Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jan 21;71(Pt 2):o125–o126. doi: 10.1107/S2056989015000791

Crystal structure of 4-amino­benzoic acid–4-methyl­pyridine (1/1)

M Krishna Kumar a, P Pandi b, S Sudhahar a, G Chakkaravarthi c,*, R Mohan Kumar a,*
PMCID: PMC4384565  PMID: 25878865

Abstract

In the title 1:1 adduct, C6H7N·C7H7NO2, the carb­oxy­lic acid group is twisted at an angle of 4.32 (18)° with respect to the attached benzene ring. In the crystal, the carb­oxy­lic acid group is linked to the pyridine ring by an O—H⋯N hydrogen bond, forming a dimer. The dimers are linked by N—H⋯O hydrogen bonds, generating (010) sheets.

Keywords: crystal structure, adduct, O—H⋯N and N—H⋯O hydrogen bonds, layered structure

Related literature  

For background to pyridine derivatives, see: Tomaru et al. (1991). Katritzky et al. (1996); Akkurt et al. (2005). For related structures, see: Smith & Wermuth (2010); Hemamalini & Fun (2010); Kannan et al. (2012); Thanigaimani et al. (2012); Muralidharan et al. (2013).graphic file with name e-71-0o125-scheme1.jpg

Experimental  

Crystal data  

  • C6H7N·C7H7NO2

  • M r = 230.26

  • Monoclinic, Inline graphic

  • a = 7.5970 (7) Å

  • b = 11.6665 (12) Å

  • c = 7.6754 (8) Å

  • β = 114.200 (3)°

  • V = 620.49 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 K

  • 0.28 × 0.24 × 0.20 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.977, T max = 0.983

  • 10064 measured reflections

  • 2144 independent reflections

  • 1458 reflections with I > 2σ(I)

  • R int = 0.030

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.108

  • S = 1.03

  • 2144 reflections

  • 159 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.13 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015000791/hb7348sup1.cif

e-71-0o125-sup1.cif (21.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015000791/hb7348Isup2.hkl

e-71-0o125-Isup2.hkl (103.2KB, hkl)

. DOI: 10.1107/S2056989015000791/hb7348fig1.tif

The mol­ecular structure of (I), with 30% probability displacement ellipsoids for non-H atoms.

CCDC reference: 1043592

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
O1H1N2i 0.84(1) 1.81(1) 2.644(3) 177(4)
N1H1AO2ii 0.86 2.32 3.049(3) 142
N1H1BO2iii 0.86 2.17 3.031(3) 174

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors wish to acknowledge the SAIF, IIT, Madras, for the data collection.

supplementary crystallographic information

S1. Chemical context

Amino­pyridine and its derivatives play an important role in heterocyclic chemistry (Katritzky et al., 1996). Some pyridine derivatives possess nonlinear optical (NLO) properties (Tomaru et al., 1991) and possess anti­bacterial and anti­fungal activities (Akkurt et al., 2005). we herewith, report the synthesis and the crystal structure of (I) (Fig. 1).

S2. Structural commentary

The molecular structure of the title compound (I) is shown in (Fig. 1). It consists of two independent molecules in the assymetric unit. In the 4-amino­benzoic acid molecule, the carboxyl group is twisted at an angle of 4.32 (18)° with respect to the aromatic ring. In the 4-methyl­pyridine molecule, the pyridine ring (C8—C12/N2) is almost planar [maximum deviation 0.002 (3) Å]. The dihedral angle between the benzene ring (C1—C6) and pyridine ring (C8—C12/N2) is 57.11 (14)°.

S3. Supra­molecular features

In the crystal structure, 4-amino­benzoate and 4-methyl­pyridine molecules are linked by weak inter­molecular O—H···N hydrogen bonds and forms infinite one-dimensional chain along [0 0 1]. The adjacent 4-amino­benzoate molecules are connected by weak inter­molecular N—H···O hydrogen bonds, forming R22(12) ring motif in a two-dimensional network in the (010) plane (Table 2 & Fig. 2).

S4. Database survey

Several similar structures containing methyl­pyridinium and nitro­benzoate molecules have been reported earlier: i.e., 2-Amino-5-methyl­pyridinium 2-amino­benzoate (Thanigaimani et al., 2012); 2-Amino-5-chloro­pyridinium 4-amino­benzoate (Kannan et al., 2012); 2-Amino-4-methyl­pyridinium 2-nitro­benzoate (Muralidharan et al., 2013); 4-Methyl­pyridinium 2-carb­oxy-4,5-di­chloro­benzoate monohydrate [Smith & Wermuth, (2010)]; 2-Amino-4-methyl­pyridinium 2-hy­droxy­benzoate [Hemamalini & Fun (2010)].

S5. Synthesis and crystallization

Equimolar qu­antity of 4-methyl­pyridine and 4-amino­benzoic acid were dissolved in methanol-water mixed solvent and colourless blocks of the title adduct were grown by slow evaporation of the solvents.

S6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. The hydrogen atoms attached to C atoms and N atom were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic) or 0.96 Å (methyl) and N—H = 0.86 Å with Uiso(H) = 1.2 Ueq(C or N) or 1.5 Ueq(C) The hydroxyl H atom was located in a difference Fourier map, and refined with Uiso(H) = 1.2 Ueq(O) and distance restraint O—H = 0.82 Å.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with 30% probability displacement ellipsoids for non-H atoms.

Crystal data

C6H7N·C7H7NO2 F(000) = 244
Mr = 230.26 Dx = 1.232 Mg m3
Monoclinic, Pc Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2yc Cell parameters from 2749 reflections
a = 7.5970 (7) Å θ = 3.4–21.8°
b = 11.6665 (12) Å µ = 0.09 mm1
c = 7.6754 (8) Å T = 295 K
β = 114.200 (3)° Block, colourless
V = 620.49 (11) Å3 0.28 × 0.24 × 0.20 mm
Z = 2

Data collection

Bruker Kappa APEXII CCD diffractometer 2144 independent reflections
Radiation source: fine-focus sealed tube 1458 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.030
ω and φ scan θmax = 26.7°, θmin = 3.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −9→8
Tmin = 0.977, Tmax = 0.983 k = −14→14
10064 measured reflections l = −9→9

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0554P)2 + 0.0229P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
2144 reflections Δρmax = 0.12 e Å3
159 parameters Δρmin = −0.13 e Å3
3 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.013 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.3693 (4) 0.1034 (2) 0.7149 (4) 0.0567 (6)
C2 0.4434 (4) 0.2029 (2) 0.6722 (4) 0.0591 (7)
H2 0.3671 0.2471 0.5675 0.071*
C3 0.6273 (4) 0.2362 (2) 0.7829 (3) 0.0558 (6)
H3 0.6737 0.3037 0.7529 0.067*
C4 0.7475 (4) 0.1730 (2) 0.9383 (4) 0.0508 (6)
C5 0.6737 (4) 0.0738 (2) 0.9798 (4) 0.0594 (7)
H5 0.7516 0.0294 1.0835 0.071*
C6 0.4892 (4) 0.0392 (2) 0.8724 (4) 0.0629 (7)
H6 0.4429 −0.0278 0.9043 0.076*
C7 0.9416 (4) 0.2104 (2) 1.0596 (4) 0.0587 (7)
C8 0.4371 (5) 0.4546 (2) 1.3188 (5) 0.0729 (8)
H8 0.3567 0.5148 1.3183 0.087*
C9 0.6306 (4) 0.4655 (2) 1.4263 (4) 0.0693 (8)
H9 0.6791 0.5319 1.4967 0.083*
C10 0.7534 (4) 0.3784 (2) 1.4304 (4) 0.0639 (7)
C11 0.6716 (4) 0.2836 (2) 1.3242 (4) 0.0718 (8)
H11 0.7487 0.2220 1.3229 0.086*
C12 0.4767 (5) 0.2790 (3) 1.2196 (4) 0.0766 (9)
H12 0.4249 0.2135 1.1479 0.092*
C13 0.9658 (5) 0.3866 (3) 1.5468 (6) 0.0954 (11)
H13A 1.0310 0.3941 1.4635 0.143*
H13B 1.0099 0.3186 1.6229 0.143*
H13C 0.9930 0.4524 1.6289 0.143*
N1 0.1840 (4) 0.0710 (2) 0.6087 (4) 0.0827 (8)
H1A 0.1113 0.1124 0.5137 0.099*
H1B 0.1395 0.0092 0.6364 0.099*
N2 0.3582 (3) 0.3627 (2) 1.2152 (4) 0.0722 (6)
O1 0.9921 (3) 0.30989 (17) 1.0123 (3) 0.0808 (6)
H1 1.109 (2) 0.324 (3) 1.076 (5) 0.121*
O2 1.0516 (3) 0.15755 (17) 1.1996 (3) 0.0778 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0545 (16) 0.0584 (15) 0.0526 (15) −0.0071 (14) 0.0173 (13) −0.0070 (14)
C2 0.0599 (17) 0.0581 (15) 0.0489 (15) 0.0009 (12) 0.0118 (13) 0.0088 (12)
C3 0.0582 (16) 0.0536 (13) 0.0509 (15) −0.0050 (13) 0.0175 (13) 0.0058 (12)
C4 0.0529 (14) 0.0490 (12) 0.0442 (13) 0.0040 (12) 0.0135 (12) 0.0026 (12)
C5 0.0671 (18) 0.0516 (14) 0.0484 (16) 0.0021 (13) 0.0124 (14) 0.0046 (12)
C6 0.077 (2) 0.0518 (14) 0.0590 (17) −0.0076 (14) 0.0273 (15) 0.0048 (13)
C7 0.0563 (17) 0.0532 (13) 0.0583 (17) 0.0045 (13) 0.0150 (14) 0.0003 (14)
C8 0.0630 (18) 0.0626 (16) 0.081 (2) 0.0031 (15) 0.0172 (16) 0.0007 (16)
C9 0.068 (2) 0.0617 (17) 0.0665 (19) −0.0085 (14) 0.0150 (16) −0.0042 (13)
C10 0.0579 (18) 0.0740 (17) 0.0585 (17) −0.0045 (16) 0.0225 (14) 0.0063 (15)
C11 0.0680 (19) 0.0723 (18) 0.078 (2) 0.0015 (15) 0.0325 (18) −0.0048 (16)
C12 0.077 (2) 0.0747 (19) 0.074 (2) −0.0158 (17) 0.0260 (17) −0.0171 (16)
C13 0.0604 (19) 0.105 (2) 0.104 (3) −0.0070 (17) 0.0163 (18) 0.002 (2)
N1 0.0655 (16) 0.0852 (18) 0.0809 (18) −0.0163 (13) 0.0132 (14) 0.0063 (15)
N2 0.0567 (14) 0.0719 (15) 0.0766 (16) −0.0059 (13) 0.0157 (12) −0.0023 (13)
O1 0.0588 (11) 0.0691 (12) 0.0883 (16) −0.0105 (10) 0.0035 (11) 0.0130 (11)
O2 0.0678 (13) 0.0726 (12) 0.0665 (12) 0.0068 (10) 0.0006 (10) 0.0090 (10)

Geometric parameters (Å, º)

C1—N1 1.359 (4) C8—H8 0.9300
C1—C2 1.387 (3) C9—C10 1.371 (4)
C1—C6 1.397 (4) C9—H9 0.9300
C2—C3 1.361 (4) C10—C11 1.363 (4)
C2—H2 0.9300 C10—C13 1.493 (5)
C3—C4 1.380 (3) C11—C12 1.366 (4)
C3—H3 0.9300 C11—H11 0.9300
C4—C5 1.379 (3) C12—N2 1.319 (4)
C4—C7 1.452 (3) C12—H12 0.9300
C5—C6 1.364 (4) C13—H13A 0.9600
C5—H5 0.9300 C13—H13B 0.9600
C6—H6 0.9300 C13—H13C 0.9600
C7—O2 1.224 (3) N1—H1A 0.8600
C7—O1 1.319 (3) N1—H1B 0.8600
C8—N2 1.323 (3) O1—H1 0.836 (10)
C8—C9 1.365 (4)
N1—C1—C2 120.8 (2) C8—C9—C10 119.9 (3)
N1—C1—C6 121.2 (2) C8—C9—H9 120.0
C2—C1—C6 118.0 (2) C10—C9—H9 120.0
C3—C2—C1 120.2 (2) C11—C10—C9 116.6 (3)
C3—C2—H2 119.9 C11—C10—C13 121.7 (3)
C1—C2—H2 119.9 C9—C10—C13 121.7 (3)
C2—C3—C4 122.2 (2) C10—C11—C12 120.2 (3)
C2—C3—H3 118.9 C10—C11—H11 119.9
C4—C3—H3 118.9 C12—C11—H11 119.9
C5—C4—C3 117.4 (2) N2—C12—C11 123.4 (3)
C5—C4—C7 120.4 (2) N2—C12—H12 118.3
C3—C4—C7 122.1 (2) C11—C12—H12 118.3
C6—C5—C4 121.5 (2) C10—C13—H13A 109.5
C6—C5—H5 119.2 C10—C13—H13B 109.5
C4—C5—H5 119.2 H13A—C13—H13B 109.5
C5—C6—C1 120.6 (2) C10—C13—H13C 109.5
C5—C6—H6 119.7 H13A—C13—H13C 109.5
C1—C6—H6 119.7 H13B—C13—H13C 109.5
O2—C7—O1 120.9 (3) C1—N1—H1A 120.0
O2—C7—C4 124.1 (2) C1—N1—H1B 120.0
O1—C7—C4 115.0 (2) H1A—N1—H1B 120.0
N2—C8—C9 123.3 (3) C12—N2—C8 116.6 (3)
N2—C8—H8 118.4 C7—O1—H1 112 (3)
C9—C8—H8 118.4
N1—C1—C2—C3 178.1 (3) C3—C4—C7—O2 179.2 (3)
C6—C1—C2—C3 −0.5 (4) C5—C4—C7—O1 −176.1 (2)
C1—C2—C3—C4 0.9 (4) C3—C4—C7—O1 1.3 (3)
C2—C3—C4—C5 −0.5 (4) N2—C8—C9—C10 0.0 (5)
C2—C3—C4—C7 −178.1 (2) C8—C9—C10—C11 −0.2 (4)
C3—C4—C5—C6 −0.2 (4) C8—C9—C10—C13 −179.7 (3)
C7—C4—C5—C6 177.4 (2) C9—C10—C11—C12 0.4 (4)
C4—C5—C6—C1 0.5 (4) C13—C10—C11—C12 179.9 (3)
N1—C1—C6—C5 −178.8 (3) C10—C11—C12—N2 −0.4 (5)
C2—C1—C6—C5 −0.2 (4) C11—C12—N2—C8 0.1 (5)
C5—C4—C7—O2 1.7 (4) C9—C8—N2—C12 0.1 (5)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···N2i 0.84 (1) 1.81 (1) 2.644 (3) 177 (4)
N1—H1A···O2ii 0.86 2.32 3.049 (3) 142
N1—H1B···O2iii 0.86 2.17 3.031 (3) 174

Symmetry codes: (i) x+1, y, z; (ii) x−1, y, z−1; (iii) x−1, −y, z−1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7348).

References

  1. Akkurt, M., Karaca, S., Jarrahpour, A. A., Zarei, M. & Büyükgüngör, O. (2005). Acta Cryst. E61, o776–o778.
  2. Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o2151–o2152. [DOI] [PMC free article] [PubMed]
  4. Kannan, V., Sugumar, P., Brahadeeswaran, S. & Ponnuswamy, M. N. (2012). Acta Cryst. E68, o3187. [DOI] [PMC free article] [PubMed]
  5. Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). In Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.
  6. Muralidharan, S., Elavarasu, N., Srinivasan, T., Gopalakrishnan, R. & Velmurugan, D. (2013). Acta Cryst. E69, o910. [DOI] [PMC free article] [PubMed]
  7. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  10. Smith, G. & Wermuth, U. D. (2010). Acta Cryst. E66, o1254. [DOI] [PMC free article] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Thanigaimani, K., Farhadikoutenaei, A., Khalib, N. C., Arshad, S. & Razak, I. A. (2012). Acta Cryst. E68, o3196–o3197. [DOI] [PMC free article] [PubMed]
  13. Tomaru, S., Matsumoto, S., Kurihara, T., Suzuki, H., Ooba, N. & Kaino, T. (1991). Appl. Phys. Lett. 58, 2583–2585.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015000791/hb7348sup1.cif

e-71-0o125-sup1.cif (21.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015000791/hb7348Isup2.hkl

e-71-0o125-Isup2.hkl (103.2KB, hkl)

. DOI: 10.1107/S2056989015000791/hb7348fig1.tif

The mol­ecular structure of (I), with 30% probability displacement ellipsoids for non-H atoms.

CCDC reference: 1043592

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES