Refinement
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.108 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0544P)2 + 0.5475P] where P = (Fo2 + 2Fc2)/3 |
1485 reflections | (Δ/σ)max = 0.001 |
110 parameters | Δρmax = 0.52 e Å−3 |
0 restraints | Δρmin = −0.42 e Å−3 |
0 constraints |
Special details
Experimental. SADABS-2014/4 (Bruker,2014/4) was used for absorption correction. wR2(int) was 0.0681 before and 0.0535 after correction. The Ratio of minimum to maximum transmission is 0.8650. The λ/2 correction factor is 0.00150. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.36725 (5) | 0.3633 (2) | 0.49239 (3) | 0.0376 (3) | |
Cl1 | 0.25368 (12) | −0.0100 (4) | 0.42980 (7) | 0.0431 (4) | |
O1 | 0.4853 (3) | 0.5904 (12) | 0.55882 (18) | 0.0542 (13) | |
O2 | 0.4934 (3) | 0.5112 (11) | 0.6792 (2) | 0.0491 (11) | |
N1 | 0.2501 (3) | 0.4522 (11) | 0.5649 (2) | 0.0301 (11) | |
C1 | 0.1248 (4) | 0.3804 (15) | 0.5620 (3) | 0.0371 (14) | |
H1 | 0.0886 | 0.2558 | 0.5248 | 0.044* | |
C2 | 0.0492 (5) | 0.4839 (17) | 0.6114 (3) | 0.0486 (17) | |
H2 | −0.0368 | 0.4299 | 0.6080 | 0.058* | |
C3 | 0.1015 (5) | 0.6680 (17) | 0.6662 (3) | 0.0470 (16) | |
H3 | 0.0515 | 0.7428 | 0.7003 | 0.056* | |
C4 | 0.2300 (5) | 0.7412 (15) | 0.6700 (3) | 0.0399 (14) | |
H4 | 0.2677 | 0.8658 | 0.7067 | 0.048* | |
C5 | 0.3014 (4) | 0.6271 (14) | 0.6186 (2) | 0.0304 (12) | |
C6 | 0.4438 (4) | 0.6921 (15) | 0.6201 (3) | 0.0336 (13) | |
H6 | 0.4613 | 0.9267 | 0.6272 | 0.040* | |
C7 | 0.6176 (5) | 0.6071 (19) | 0.7070 (3) | 0.0587 (19) | |
H7A | 0.6792 | 0.5237 | 0.6779 | 0.088* | |
H7B | 0.6344 | 0.5200 | 0.7532 | 0.088* | |
H7C | 0.6227 | 0.8424 | 0.7086 | 0.088* |
Atomic displacement parameters (Å2)
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0240 (3) | 0.0552 (5) | 0.0340 (4) | −0.0123 (3) | 0.0041 (2) | −0.0096 (4) |
Cl1 | 0.0392 (7) | 0.0395 (9) | 0.0504 (9) | −0.0114 (7) | 0.0034 (6) | −0.0065 (7) |
O1 | 0.0265 (18) | 0.099 (4) | 0.038 (2) | −0.020 (2) | 0.0092 (16) | −0.025 (2) |
O2 | 0.037 (2) | 0.051 (3) | 0.057 (3) | −0.0029 (19) | −0.0100 (18) | 0.010 (2) |
N1 | 0.026 (2) | 0.032 (3) | 0.032 (2) | −0.0024 (19) | 0.0013 (18) | 0.006 (2) |
C1 | 0.025 (2) | 0.044 (4) | 0.041 (3) | −0.002 (3) | 0.000 (2) | 0.007 (3) |
C2 | 0.024 (3) | 0.060 (4) | 0.063 (4) | −0.003 (3) | 0.013 (3) | 0.014 (4) |
C3 | 0.042 (3) | 0.050 (4) | 0.052 (4) | 0.013 (3) | 0.020 (3) | 0.008 (4) |
C4 | 0.045 (3) | 0.033 (4) | 0.043 (3) | 0.003 (3) | 0.010 (3) | −0.001 (3) |
C5 | 0.030 (2) | 0.028 (3) | 0.033 (3) | 0.000 (2) | 0.001 (2) | 0.011 (3) |
C6 | 0.028 (2) | 0.038 (4) | 0.034 (3) | −0.002 (2) | 0.000 (2) | 0.002 (3) |
C7 | 0.042 (3) | 0.073 (5) | 0.058 (4) | −0.011 (3) | −0.009 (3) | 0.013 (4) |
Geometric parameters (Å, º)
Cu1—Cu1i | 3.0051 (12) | C1—C2 | 1.365 (7) |
Cu1—Cl1 | 2.2215 (15) | C2—H2 | 0.9300 |
Cu1—O1i | 1.927 (3) | C2—C3 | 1.368 (8) |
Cu1—O1 | 1.937 (4) | C3—H3 | 0.9300 |
Cu1—N1 | 1.982 (4) | C3—C4 | 1.385 (7) |
O1—Cu1i | 1.927 (3) | C4—H4 | 0.9300 |
O1—C6 | 1.361 (6) | C4—C5 | 1.378 (7) |
O2—C6 | 1.415 (6) | C5—C6 | 1.524 (6) |
O2—C7 | 1.424 (6) | C6—H6 | 0.9800 |
N1—C1 | 1.351 (6) | C7—H7A | 0.9600 |
N1—C5 | 1.330 (6) | C7—H7B | 0.9600 |
C1—H1 | 0.9300 | C7—H7C | 0.9600 |
Cl1—Cu1—Cu1i | 139.33 (5) | C3—C2—H2 | 120.4 |
O1—Cu1—Cu1i | 38.82 (10) | C2—C3—H3 | 120.6 |
O1i—Cu1—Cu1i | 39.07 (11) | C2—C3—C4 | 118.8 (5) |
O1i—Cu1—Cl1 | 102.14 (12) | C4—C3—H3 | 120.6 |
O1—Cu1—Cl1 | 165.33 (16) | C3—C4—H4 | 120.4 |
O1i—Cu1—O1 | 77.89 (16) | C5—C4—C3 | 119.2 (5) |
O1—Cu1—N1 | 81.54 (15) | C5—C4—H4 | 120.4 |
O1i—Cu1—N1 | 158.20 (18) | N1—C5—C4 | 121.9 (5) |
N1—Cu1—Cu1i | 120.03 (12) | N1—C5—C6 | 116.0 (4) |
N1—Cu1—Cl1 | 99.59 (13) | C4—C5—C6 | 122.1 (5) |
Cu1i—O1—Cu1 | 102.11 (16) | O1—C6—O2 | 114.5 (5) |
C6—O1—Cu1 | 118.6 (3) | O1—C6—C5 | 109.0 (4) |
C6—O1—Cu1i | 138.9 (3) | O1—C6—H6 | 110.2 |
C6—O2—C7 | 114.8 (4) | O2—C6—C5 | 102.5 (4) |
C1—N1—Cu1 | 127.1 (4) | O2—C6—H6 | 110.2 |
C5—N1—Cu1 | 114.2 (3) | C5—C6—H6 | 110.2 |
C5—N1—C1 | 118.4 (4) | O2—C7—H7A | 109.5 |
N1—C1—H1 | 118.7 | O2—C7—H7B | 109.5 |
N1—C1—C2 | 122.5 (5) | O2—C7—H7C | 109.5 |
C2—C1—H1 | 118.7 | H7A—C7—H7B | 109.5 |
C1—C2—H2 | 120.4 | H7A—C7—H7C | 109.5 |
C1—C2—C3 | 119.1 (5) | H7B—C7—H7C | 109.5 |
Cu1—O1—C6—O2 | 108.4 (4) | C1—N1—C5—C6 | 178.4 (5) |
Cu1i—O1—C6—O2 | −79.8 (7) | C1—C2—C3—C4 | −0.6 (9) |
Cu1—O1—C6—C5 | −5.7 (6) | C2—C3—C4—C5 | 0.0 (9) |
Cu1i—O1—C6—C5 | 166.1 (4) | C3—C4—C5—N1 | 1.0 (8) |
Cu1—N1—C1—C2 | −172.6 (4) | C3—C4—C5—C6 | −178.8 (5) |
Cu1—N1—C5—C4 | 172.9 (4) | C4—C5—C6—O1 | −171.8 (5) |
Cu1—N1—C5—C6 | −7.4 (6) | C4—C5—C6—O2 | 66.5 (7) |
N1—C1—C2—C3 | 0.2 (9) | C5—N1—C1—C2 | 0.8 (8) |
N1—C5—C6—O1 | 8.4 (7) | C7—O2—C6—O1 | 81.5 (6) |
N1—C5—C6—O2 | −113.2 (5) | C7—O2—C6—C5 | −160.6 (5) |
C1—N1—C5—C4 | −1.4 (8) |
Symmetry code: (i) −x+1, −y+1, −z+1.
Hydrogen-bond geometry (Å, º)
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···Cl1ii | 0.93 | 2.90 | 3.756 (6) | 154 |
C3—H3···O2iii | 0.93 | 2.65 | 3.517 (7) | 156 |
C6—H6···O2iv | 0.98 | 2.59 | 3.548 (8) | 165 |
Symmetry codes: (ii) −x, −y, −z+1; (iii) −x+1/2, y+1/2, −z+3/2; (iv) x, y+1, z.
Footnotes
Supporting information for this paper is available from the IUCr electronic archives (Reference: CQ2013).
References
- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
- Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- Bruker (2014). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Drew, M. G. B., Nag, S., Pal, P. K. & Datta, D. (2008). Inorg. Chim. Acta, 361, 2562–2567.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Guidote, A. M. Jr, Ando, K., Kurusu, Y., Nagao, H. & Masuyama, Y. (2001). Inorg. Chim. Acta, 314, 27–36.
- Mondal, K. C., Sengupta, O. & Mukherjee, P. S. (2009). Inorg. Chem. Commun. 12, 682–685.
- Pijper, D., Saisaha, P., de Boer, J. W., Hoen, R., Smit, C., Meetsma, A., Hage, R., van Summeren, R. P., Alsters, P. L., Feringa, B. L. & Browne, W. R. (2010). Dalton Trans. 39, 10375–10381. [DOI] [PubMed]
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Wang, W., Spingler, B. & Alberto, R. (2003). Inorg. Chim. Acta, 355, 386–393.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015001310/cq2013sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015001310/cq2013Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989015001310/cq2013Isup3.cdx
. DOI: 10.1107/S2056989015001310/cq2013fig1.tif
A view of the dinuclear molecule of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
b . DOI: 10.1107/S2056989015001310/cq2013fig2.tif
Partial packing diagram of the title compound showing a molecular one-dimensional chain running parallel to the b axis assembled from dinuclear molecules linked together through non-classical C—H⋯O hydrogen bonds, weak π-π stacking and weak electrostatic Cu⋯Cl interactions (dashed lines). Hydrogen atoms not involved in the hydrogen bonding interactions are omitted for clarity.
. DOI: 10.1107/S2056989015001310/cq2013fig3.tif
A view of the weak C—H⋯Cl hydrogen bonding network between adjacent dinuclear molecules in the title compound which serve to connect the chains into a three-dimensional architecture.
CCDC reference: 1044740
Additional supporting information: crystallographic information; 3D view; checkCIF report