Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jan 3;71(Pt 2):o79–o80. doi: 10.1107/S2056989014027819

Crystal structure of 4-{(E)-[2-(pyridin-4-ylcarbon­yl)hydrazin-1-yl­idene]meth­yl}phenyl acetate monohydrate

Riya Datta a, V Ramya a, M Sithambaresan b,*, M R Prathapachandra Kurup c
PMCID: PMC4384571  PMID: 25878881

Abstract

The asymmetric unit of the title compound, C15H13N3O3·H2O, comprises a 4-{(E)-[2-(pyridin-4-ylcarbon­yl)hydrazinyl­idene]meth­yl}phenyl acetate mol­ecule and a solvent water mol­ecule linked by O—H⋯O and O—H⋯N hydrogen bonds from the water mol­ecule and a C—H⋯O contact from the organic mol­ecule. The compound adopts an E conformation with respect to the azomethine bond and the dihedral angle between the pyridine and benzene rings is 21.90 (7)°. The azomethine bond [1.275 (2) Å] distance is very close to the formal C=N bond length, which confirms the azomethine bond formation. An extensive set of O—H⋯O, O—H⋯N, N—H⋯O and C—H⋯O hydrogen bonds builds a two-dimensional network progressing along the c axis.

Keywords: crystal structure, hydrazone, aroyl hydrazone, hydrogen bonding

Related literature  

For biological applications of hydrazone derivatives, see: Sreeja et al. (2004); Prasanna & Kumar (2013). For the synthesis of related compounds, see: Joseph et al. (2013); Thilagavathi et al. (2010). For the anti­cancer activity of hydrazones against cervical cancer, see: Nair et al. (2014).graphic file with name e-71-00o79-scheme1.jpg

Experimental  

Crystal data  

  • C15H13N3O3·H2O

  • M r = 301.30

  • Monoclinic, Inline graphic

  • a = 17.3297 (15) Å

  • b = 7.3058 (7) Å

  • c = 12.4632 (10) Å

  • β = 111.034 (3)°

  • V = 1472.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.50 × 0.45 × 0.40 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.951, T max = 0.961

  • 8648 measured reflections

  • 2614 independent reflections

  • 2153 reflections with I > 2σ(I)

  • R int = 0.028

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.113

  • S = 0.94

  • 2614 reflections

  • 213 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989014027819/sj5434sup1.cif

e-71-00o79-sup1.cif (319.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014027819/sj5434Isup2.hkl

e-71-00o79-Isup2.hkl (143.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989014027819/sj5434Isup3.cml

ORTEP . DOI: 10.1107/S2056989014027819/sj5434fig1.tif

An ORTEP view of the compound, with 50% probability displacement ellipsoids for the non-H atoms.

15 13 3 3 2 . DOI: 10.1107/S2056989014027819/sj5434fig2.tif

Graphical representation showing hydrogen bonding inter­actions in the crystal structure of [C15H13N3O3]·(H2O).

c . DOI: 10.1107/S2056989014027819/sj5434fig3.tif

The hydrogen bonding inter­actions build a double layer progressing along the c axis in the title compound.

a . DOI: 10.1107/S2056989014027819/sj5434fig4.tif

A view of the overall crystal packing along the a axis.

CCDC reference: 1040455

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
C1H1O1S i 0.93 2.56 3.375(2) 147
C7H7O1S i 0.93 2.56 3.3655(19) 145
C12H12O3i 0.93 2.54 3.329(2) 143
N2H2O1S i 0.88(1) 2.08(1) 2.9529(18) 170(2)
O1SH1SN3 0.86(2) 2.65(2) 3.2897(18) 133(2)
O1SH1SO1 0.86(2) 2.02(2) 2.8382(17) 159(2)
O1SH2SO3ii 0.86(2) 2.38(2) 3.1754(19) 154(2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors are grateful to the Sophisticated Analytical Instruments Facility, Cochin University of Science and Technology, Kochi-22, India, for the diffraction measurements and thank Christ University for financial support.

supplementary crystallographic information

S1. Structural commentary

Hydrazone derivatives are found to have structural diversity due to their coordinative ability (Sreeja et al., 2004; Prasanna & Kumar, 2013) arising from thio­amido-thio­iminol tautomerism. Ruthenium(II) complexes with such compounds as ligands have been shown to function as catalysts (Thilagavathi et al., 2010). The title compound [C15H13N3O3].(H2O) adopts an E configuration with respect to C7═N3 bond and O1 and N3 are cis with respect to the C6—N2 bond (Fig. 1). The dihedral angle between the pyridine and benzene rings is 21.90 (7) Å. The C7═N3 [1.275 (2) Å] bond distances are very close to the formal C═N bond length, which confirms the azomethine bond formation.

There are four classical inter­molecular O—H···O, O—H···N and N—H···O hydrogen bonds and three non-classical C—H···O inter­actions, (Table 1, Figure 2). These inter­molecular hydrogen bonds build a two-dimensional network progressing along the c axis (Fig. 3). Fig. 4 shows the packing diagram of the title compound along the a axis.

S2. Synthesis and crystallization

The title compound was synthesised by adapting a reported procedure (Joseph et al., 2013). A solution of isonicotinic acid hydrazide (0.137 g, 1 mmol) in methanol/DMF (1:1 v/v, 10 ml) was mixed with a methanol /DMF solution (10 ml) of 4-formyl­phenyl acetate (0.164 g, 1 mmol). The mixture was refluxed for 6 h and then cooled to room temperature. The resulting solid was recrystallized from chloro­form/methanol (1:1 v/v). Colorless, block shaped crystals suitable for XRD studies were obtained after slow evaporation of the solution in air over several days.

S3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms bound to C were placed in calculated positions, guided by difference maps, with C—H bond distances of 0.93-0.96 Å. H atoms were assigned Uiso(H) values of 1.2Ueq(carrier). H2 on N2 and H1S & H2S of the water molecule were located in a difference Fourier map and refined with the bond distances restrained to 0.88±0.01 and 0.86±0.02 Å respectively. The low angle reflection (1 0 0) was omitted from the refinement.

Figures

Fig. 1.

Fig. 1.

An ORTEP view of the compound, with 50% probability displacement ellipsoids for the non-H atoms.

Fig. 2.

Fig. 2.

Graphical representation showing hydrogen bonding interactions in the crystal structure of [C15H13N3O3]·(H2O).

Fig. 3.

Fig. 3.

The hydrogen bonding interactions build a double layer progressing along the c axis in the title compound.

Fig. 4.

Fig. 4.

A view of the overall crystal packing along the a axis.

Crystal data

C15H13N3O3·H2O F(000) = 632
Mr = 301.30 Dx = 1.359 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 17.3297 (15) Å Cell parameters from 4335 reflections
b = 7.3058 (7) Å θ = 3.1–28.1°
c = 12.4632 (10) Å µ = 0.10 mm1
β = 111.034 (3)° T = 296 K
V = 1472.8 (2) Å3 Block, colorless
Z = 4 0.50 × 0.45 × 0.40 mm

Data collection

Bruker APEXII CCD diffractometer 2614 independent reflections
Radiation source: fine-focus sealed tube 2153 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.028
ω and φ scans θmax = 25.1°, θmin = 3.1°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −20→15
Tmin = 0.951, Tmax = 0.961 k = −8→8
8648 measured reflections l = −11→14

Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0674P)2 + 0.4633P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.113 (Δ/σ)max < 0.001
S = 0.94 Δρmax = 0.21 e Å3
2614 reflections Δρmin = −0.17 e Å3
213 parameters Extinction correction: SHELXL2014 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
4 restraints Extinction coefficient: 0.024 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.16188 (10) 0.0685 (2) 0.93233 (14) 0.0400 (4)
H1 0.2096 0.0125 0.9817 0.048*
C2 0.08732 (10) 0.0473 (2) 0.94865 (14) 0.0427 (4)
H2 0.0868 −0.0231 1.0105 0.051*
C3 0.01996 (10) 0.2228 (3) 0.79347 (15) 0.0476 (4)
H3 −0.0287 0.2763 0.7449 0.057*
C4 0.09113 (10) 0.2527 (2) 0.77045 (14) 0.0423 (4)
H4 0.0899 0.3245 0.7082 0.051*
C5 0.16422 (9) 0.1743 (2) 0.84140 (12) 0.0340 (4)
C6 0.24113 (9) 0.2125 (2) 0.81590 (13) 0.0369 (4)
C7 0.45140 (9) 0.2232 (2) 0.97566 (13) 0.0367 (4)
H7 0.4483 0.1754 1.0431 0.044*
C8 0.53158 (9) 0.2825 (2) 0.97427 (13) 0.0340 (4)
C9 0.54021 (9) 0.3707 (2) 0.87968 (13) 0.0380 (4)
H9 0.4941 0.3887 0.8134 0.046*
C10 0.61707 (10) 0.4314 (2) 0.88411 (13) 0.0388 (4)
H10 0.6229 0.4915 0.8216 0.047*
C11 0.68496 (9) 0.4011 (2) 0.98292 (14) 0.0364 (4)
C12 0.67832 (9) 0.3173 (2) 1.07787 (13) 0.0397 (4)
H12 0.7247 0.3000 1.1440 0.048*
C13 0.60111 (10) 0.2590 (2) 1.07295 (14) 0.0395 (4)
H13 0.5957 0.2030 1.1369 0.047*
C14 0.80143 (9) 0.3873 (2) 0.92676 (13) 0.0367 (4)
C15 0.88679 (10) 0.4588 (3) 0.95589 (16) 0.0483 (4)
H15A 0.9127 0.3993 0.9089 0.072*
H15B 0.9181 0.4351 1.0354 0.072*
H15C 0.8847 0.5884 0.9421 0.072*
N1 0.01652 (8) 0.1220 (2) 0.88093 (12) 0.0455 (4)
N2 0.31362 (7) 0.18494 (18) 0.90293 (11) 0.0358 (3)
N3 0.38562 (8) 0.23535 (18) 0.88687 (11) 0.0369 (3)
O1 0.23649 (7) 0.2689 (2) 0.72122 (10) 0.0589 (4)
O1S 0.35113 (8) 0.4455 (2) 0.64055 (10) 0.0480 (3)
O2 0.76382 (7) 0.46558 (16) 0.99337 (10) 0.0446 (3)
O3 0.76890 (8) 0.27267 (19) 0.85709 (12) 0.0598 (4)
H1S 0.3278 (13) 0.387 (3) 0.6800 (18) 0.080 (7)*
H2S 0.3334 (15) 0.554 (2) 0.644 (2) 0.094 (9)*
H2' 0.3186 (11) 0.148 (2) 0.9725 (10) 0.049 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0310 (8) 0.0445 (10) 0.0443 (9) −0.0027 (7) 0.0131 (7) 0.0066 (7)
C2 0.0399 (9) 0.0451 (10) 0.0471 (9) −0.0080 (8) 0.0205 (7) 0.0024 (7)
C3 0.0328 (9) 0.0593 (12) 0.0497 (10) 0.0064 (8) 0.0138 (7) 0.0032 (8)
C4 0.0376 (9) 0.0498 (10) 0.0412 (8) 0.0021 (8) 0.0162 (7) 0.0055 (7)
C5 0.0308 (8) 0.0363 (9) 0.0357 (8) −0.0045 (7) 0.0132 (6) −0.0039 (6)
C6 0.0343 (8) 0.0403 (9) 0.0385 (8) −0.0059 (7) 0.0158 (7) 0.0003 (7)
C7 0.0347 (9) 0.0365 (9) 0.0435 (9) −0.0015 (7) 0.0199 (7) 0.0004 (7)
C8 0.0303 (8) 0.0330 (8) 0.0419 (8) 0.0002 (6) 0.0169 (6) −0.0039 (6)
C9 0.0317 (8) 0.0445 (9) 0.0373 (8) −0.0010 (7) 0.0118 (6) −0.0013 (7)
C10 0.0391 (9) 0.0441 (9) 0.0379 (8) −0.0048 (7) 0.0196 (7) −0.0012 (7)
C11 0.0304 (8) 0.0386 (9) 0.0443 (8) −0.0071 (7) 0.0184 (7) −0.0121 (7)
C12 0.0315 (8) 0.0465 (10) 0.0395 (8) 0.0005 (7) 0.0106 (7) −0.0013 (7)
C13 0.0388 (9) 0.0426 (9) 0.0400 (8) −0.0003 (7) 0.0176 (7) 0.0040 (7)
C14 0.0351 (8) 0.0394 (9) 0.0378 (8) 0.0001 (7) 0.0157 (7) −0.0018 (7)
C15 0.0375 (9) 0.0532 (11) 0.0600 (10) −0.0045 (8) 0.0246 (8) −0.0013 (8)
N1 0.0352 (8) 0.0526 (9) 0.0534 (8) −0.0053 (7) 0.0216 (7) −0.0049 (7)
N2 0.0286 (7) 0.0437 (8) 0.0394 (7) −0.0049 (6) 0.0174 (6) 0.0019 (6)
N3 0.0305 (7) 0.0402 (8) 0.0455 (7) −0.0042 (6) 0.0203 (6) −0.0011 (6)
O1 0.0413 (7) 0.0937 (11) 0.0431 (7) −0.0115 (7) 0.0168 (5) 0.0149 (7)
O1S 0.0471 (7) 0.0572 (9) 0.0459 (7) 0.0022 (6) 0.0241 (6) 0.0071 (6)
O2 0.0342 (6) 0.0543 (7) 0.0512 (7) −0.0151 (5) 0.0223 (5) −0.0191 (5)
O3 0.0482 (8) 0.0701 (9) 0.0660 (8) −0.0102 (7) 0.0266 (6) −0.0306 (7)

Geometric parameters (Å, º)

C1—C2 1.387 (2) C9—H9 0.9300
C1—C5 1.384 (2) C10—C11 1.382 (2)
C1—H1 0.9300 C10—H10 0.9300
C2—N1 1.331 (2) C11—C12 1.374 (2)
C2—H2 0.9300 C11—O2 1.4066 (18)
C3—N1 1.334 (2) C12—C13 1.384 (2)
C3—C4 1.380 (2) C12—H12 0.9300
C3—H3 0.9300 C13—H13 0.9300
C4—C5 1.382 (2) C14—O3 1.1921 (19)
C4—H4 0.9300 C14—O2 1.3527 (18)
C5—C6 1.503 (2) C14—C15 1.486 (2)
C6—O1 1.2252 (19) C15—H15A 0.9600
C6—N2 1.348 (2) C15—H15B 0.9600
C7—N3 1.275 (2) C15—H15C 0.9600
C7—C8 1.462 (2) N2—N3 1.3827 (17)
C7—H7 0.9300 N2—H2' 0.883 (9)
C8—C13 1.389 (2) O1S—H1S 0.857 (16)
C8—C9 1.398 (2) O1S—H2S 0.860 (16)
C9—C10 1.386 (2)
C2—C1—C5 119.01 (15) C11—C10—H10 120.6
C2—C1—H1 120.5 C9—C10—H10 120.6
C5—C1—H1 120.5 C12—C11—C10 122.10 (14)
N1—C2—C1 123.81 (15) C12—C11—O2 116.65 (14)
N1—C2—H2 118.1 C10—C11—O2 121.14 (14)
C1—C2—H2 118.1 C11—C12—C13 118.52 (14)
N1—C3—C4 124.23 (16) C11—C12—H12 120.7
N1—C3—H3 117.9 C13—C12—H12 120.7
C4—C3—H3 117.9 C12—C13—C8 121.23 (15)
C3—C4—C5 118.91 (15) C12—C13—H13 119.4
C3—C4—H4 120.5 C8—C13—H13 119.4
C5—C4—H4 120.5 O3—C14—O2 122.55 (14)
C4—C5—C1 117.75 (14) O3—C14—C15 126.45 (15)
C4—C5—C6 117.81 (14) O2—C14—C15 110.97 (14)
C1—C5—C6 124.43 (14) C14—C15—H15A 109.5
O1—C6—N2 123.04 (14) C14—C15—H15B 109.5
O1—C6—C5 120.63 (14) H15A—C15—H15B 109.5
N2—C6—C5 116.31 (13) C14—C15—H15C 109.5
N3—C7—C8 121.78 (14) H15A—C15—H15C 109.5
N3—C7—H7 119.1 H15B—C15—H15C 109.5
C8—C7—H7 119.1 C2—N1—C3 116.29 (14)
C13—C8—C9 118.84 (14) C6—N2—N3 118.20 (12)
C13—C8—C7 118.62 (14) C6—N2—H2' 124.8 (11)
C9—C8—C7 122.45 (14) N3—N2—H2' 116.7 (11)
C10—C9—C8 120.40 (14) C7—N3—N2 115.33 (13)
C10—C9—H9 119.8 H1S—O1S—H2S 100.4 (19)
C8—C9—H9 119.8 C14—O2—C11 117.88 (12)
C11—C10—C9 118.88 (14)
C5—C1—C2—N1 0.6 (3) C9—C10—C11—O2 −177.75 (14)
N1—C3—C4—C5 0.1 (3) C10—C11—C12—C13 1.1 (2)
C3—C4—C5—C1 0.2 (2) O2—C11—C12—C13 177.22 (14)
C3—C4—C5—C6 −178.71 (15) C11—C12—C13—C8 0.6 (2)
C2—C1—C5—C4 −0.5 (2) C9—C8—C13—C12 −1.5 (2)
C2—C1—C5—C6 178.31 (14) C7—C8—C13—C12 −178.10 (15)
C4—C5—C6—O1 −18.5 (2) C1—C2—N1—C3 −0.3 (2)
C1—C5—C6—O1 162.62 (17) C4—C3—N1—C2 −0.1 (3)
C4—C5—C6—N2 160.04 (15) O1—C6—N2—N3 4.8 (2)
C1—C5—C6—N2 −18.8 (2) C5—C6—N2—N3 −173.74 (12)
N3—C7—C8—C13 −177.64 (15) C8—C7—N3—N2 −176.06 (13)
N3—C7—C8—C9 5.9 (2) C6—N2—N3—C7 173.26 (14)
C13—C8—C9—C10 0.8 (2) O3—C14—O2—C11 3.2 (2)
C7—C8—C9—C10 177.24 (15) C15—C14—O2—C11 −174.82 (14)
C8—C9—C10—C11 0.8 (2) C12—C11—O2—C14 115.34 (16)
C9—C10—C11—C12 −1.8 (2) C10—C11—O2—C14 −68.5 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C1—H1···O1Si 0.93 2.56 3.375 (2) 147
C7—H7···O1Si 0.93 2.56 3.3655 (19) 145
C12—H12···O3i 0.93 2.54 3.329 (2) 143
N2—H2′···O1Si 0.88 (1) 2.08 (1) 2.9529 (18) 170 (2)
O1S—H1S···N3 0.86 (2) 2.65 (2) 3.2897 (18) 133 (2)
O1S—H1S···O1 0.86 (2) 2.02 (2) 2.8382 (17) 159 (2)
O1S—H2S···O3ii 0.86 (2) 2.38 (2) 3.1754 (19) 154 (2)

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+1, y+1/2, −z+3/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: SJ5434).

References

  1. Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2004). SADABS, APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Joseph, B., Sithambaresan, M. & Kurup, M. R. P. (2013). Acta Cryst. E69, o1160–o1161. [DOI] [PMC free article] [PubMed]
  5. Nair, R. S., Kuriakose, M., Somasundaram, V., Shenoi, V., Kurup, M. R. P. & Srinivas, P. (2014). Life Sci. 116, 90–97. [DOI] [PubMed]
  6. Prasanna, M. K. & Kumar, K. P. (2013). Int. J. Pharm. Biomed. Sci. 4, 24–29.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Sreeja, P. B., Kurup, M. R. P., Kishore, A. & Jasmin, C. (2004). Polyhedron, 23, 575–581.
  9. Thilagavathi, N., Manimaran, A., Priya, N. P., Sathya, N. & Jayabalakrishnan, C. (2010). Appl. Organomet. Chem. 24, 301–307.
  10. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989014027819/sj5434sup1.cif

e-71-00o79-sup1.cif (319.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014027819/sj5434Isup2.hkl

e-71-00o79-Isup2.hkl (143.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989014027819/sj5434Isup3.cml

ORTEP . DOI: 10.1107/S2056989014027819/sj5434fig1.tif

An ORTEP view of the compound, with 50% probability displacement ellipsoids for the non-H atoms.

15 13 3 3 2 . DOI: 10.1107/S2056989014027819/sj5434fig2.tif

Graphical representation showing hydrogen bonding inter­actions in the crystal structure of [C15H13N3O3]·(H2O).

c . DOI: 10.1107/S2056989014027819/sj5434fig3.tif

The hydrogen bonding inter­actions build a double layer progressing along the c axis in the title compound.

a . DOI: 10.1107/S2056989014027819/sj5434fig4.tif

A view of the overall crystal packing along the a axis.

CCDC reference: 1040455

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES