Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jan 14;71(Pt 2):m26–m27. doi: 10.1107/S2056989015000328

Crystal structure of bis­[S-hexyl 3-(4-methyl­benzyl­idene)di­thio­carbazato-κ2 N 3,S]nickel(II)

M B H Howlader a, M S Begum a,*, M C Sheikh b, R Miyatake c, E Zangrando d
PMCID: PMC4384570  PMID: 25878838

Abstract

In the title complex, [Ni(C15H21N2S2)2], the NiII atom exhibits a square-planar coordination geometry and is located on an inversion centre leading to a trans configuration of the N,S-chelating ligands. In the crystal, the complex mol­ecules stack at a distance of 4.6738 (3) Å along the a axis, which exclude any significant inter­actions between the aromatic rings.

Keywords: crystal structure, nickel complex, di­thio­carbazate

Related literature  

For the structures of related complexes, see: Chan et al. (2008); Islam et al. (2011, 2014); Li et al. (2006); Zhang et al. (2004). For the structure of the ligand, see: Howlader et al. (2015).graphic file with name e-71-00m26-scheme1.jpg

Experimental  

Crystal data  

  • [Ni(C15H21N2S2)2]

  • M r = 645.62

  • Triclinic, Inline graphic

  • a = 4.6738 (3) Å

  • b = 10.5132 (5) Å

  • c = 16.4789 (8) Å

  • α = 86.522 (3)°

  • β = 84.850 (3)°

  • γ = 79.057 (3)°

  • V = 791.00 (7) Å3

  • Z = 1

  • Cu Kα radiation

  • μ = 3.55 mm−1

  • T = 173 K

  • 0.37 × 0.08 × 0.02 mm

Data collection  

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Rigaku, 1995) T min = 0.615, T max = 0.932

  • 9100 measured reflections

  • 2834 independent reflections

  • 2029 reflections with F 2 > 2σ(F 2)

  • R int = 0.074

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.071

  • wR(F 2) = 0.218

  • S = 1.09

  • 2834 reflections

  • 180 parameters

  • H-atom parameters constrained

  • Δρmax = 0.98 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: RAPID-AUTO (Rigaku, 2001); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure.

Supplementary Material

Crystal structure: contains datablock(s) General, I. DOI: 10.1107/S2056989015000328/ds2244sup1.cif

e-71-00m26-sup1.cif (17.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015000328/ds2244Isup2.hkl

e-71-00m26-Isup2.hkl (155.7KB, hkl)

ORTEP L 2 . DOI: 10.1107/S2056989015000328/ds2244fig1.tif

ORTEP drawing (ellipsoid probability at 50%) of the centrosymmetric NiL 2 complex.

. DOI: 10.1107/S2056989015000328/ds2244fig2.tif

Crystal packing of the complex.

CCDC reference: 1035820

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths ().

NiN1 1.933 (3)
NiS1 2.1775 (10)

Acknowledgments

MBHH and MSB are grateful to the Department of Chemistry, Rajshahi University, for the provision of laboratory facilities. MCS acknowledges the Department of Applied Chemistry, Toyama University, for providing funds for single-crystal X-ray analyses.

supplementary crystallographic information

S1. Structural commentary

The metal is located on a crystallographic inversion centre and the two Schiff bases, in their deprotonated imino thiol­ate form, act as chelating ligands to the metal centre via the azomethine nitro­gen N1 and thiol­ate sulphur S1 atoms in a trans-planar configuration as imposed by the crystal symmetry. The complex has coplanar geometry with the exception of the hexyl chains that pend hedgewise. In the complex, the Ni—S and Ni–N bond distances are of 2.1777 (11) and 1.933 (4) Å, respectively, with a S(2)—Ni—N(2) chelating angle of 86.06 (10)°. These geometrical parameters agree with those reported for similar nickel complexes either when ligands assume a trans (Islam, et al., 2011; Islam, et al., 2014; Zhang, et al., 2004) or a cis configuration (Chan, et al., 2008; Li, et al., 2006). The ligand, recently reported (Howlader, et al., 2015), underwent rotation about the C9—N2 by 180° in order to allow the N,S chelating behavior towards the metal. Upon coordination some salient features are observed with respect to the free ligand, and the most significant are an elongation of the C(9)—S(1) bond length (1.720 (4) Å in NiL2 that must be compared to 1.670 (3) Å in HL, thus validating the coordination with deprotonated thiol­ate sulphur atom. Correspondingly the N(2)—C(9) bond length, of 1.335 (3) Å, shortens to 1.270 (6) Å in the NiL2 complex, while the N(1)—N(2) bond length of 1.375 (3) Å in HL is slightly elongated in the complex (1.426 (5) Å, Table 1).

S2. Supra­molecular features

The complexes stack at a distance of 4.6738 (3) Å (axis a), which exclude any significant inter­actions between the aromatic rings.

S3. Synthesis and crystallization

A solution of Ni(CH3COO)2.4H2O (0.06 g, 0.25 mmol, 8 mL methanol) was added to a solution of the ligand, S-hexyl (E)-3-(4-methyl­benzyl­idene)di­thio­carbazate, (0.15 g, 0.5 mmol, 10 mL methanol ). The resulting mixture was stirred at room temperature for four hours. A dark reddish brown precipitate was formed, filtered off, washed with methanol and dried in vacuo over anhydrous CaCl2. Dark reddish brown single crystals, suitable for X-ray diffraction, of the compound were obtained by slow evaporation from a mixture of chloro­form and aceto­nitrile (1:1) after 7 days. M.P. 374 K.

S4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms were located geometrically and treated as riding atoms, with C—H = 0.95–0.99 Å, and with Uĩso~(H) = 1.2U~eq~(C) or 1.5U~eq~(C) for methyl H atoms.

Figures

Fig. 1.

Fig. 1.

ORTEP drawing (ellipsoid probability at 50%) of the centrosymmetric NiL2 complex.

Fig. 2.

Fig. 2.

Crystal packing of the complex.

Crystal data

[Ni(C15H21N2S2)2] Z = 1
Mr = 645.62 F(000) = 342.00
Triclinic, P1 Dx = 1.355 Mg m3
Hall symbol: -P 1 Cu Kα radiation, λ = 1.54187 Å
a = 4.6738 (3) Å Cell parameters from 5923 reflections
b = 10.5132 (5) Å θ = 4.3–68.2°
c = 16.4789 (8) Å µ = 3.55 mm1
α = 86.522 (3)° T = 173 K
β = 84.850 (3)° Platelet, brown
γ = 79.057 (3)° 0.37 × 0.08 × 0.02 mm
V = 791.00 (7) Å3

Data collection

Rigaku R-AXIS RAPID diffractometer 2029 reflections with F2 > 2σ(F2)
Detector resolution: 10.000 pixels mm-1 Rint = 0.074
ω scans θmax = 68.2°
Absorption correction: multi-scan (ABSCOR; Rigaku, 1995) h = −5→5
Tmin = 0.615, Tmax = 0.932 k = −12→12
9100 measured reflections l = −19→19
2834 independent reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.218 H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.1314P)2] where P = (Fo2 + 2Fc2)/3
2834 reflections (Δ/σ)max < 0.001
180 parameters Δρmax = 0.98 e Å3
0 restraints Δρmin = −0.35 e Å3
Primary atom site location: structure-invariant direct methods

Special details

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni 1.0000 1.0000 1.0000 0.0372 (4)
S1 1.1112 (3) 0.83443 (10) 0.92242 (6) 0.0516 (4)
S2 1.4585 (2) 0.80909 (9) 0.76635 (6) 0.0479 (4)
N1 0.7454 (7) 0.9180 (3) 1.07644 (18) 0.0365 (8)
N2 1.3765 (7) 1.0201 (3) 0.85050 (18) 0.0405 (8)
C1 −0.0675 (10) 0.4837 (4) 1.2473 (3) 0.0514 (11)
H1A −0.0056 0.4630 1.3025 0.077*
H1B −0.0491 0.4035 1.2184 0.077*
H1C −0.2717 0.5288 1.2503 0.077*
C2 0.1222 (9) 0.5695 (4) 1.2022 (2) 0.0420 (10)
C3 0.1476 (9) 0.6854 (4) 1.2321 (3) 0.0489 (11)
H3 0.0431 0.7105 1.2825 0.059*
C4 0.3184 (9) 0.7676 (4) 1.1923 (2) 0.0455 (10)
H4 0.3281 0.8471 1.2154 0.055*
C5 0.4769 (8) 0.7344 (4) 1.1181 (2) 0.0390 (9)
C6 0.4513 (10) 0.6168 (4) 1.0883 (3) 0.0522 (12)
H6 0.5555 0.5913 1.0380 0.063*
C7 0.2807 (10) 0.5349 (4) 1.1288 (2) 0.0511 (11)
H7 0.2718 0.4547 1.1063 0.061*
C8 0.6638 (9) 0.8089 (4) 1.0680 (2) 0.0418 (10)
H8 0.7429 0.7691 1.0186 0.050*
C9 1.3189 (8) 0.9071 (4) 0.8487 (2) 0.0370 (9)
C10 1.6632 (9) 0.9110 (4) 0.7013 (3) 0.0469 (11)
H10A 1.7787 0.9530 0.7355 0.056*
H10B 1.8022 0.8559 0.6632 0.056*
C11 1.4718 (9) 1.0153 (4) 0.6522 (2) 0.0463 (10)
H11A 1.3404 1.0736 0.6903 0.056*
H11B 1.3482 0.9738 0.6203 0.056*
C12 1.6461 (9) 1.0959 (4) 0.5943 (2) 0.0467 (10)
H12A 1.7684 1.1383 0.6262 0.056*
H12B 1.7784 1.0378 0.5563 0.056*
C13 1.4508 (9) 1.1991 (4) 0.5453 (2) 0.0488 (11)
H13A 1.3236 1.1563 0.5154 0.059*
H13B 1.3227 1.2580 0.5837 0.059*
C14 1.6143 (10) 1.2790 (4) 0.4849 (3) 0.0545 (12)
H14A 1.7445 1.2204 0.4468 0.065*
H14B 1.7386 1.3235 0.5147 0.065*
C15 1.4131 (11) 1.3796 (5) 0.4361 (3) 0.0670 (14)
H15A 1.3058 1.3358 0.4015 0.100*
H15B 1.5293 1.4337 0.4019 0.100*
H15C 1.2742 1.4342 0.4735 0.100*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni 0.0441 (7) 0.0337 (6) 0.0351 (5) −0.0150 (4) 0.0033 (4) 0.0027 (4)
S1 0.0706 (9) 0.0392 (6) 0.0472 (6) −0.0254 (6) 0.0172 (6) −0.0036 (5)
S2 0.0571 (8) 0.0331 (6) 0.0520 (6) −0.0121 (5) 0.0142 (5) −0.0052 (4)
N1 0.044 (2) 0.0325 (16) 0.0337 (16) −0.0097 (15) 0.0010 (14) −0.0006 (13)
N2 0.045 (2) 0.0378 (18) 0.0370 (17) −0.0105 (16) 0.0085 (15) 0.0032 (14)
C1 0.047 (3) 0.047 (2) 0.061 (3) −0.016 (2) −0.001 (2) 0.013 (2)
C2 0.034 (2) 0.042 (2) 0.050 (2) −0.0104 (18) −0.0010 (18) 0.0111 (18)
C3 0.051 (3) 0.044 (2) 0.051 (2) −0.013 (2) 0.016 (2) −0.0023 (19)
C4 0.053 (3) 0.034 (2) 0.049 (2) −0.015 (2) 0.012 (2) −0.0064 (17)
C5 0.040 (2) 0.039 (2) 0.038 (2) −0.0142 (18) 0.0024 (18) 0.0049 (16)
C6 0.071 (3) 0.045 (2) 0.044 (2) −0.027 (2) 0.013 (2) −0.0083 (19)
C7 0.068 (3) 0.043 (2) 0.048 (2) −0.027 (2) 0.004 (2) −0.0037 (18)
C8 0.050 (3) 0.044 (2) 0.0337 (19) −0.017 (2) 0.0048 (18) −0.0028 (16)
C9 0.036 (2) 0.037 (2) 0.036 (2) −0.0065 (18) 0.0024 (17) 0.0012 (16)
C10 0.049 (3) 0.039 (2) 0.050 (2) −0.010 (2) 0.016 (2) −0.0037 (18)
C11 0.050 (3) 0.044 (2) 0.045 (2) −0.014 (2) 0.007 (2) −0.0020 (18)
C12 0.048 (3) 0.043 (2) 0.049 (2) −0.016 (2) 0.009 (2) −0.0037 (18)
C13 0.051 (3) 0.050 (2) 0.047 (2) −0.017 (2) 0.007 (2) −0.0016 (19)
C14 0.061 (3) 0.047 (2) 0.056 (3) −0.019 (2) 0.011 (2) −0.001 (2)
C15 0.079 (4) 0.061 (3) 0.063 (3) −0.026 (3) 0.001 (3) 0.007 (2)

Geometric parameters (Å, º)

Ni—N1 1.933 (3) C6—C7 1.385 (5)
Ni—N1i 1.933 (3) C6—H6 0.9500
Ni—S1 2.1775 (10) C7—H7 0.9500
Ni—S1i 2.1775 (10) C8—H8 0.9500
S1—C9 1.720 (4) C10—C11 1.519 (5)
S2—C9 1.757 (4) C10—H10A 0.9900
S2—C10 1.811 (4) C10—H10B 0.9900
N1—C8 1.294 (5) C11—C12 1.521 (5)
N1—N2i 1.425 (4) C11—H11A 0.9900
N2—C9 1.269 (5) C11—H11B 0.9900
N2—N1i 1.425 (4) C12—C13 1.521 (6)
C1—C2 1.501 (5) C12—H12A 0.9900
C1—H1A 0.9800 C12—H12B 0.9900
C1—H1B 0.9800 C13—C14 1.513 (5)
C1—H1C 0.9800 C13—H13A 0.9900
C2—C3 1.371 (6) C13—H13B 0.9900
C2—C7 1.391 (6) C14—C15 1.517 (6)
C3—C4 1.383 (5) C14—H14A 0.9900
C3—H3 0.9500 C14—H14B 0.9900
C4—C5 1.399 (5) C15—H15A 0.9800
C4—H4 0.9500 C15—H15B 0.9800
C5—C6 1.387 (5) C15—H15C 0.9800
C5—C8 1.452 (5)
N1—Ni—N1i 180.00 (14) N2—C9—S1 125.9 (3)
N1—Ni—S1 93.96 (9) N2—C9—S2 120.3 (3)
N1i—Ni—S1 86.04 (9) S1—C9—S2 113.9 (2)
N1—Ni—S1i 86.04 (9) C11—C10—S2 113.5 (3)
N1i—Ni—S1i 93.96 (9) C11—C10—H10A 108.9
S1—Ni—S1i 180.0 S2—C10—H10A 108.9
C9—S1—Ni 95.86 (13) C11—C10—H10B 108.9
C9—S2—C10 103.09 (19) S2—C10—H10B 108.9
C8—N1—N2i 113.8 (3) H10A—C10—H10B 107.7
C8—N1—Ni 126.3 (3) C10—C11—C12 113.2 (3)
N2i—N1—Ni 119.9 (2) C10—C11—H11A 108.9
C9—N2—N1i 111.9 (3) C12—C11—H11A 108.9
C2—C1—H1A 109.5 C10—C11—H11B 108.9
C2—C1—H1B 109.5 C12—C11—H11B 108.9
H1A—C1—H1B 109.5 H11A—C11—H11B 107.8
C2—C1—H1C 109.5 C13—C12—C11 112.4 (3)
H1A—C1—H1C 109.5 C13—C12—H12A 109.1
H1B—C1—H1C 109.5 C11—C12—H12A 109.1
C3—C2—C7 117.1 (4) C13—C12—H12B 109.1
C3—C2—C1 121.3 (4) C11—C12—H12B 109.1
C7—C2—C1 121.7 (4) H12A—C12—H12B 107.9
C2—C3—C4 123.0 (4) C14—C13—C12 114.4 (4)
C2—C3—H3 118.5 C14—C13—H13A 108.7
C4—C3—H3 118.5 C12—C13—H13A 108.7
C3—C4—C5 120.4 (4) C14—C13—H13B 108.7
C3—C4—H4 119.8 C12—C13—H13B 108.7
C5—C4—H4 119.8 H13A—C13—H13B 107.6
C6—C5—C4 116.3 (3) C13—C14—C15 113.0 (4)
C6—C5—C8 116.0 (3) C13—C14—H14A 109.0
C4—C5—C8 127.8 (4) C15—C14—H14A 109.0
C7—C6—C5 122.9 (4) C13—C14—H14B 109.0
C7—C6—H6 118.6 C15—C14—H14B 109.0
C5—C6—H6 118.6 H14A—C14—H14B 107.8
C6—C7—C2 120.3 (4) C14—C15—H15A 109.5
C6—C7—H7 119.9 C14—C15—H15B 109.5
C2—C7—H7 119.9 H15A—C15—H15B 109.5
N1—C8—C5 133.6 (4) C14—C15—H15C 109.5
N1—C8—H8 113.2 H15A—C15—H15C 109.5
C5—C8—H8 113.2 H15B—C15—H15C 109.5
C7—C2—C3—C4 0.8 (6) C4—C5—C8—N1 2.7 (8)
C1—C2—C3—C4 −179.6 (4) N1i—N2—C9—S1 1.8 (5)
C2—C3—C4—C5 −0.2 (7) N1i—N2—C9—S2 −177.5 (2)
C3—C4—C5—C6 0.0 (6) Ni—S1—C9—N2 2.5 (4)
C3—C4—C5—C8 179.5 (4) Ni—S1—C9—S2 −178.24 (18)
C4—C5—C6—C7 −0.2 (7) C10—S2—C9—N2 −0.4 (4)
C8—C5—C6—C7 −179.8 (4) C10—S2—C9—S1 −179.8 (2)
C5—C6—C7—C2 0.8 (7) C9—S2—C10—C11 −77.3 (3)
C3—C2—C7—C6 −1.0 (6) S2—C10—C11—C12 −176.9 (3)
C1—C2—C7—C6 179.3 (4) C10—C11—C12—C13 179.6 (3)
N2i—N1—C8—C5 −1.2 (7) C11—C12—C13—C14 −178.2 (3)
Ni—N1—C8—C5 −179.8 (3) C12—C13—C14—C15 179.1 (4)
C6—C5—C8—N1 −177.7 (4)

Symmetry code: (i) −x+2, −y+2, −z+2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: DS2244).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
  2. Chan, M. H. E., Crouse, K. A., Tahir, M. I. M., Rosli, R., Umar-Tsafe, N. & Cowley, A. R. (2008). Polyhedron, 27, 1141–1149.
  3. Howlader, M. B. H., Begum, M. S., Sheikh, M. C., Miyatake, R. & Zangrando, E. (2015). Acta Cryst. E71, o103–o104. [DOI] [PMC free article] [PubMed]
  4. Islam, M. A. A. A. A., Sheikh, M. C., Alam, M. S., Zangrando, E., Alam, M. A., Tarafder, M. T. H. & Miyatake, R. (2014). Transition Met. Chem. 39, 141–149.
  5. Islam, M. A. A. A. A., Tarafder, M. T. H., Sheikh, M. C., Alam, M. A. & Zangrando, E. (2011). Transition Met. Chem 36, 531–537.
  6. Li, S. L., Wu, J. Y., Tian, Y. P., Tang, Y. W., Jiang, M. H., Fun, H. K. & Chantrapromma, S. (2006). Opt. Mater 28, 897–903.
  7. Rigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
  8. Rigaku (2001). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
  9. Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Zhang, M. L., Tian, Y. P., Zhang, X. J., Wu, J. Y., Zhang, S. Y., Wang, D., Jiang, M. H., Chantrapromms, S. & Fun, H. K. (2004). Transition Met. Chem. 29, 596–602.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) General, I. DOI: 10.1107/S2056989015000328/ds2244sup1.cif

e-71-00m26-sup1.cif (17.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015000328/ds2244Isup2.hkl

e-71-00m26-Isup2.hkl (155.7KB, hkl)

ORTEP L 2 . DOI: 10.1107/S2056989015000328/ds2244fig1.tif

ORTEP drawing (ellipsoid probability at 50%) of the centrosymmetric NiL 2 complex.

. DOI: 10.1107/S2056989015000328/ds2244fig2.tif

Crystal packing of the complex.

CCDC reference: 1035820

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES