Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jan 28;71(Pt 2):o133–o134. doi: 10.1107/S2056989015001541

Crystal structure of 1-[(1-methyl-5-nitro-1H-imidazol-2-yl)meth­yl]pyridinium iodide

Roumaissa Belguedj a, Abdelmalek Bouraiou a, Hocine Merazig a, Ali Belfaitah b, Sofiane Bouacida a,c,*
PMCID: PMC4384567  PMID: 25878869

Abstract

In the title salt, C10H11N4O2 +·I, the asymmetric unit consists of a pyridinium cation bearning a (1-methyl-5-nitro-1H-imidazol-2-yl)methyl group at the N position and an iodide anion. The imidazole ring is quasiplanar, with a maxiumum deviation of 0.0032 (16) Å, and forms a dihedral angle of 67.39 (6)° with the plane of the pyridinium ring. The crystal packing can be described as alternating zigzag layers of cations parallel to the (001) plane, which are sandwiched by the iodide ions. The structure features two types of hydrogen bonds (C—H⋯O and C—H⋯I), viz. cation–anion and cation–cation, which lead to the form ation of a three-dimensional network.

Keywords: crystal structure, imidazole, pyridinium, iodide, hydrogen bonding

Related literature  

For the synthesis and applications of imidazole derivatives, see: Upcroft & Upcroft (2001); Çelik & Ateş (2006); Boyer (1986); Olender et al. (2009); Gaonkar et al. (2009); Larina & Lopyrev (2009). For our previous work on this type of chemistry, see: Zama et al. (2013); Alliouche et al. (2014); Bahnous et al. (2012). For the synthesis of the title compound, see: Albright & Shepherd (1973).graphic file with name e-71-0o133-scheme1.jpg

Experimental  

Crystal data  

  • C10H11N4O2 +·I

  • M r = 346.13

  • Monoclinic, Inline graphic

  • a = 11.035 (7) Å

  • b = 9.073 (6) Å

  • c = 12.859 (8) Å

  • β = 91.69 (2)°

  • V = 1286.8 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.49 mm−1

  • T = 295 K

  • 0.14 × 0.12 × 0.11 mm

Data collection  

  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002) T min = 0.615, T max = 0.745

  • 22502 measured reflections

  • 6134 independent reflections

  • 3669 reflections with I > 2σ(I)

  • R int = 0.030

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.029

  • wR(F 2) = 0.067

  • S = 0.99

  • 6134 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 1.14 e Å−3

  • Δρmin = −0.89 e Å−3

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2011); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015001541/hg5425sup1.cif

e-71-0o133-sup1.cif (21.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015001541/hg5425Isup2.hkl

e-71-0o133-Isup2.hkl (294.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015001541/hg5425Isup3.cml

. DOI: 10.1107/S2056989015001541/hg5425fig1.tif

(Farrugia, 2012). The mol­ecule structure of the title compound with the atomic labelling scheme. Displacement are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radius.

via a . DOI: 10.1107/S2056989015001541/hg5425fig2.tif

(Brandenburg, 2006). Alternating layers parallel to (001) plane of (I) sandwiched by iodide ions viewed via a axis

via b . DOI: 10.1107/S2056989015001541/hg5425fig3.tif

(Brandenburg, 2006). Crystal packing of (I) viewed via b axis showing hydrogen bond as dashed lines [C—H⋯I in red and C—H⋯O in black]

CCDC reference: 1045139

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
C10H10O2i 0.93 2.51 3.138(3) 125
C5H5AI1ii 0.97 3.04 3.807(3) 137
C7H7I1iii 0.93 3.04 3.854(3) 147

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

Thanks are due to MESRS and the DG–RSDT (Ministère de l’Enseignement Supérieur et de la Recherche Scientifique et la Direction Générale de la Recherche - Algérie) for financial support.

supplementary crystallographic information

S1. Comment

1. Chemical Context

Nitroheterocyclic drugs have drawn a continuing interest over the years due to efficient use in the treatment of various anaerobic pathogenic bacterial and protozoal infections (Upcroft & Upcroft, 2001; Çelik & Ates, 2006). Nitroimidazole derivatives have been the subject of much research because of their properties. Depending on the nature and the position of substituents or the nitro group, the nitroimidazole derivatives can posses various pharmacological action (Boyer, 1986). Nitroimidazoles, such as metronidazole, misonidazole, ornidazole, secnidazole and etamidazole, are commonly used as therapeutic agents against a variety of protozoan and bacterial infections of humans and animals (Olender et al., 2009; Gaonkar et al. 2009; Larina & Lopyrev 2009). In previous work, we have reported the synthesis and structure determination of some new heterocyclic compounds bearing a nitroimidazole entity (Zama et al., 2013; Alliouche et al., 2014; Bahnous et al., 2012). Herein, we report the synthesis and single-crystal X-ray structure of 1-((1-methyl-5-nitro-1H-imidazol-2-yl)methyl)pyridinium iodide, (I).

2. Structural commentary

The molecule structure of (I), and the atomic numbering used, is illustrated in Fig. 1. The asymmetric unit of (I) consists of pyridinium cation bearing a 1-methyl-5-nitro-1H-imidazol-2-yl)methyl group at N position, and the iodide anion. The imidazol ring is quasiplanar with maxiumum deviation of 0.0032 (16) Å at C1 atom; and form dihedral angle of 67.39 (6)° with pyridinium ring. The crystal packing can be described by alternating layers in zigzag parallel to (001) plane of cations group, which are sandwiched by iodide ions (Fig. 2).

3. Supramolecular features

The crystal packing is mostly governed by classical hydrogen bonds (Fig. 3). Atoms C2, C5, C7, C10 and O2 of the cation participate in the formation of intramolecular [C—H···O and C—H···I] hydrogen bonds (Table 1). In this structure, we observe two types of hydrogen bonds, viz. cation-anion, cation-cation which form a three-dimensional network. The intramolecular hydrogen bond interactions C—H···O are also observed in cations moities. however the centroid to centroid distance between the phenyl rings are too long (4.430 (3) Å) for considering π-π interactions. These interactions link the molecules within the layers and also link the layers together and reinforcing the cohesion of the ionic structure.

S2. Experimental

The 1-((1-methyl-5-nitro-1H-imidazol-2-yl)methyl)pyridinium iodide, I, was prepared from 1,2-dimethyl-5-nitro-1H-imidazole in presence of iodine and pyridine as solvent according to described procedure (Albright & Shepherd, 1973). The colorless crystals of the title compound used for the X-ray diffraction study were obtained from aqueous solution of I.

S3. Refinement

The H atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent atom (C) with C—H = 0.93 Å (aromatic), C—H = 0.97 Å (methylene) and C—H = 0.96 Å (methyl) with Uiso(H) = 1.2 or 1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

(Farrugia, 2012). The molecule structure of the title compound with the atomic labelling scheme. Displacement are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

(Brandenburg, 2006). Alternating layers parallel to (001) plane of (I) sandwiched by iodide ions viewed via a axis

Fig. 3.

Fig. 3.

(Brandenburg, 2006). Crystal packing of (I) viewed via b axis showing hydrogen bond as dashed lines [C—H···I in red and C—H···O in black]

Crystal data

C10H11N4O2+·I F(000) = 672
Mr = 346.13 Dx = 1.787 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 11.035 (7) Å Cell parameters from 6343 reflections
b = 9.073 (6) Å θ = 2.8–29.3°
c = 12.859 (8) Å µ = 2.49 mm1
β = 91.69 (2)° T = 295 K
V = 1286.8 (14) Å3 Prism, colorless
Z = 4 0.14 × 0.12 × 0.11 mm

Data collection

Bruker APEXII diffractometer 6134 independent reflections
Radiation source: Enraf–Nonius FR590 3669 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.030
CCD rotation images, thick slices scans θmax = 36.5°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) h = −18→17
Tmin = 0.615, Tmax = 0.745 k = −14→14
22502 measured reflections l = −21→21

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067 H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0275P)2] where P = (Fo2 + 2Fc2)/3
6134 reflections (Δ/σ)max = 0.006
155 parameters Δρmax = 1.14 e Å3
0 restraints Δρmin = −0.89 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.53170 (14) −0.02548 (17) 0.12964 (12) 0.0288 (3)
C2 0.75852 (17) −0.0764 (2) 0.10429 (18) 0.0469 (5)
H2A 0.8317 −0.0235 0.1217 0.07*
H2B 0.755 −0.0965 0.031 0.07*
H2C 0.7577 −0.1676 0.1421 0.07*
C3 0.65440 (15) 0.15859 (18) 0.15888 (12) 0.0299 (3)
C4 0.46650 (16) 0.09581 (18) 0.15569 (14) 0.0361 (4)
H4 0.3826 0.0995 0.1603 0.043*
C5 0.76681 (16) 0.25171 (19) 0.16974 (12) 0.0353 (4)
H5A 0.7584 0.3202 0.227 0.042*
H5B 0.8361 0.189 0.1855 0.042*
C6 0.87603 (16) 0.2915 (2) 0.01029 (14) 0.0458 (4)
H6 0.9214 0.2079 0.0268 0.055*
C7 0.8991 (2) 0.3696 (3) −0.07726 (17) 0.0563 (5)
H7 0.9604 0.3395 −0.1206 0.068*
C8 0.8319 (3) 0.4928 (3) −0.10157 (16) 0.0633 (6)
H8 0.8489 0.5479 −0.1603 0.076*
C9 0.7398 (3) 0.5340 (2) −0.03922 (18) 0.0698 (7)
H9 0.6922 0.6156 −0.0562 0.084*
C10 0.7181 (2) 0.4539 (2) 0.04885 (16) 0.0520 (5)
H10 0.6556 0.481 0.092 0.062*
N1 0.48460 (14) −0.16821 (16) 0.10430 (11) 0.0361 (3)
N2 0.65316 (11) 0.01303 (14) 0.13202 (9) 0.0278 (3)
N3 0.54387 (13) 0.21140 (15) 0.17398 (11) 0.0377 (3)
N4 0.78797 (12) 0.33517 (15) 0.07265 (10) 0.0323 (3)
O1 0.37309 (12) −0.17941 (15) 0.09568 (11) 0.0516 (3)
O2 0.55464 (14) −0.27106 (14) 0.09207 (13) 0.0594 (4)
I1 1.107377 (10) 0.089936 (13) 0.189052 (9) 0.04248 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0291 (8) 0.0313 (8) 0.0262 (7) −0.0053 (6) 0.0025 (6) 0.0001 (6)
C2 0.0322 (10) 0.0468 (11) 0.0620 (12) 0.0067 (8) 0.0072 (9) −0.0108 (9)
C3 0.0317 (8) 0.0315 (8) 0.0268 (7) −0.0030 (6) 0.0042 (6) 0.0000 (6)
C4 0.0269 (8) 0.0405 (9) 0.0412 (9) −0.0011 (7) 0.0070 (7) −0.0027 (7)
C5 0.0376 (9) 0.0392 (9) 0.0291 (7) −0.0098 (7) 0.0012 (7) 0.0012 (7)
C6 0.0322 (9) 0.0637 (12) 0.0416 (10) −0.0018 (9) 0.0049 (8) 0.0067 (9)
C7 0.0492 (12) 0.0784 (15) 0.0417 (10) −0.0130 (11) 0.0102 (9) 0.0030 (11)
C8 0.1028 (19) 0.0505 (12) 0.0368 (10) −0.0304 (13) 0.0066 (11) 0.0034 (10)
C9 0.123 (2) 0.0316 (10) 0.0558 (13) 0.0119 (12) 0.0106 (14) 0.0052 (11)
C10 0.0778 (16) 0.0293 (8) 0.0498 (11) 0.0068 (10) 0.0161 (10) −0.0007 (9)
N1 0.0418 (9) 0.0356 (7) 0.0311 (7) −0.0086 (6) 0.0038 (6) −0.0016 (6)
N2 0.0259 (7) 0.0309 (7) 0.0267 (6) 0.0000 (5) 0.0039 (5) 0.0005 (5)
N3 0.0354 (8) 0.0333 (7) 0.0449 (8) −0.0005 (6) 0.0095 (6) −0.0049 (6)
N4 0.0349 (8) 0.0312 (7) 0.0310 (6) −0.0096 (6) 0.0028 (6) −0.0037 (6)
O1 0.0413 (8) 0.0544 (8) 0.0589 (8) −0.0164 (6) −0.0041 (6) −0.0063 (7)
O2 0.0606 (9) 0.0336 (7) 0.0847 (11) −0.0003 (7) 0.0177 (8) −0.0112 (7)
I1 0.03084 (7) 0.04881 (8) 0.04816 (8) 0.00945 (5) 0.00730 (5) 0.00972 (5)

Geometric parameters (Å, º)

C1—C4 1.362 (2) C5—H5B 0.97
C1—N2 1.385 (2) C6—N4 1.338 (2)
C1—N1 1.429 (2) C6—C7 1.360 (3)
C2—N2 1.470 (2) C6—H6 0.93
C2—H2A 0.96 C7—C8 1.373 (3)
C2—H2B 0.96 C7—H7 0.93
C2—H2C 0.96 C8—C9 1.365 (4)
C3—N3 1.330 (2) C8—H8 0.93
C3—N2 1.365 (2) C9—C10 1.373 (3)
C3—C5 1.504 (2) C9—H9 0.93
C4—N3 1.368 (2) C10—N4 1.355 (2)
C4—H4 0.93 C10—H10 0.93
C5—N4 1.484 (2) N1—O2 1.225 (2)
C5—H5A 0.97 N1—O1 1.236 (2)
C4—C1—N2 107.98 (14) C7—C6—H6 120
C4—C1—N1 126.65 (15) C6—C7—C8 119.9 (2)
N2—C1—N1 125.37 (14) C6—C7—H7 120
N2—C2—H2A 109.5 C8—C7—H7 120
N2—C2—H2B 109.5 C9—C8—C7 119.7 (2)
H2A—C2—H2B 109.5 C9—C8—H8 120.1
N2—C2—H2C 109.5 C7—C8—H8 120.1
H2A—C2—H2C 109.5 C8—C9—C10 119.4 (2)
H2B—C2—H2C 109.5 C8—C9—H9 120.3
N3—C3—N2 112.53 (14) C10—C9—H9 120.3
N3—C3—C5 122.78 (15) N4—C10—C9 119.7 (2)
N2—C3—C5 124.69 (15) N4—C10—H10 120.2
C1—C4—N3 109.28 (16) C9—C10—H10 120.2
C1—C4—H4 125.4 O2—N1—O1 123.78 (15)
N3—C4—H4 125.4 O2—N1—C1 119.53 (15)
N4—C5—C3 110.99 (13) O1—N1—C1 116.69 (15)
N4—C5—H5A 109.4 C3—N2—C1 104.61 (13)
C3—C5—H5A 109.4 C3—N2—C2 126.38 (14)
N4—C5—H5B 109.4 C1—N2—C2 128.85 (14)
C3—C5—H5B 109.4 C3—N3—C4 105.60 (14)
H5A—C5—H5B 108 C6—N4—C10 121.25 (16)
N4—C6—C7 119.9 (2) C6—N4—C5 119.21 (15)
N4—C6—H6 120 C10—N4—C5 119.53 (15)
N2—C1—C4—N3 0.4 (2) C5—C3—N2—C2 −3.1 (2)
N1—C1—C4—N3 −179.70 (15) C4—C1—N2—C3 −0.60 (17)
N3—C3—C5—N4 −83.61 (19) N1—C1—N2—C3 179.51 (14)
N2—C3—C5—N4 95.79 (18) C4—C1—N2—C2 −176.19 (17)
N4—C6—C7—C8 −0.1 (3) N1—C1—N2—C2 3.9 (3)
C6—C7—C8—C9 −1.8 (3) N2—C3—N3—C4 −0.35 (19)
C7—C8—C9—C10 1.9 (4) C5—C3—N3—C4 179.12 (15)
C8—C9—C10—N4 −0.1 (4) C1—C4—N3—C3 −0.1 (2)
C4—C1—N1—O2 −173.00 (17) C7—C6—N4—C10 2.1 (3)
N2—C1—N1—O2 6.9 (2) C7—C6—N4—C5 −177.91 (17)
C4—C1—N1—O1 7.2 (2) C9—C10—N4—C6 −2.0 (3)
N2—C1—N1—O1 −172.89 (15) C9—C10—N4—C5 178.00 (19)
N3—C3—N2—C1 0.59 (17) C3—C5—N4—C6 −105.28 (18)
C5—C3—N2—C1 −178.86 (14) C3—C5—N4—C10 74.8 (2)
N3—C3—N2—C2 176.33 (16)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C2—H2C···O2 0.96 2.50 2.861 (3) 102
C10—H10···O2i 0.93 2.51 3.138 (3) 125
C5—H5A···I1ii 0.97 3.04 3.807 (3) 137
C7—H7···I1iii 0.93 3.04 3.854 (3) 147

Symmetry codes: (i) x, y+1, z; (ii) −x+2, y+1/2, −z+1/2; (iii) x, −y+1/2, z−1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: HG5425).

References

  1. Albright, J. D. & Shepherd, R. G. (1973). J. Heterocycl. Chem. 10, 899–907.
  2. Alliouche, H., Bouraiou, A., Bouacida, S., Bahnous, M., Roisnel, T. & Belfaitah, A. (2014). Lett. Org. Chem. 11, 174–179.
  3. Bahnous, M., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2012). Acta Cryst. E68, o1391. [DOI] [PMC free article] [PubMed]
  4. Boyer, J. H. (1986). Nitroazoles, pp. 165–166. Deerfield Beach, Florida: VCH Publishers, Inc.
  5. Brandenburg, K. (2006). DIAMOND. Crystal Impact, Bonn, Germany.
  6. Bruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  7. Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.
  8. Çelik, A. & Ateş, N. A. (2006). Drug Chem. Toxicol. 29, 85–94. [DOI] [PubMed]
  9. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  10. Gaonkar, S. L., Lokanatha Rai, K. M. & Suchetha Shetty, N. (2009). Med. Chem. Res. 18, 221–230.
  11. Larina, L. & Lopyrev, V. (2009). In Nitroazoles: Synthesis, Structure and Applications, in Topics in Applied Chemistry, edited by A. Katritzky & G. J. Sabongi. Berlin: Springer.
  12. Olender, D., Żwawiak, J., Lukianchuk, V., Lesyk, R., Kropacz, A., Fojutowski, A. & Zaprutko, L. (2009). Eur. J. Med. Chem. 44, 645–652. [DOI] [PubMed]
  13. Sheldrick, G. M. (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  14. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  15. Upcroft, P. & Upcroft, J. A. (2001). Clin. Microbiol. Rev. 14, 150–164. [DOI] [PMC free article] [PubMed]
  16. Zama, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2013). Acta Cryst. E69, o837–o838. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015001541/hg5425sup1.cif

e-71-0o133-sup1.cif (21.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015001541/hg5425Isup2.hkl

e-71-0o133-Isup2.hkl (294.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015001541/hg5425Isup3.cml

. DOI: 10.1107/S2056989015001541/hg5425fig1.tif

(Farrugia, 2012). The mol­ecule structure of the title compound with the atomic labelling scheme. Displacement are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radius.

via a . DOI: 10.1107/S2056989015001541/hg5425fig2.tif

(Brandenburg, 2006). Alternating layers parallel to (001) plane of (I) sandwiched by iodide ions viewed via a axis

via b . DOI: 10.1107/S2056989015001541/hg5425fig3.tif

(Brandenburg, 2006). Crystal packing of (I) viewed via b axis showing hydrogen bond as dashed lines [C—H⋯I in red and C—H⋯O in black]

CCDC reference: 1045139

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES