Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jan 28;71(Pt 2):223–225. doi: 10.1107/S2056989015001486

Crystal structure of 4-tert-butyl-2-{2-[N-(3,3-dimethyl-2-oxobut­yl)-N-iso­propyl­carbamo­yl]phen­yl}-1-isopropyl-1H-imidazol-3-ium perchlorate

Olga V Hordiyenko a, Roman I Zubatyuk b,*
PMCID: PMC4384572  PMID: 25878825

Bulky isopropyl substituents introduce steric hindrance within the mol­ecule. The organic cation and perchlorate anion are linked by N—H⋯O hydrogen bonding. In the crystal, mol­ecules form separated layers resulting in a low crystal density of 1.18 Mg m−1.

Keywords: crystal structure, α-acyl­amino ketone, perchlorate, disorder

Abstract

In the title salt, C26H40N3O2 +·ClO4 , the positive charge of the organic cation is delocalized between the two N atoms of the imidazole ring. The C N bond distances are 1.338 (2) and 1.327 (3) Å. The substituents on the benzene ring are rotated almost orthogonal with respect to this ring due to the presence of the bulky isopropyl substituents. The dihedral angle between the benzene and imidazole rings is 75.15 (12)°. Three of the O atoms of the anion are disordered over two sets of sites due to rotation around one of the O—Cl bonds. The ratio of the refined occupancies is 0.591 (14):0.409 (14). In the crystal, the cation and perchlorate anion are bound by an N—H⋯O hydrogen bond. In addition, the cation–anion pairs are linked into layers parallel to (001) by multiple weak C—H⋯O hydrogen bonds.

Chemical context  

α-Amino­ketones are known for their fungicidal activity (Gold de Sigman, 1983) and 2-acyl­amino­ketones are the starting compounds in the oxazole synthetic method by the Robinson–Gabriel synthesis by dehydration of 2-acyl­amino­ketones (Robinson, 1909; Gabriel, 1910; Wasserman & Vinick, 1973) that has been used during studies dealing with pharmaceut­ically important mol­ecules that incorporate an oxazole deriv­ative (Godfrey et al., 2003; Nicolaou et al., 2004; Hoffman et al., 2010).graphic file with name e-71-00223-scheme1.jpg

Structural commentary  

The mol­ecular structure of the cation is shown in Fig. 1. The positive charge is delocalized between the two nitro­gen atoms of the imidazole ring according to almost equivalent lengths of the C7—N1 and C7—N2 bonds [1.338 (2) Å and 1.327 (3) Å, respectively] and also of the C8—N1 and C9—N2 bonds [1.379 (3) Å and 1.374 (3) Å, respectively]. The presence of two bulky substituents in the ortho positions of the benzene ring results in disruption of the conjugation between the aromatic ring, imidazole ring and amide [N3/C17/O1] fragment due to their almost orthogonal orientation [the corresponding torsion angles are N1—C7—C1—C6 = −81.5 (3)° and C5—C6—C17—N3 = 81.1 (3)°]. The plane of the carbonyl group (C22/O2/C23/C21) is oriented almost orthogonal to the plane of the amide fragment (C21/N3/C18/C17/O1/C6), the angle between their mean planes being 77.87 (11)°. A similar type of α-acyl­amino­ketone fragment has been observed for other N-substituted α-acyl­amino­ketones (Bartnik et al., 1998; Tinant et al., 2006; Chai et al., 2011; Hashmi et al., 2011; Su et al., 2011).

Figure 1.

Figure 1

View of the title compound showing the atom-numbering scheme and 30% probability displacement ellipsoids. For clarity, the ClO4 anion and H atoms are not shown.

The organic cation and perchlorate anion are linked by an N—H⋯O hydrogen bond (Table 1). The oxygen atoms of the anion are disordered over two sets of sites due to rotation around the O3—Cl bond. The refined occupancy of the major disordered component is 0.591 (14).

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N2H2O3 0.86 1.94 2.752(4) 157
C2H2AO1i 0.93 2.44 3.319(3) 158
C5H5O5A ii 0.93 2.55 3.328(11) 141
C8H8O4A iii 0.93 2.36 3.285(8) 173

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Supra­molecular features  

Several moderate to weak C—H⋯O inter­molecular hydrogen bonds are observed in the crystal structure (Table 1), which link mol­ecules into layers parallel to (001) (Fig. 2). It should also be noted that the crystal structure contains no residual solvent-accessible voids. However, discernible layers along (101) are observed. The low density [1.18 g mm−1] of the crystal could be associated with formation of these layers.

Figure 2.

Figure 2

Part of the crystal structure, viewed along the b axis, showing layers parallel to (001) formed by weak C—H⋯O hydrogen bonds (turquoise dotted lines) and also separated layers of organic cations parallel to (101). The minor disorder component of the anion is shown as red spheres.

Synthesis and crystallization  

The title compound was synthesized according to the literature procedure (Hordiyenko et al., 2009). To a stirred solution of 1-(N-iso­propyl­amino)-3,3-di­methyl­butan-2-one (10 mmol) in dry CHCl3 (10 mL), a solution of 1,1,3-tri­chloro-1H-iso­indole (2.5 mmol) in dry CHCl3 (10 mL) was added dropwise at room temperature under an argon atmosphere. The reaction mixture was stirred for 8 h, the solvent was evaporated and the residue was dried under reduced pressure (0.01 mm). Then it was treated with 100 ml of distilled water. The aqueous solution was brought to reflux with charcoal, filtered and treated with an excess of lithium perchlorate to precipitate the crude product that was then crystallized from methanol/water (3:1) to yield as colorless crystals. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the title compound in ethanol.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. Hydrogen atoms were placed in calculated positions (N—H = 0.86 Å, C—H = 0.93–0.98 Å) and refined in a riding-model approximation with U iso = nU eq of the carrier atom (n = 1.5 for methyl groups, n = 1.2 for the remaining H atoms). Methyl groups were refined as rotating groups. The relative occupation of the two positions of the disordered ClO4 anion was refined as a free variable. All Cl—O and O⋯O distances within the anion were restrained to be the same within 0.02 Å.

Table 2. Experimental details.

Crystal data
Chemical formula C26H40N3O2 +ClO4
M r 526.06
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c () 10.0605(3), 12.7027(4), 23.1455(6)
() 94.107(3)
V (3) 2950.29(14)
Z 4
Radiation type Mo K
(mm1) 0.17
Crystal size (mm) 0.57 0.32 0.09
 
Data collection
Diffractometer Agilent Xcalibur Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014)
T min, T max 0.951, 1.000
No. of measured, independent and observed [I > 2(I)] reflections 27330, 6037, 4458
R int 0.029
(sin /)max (1) 0.626
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.060, 0.179, 1.04
No. of reflections 6037
No. of parameters 363
No. of restraints 87
H-atom treatment H-atom parameters constrained
max, min (e 3) 0.37, 0.33

Computer programs: CrysAlis PRO (Agilent, 2014), SHELXD (Sheldrick, 2008), SHELXL97 (Sheldrick, 2015) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015001486/lh5748sup1.cif

e-71-00223-sup1.cif (940.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015001486/lh5748Isup2.hkl

e-71-00223-Isup2.hkl (330.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015001486/lh5748Isup3.smi

Supporting information file. DOI: 10.1107/S2056989015001486/lh5748Isup4.cml

CCDC reference: 1045018

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C26H40N3O2+·ClO4 F(000) = 1128
Mr = 526.06 Dx = 1.184 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 10.0605 (3) Å Cell parameters from 6208 reflections
b = 12.7027 (4) Å θ = 3.2–26.2°
c = 23.1455 (6) Å µ = 0.17 mm1
β = 94.107 (3)° T = 293 K
V = 2950.29 (14) Å3 Block, colorless
Z = 4 0.57 × 0.32 × 0.09 mm

Data collection

Agilent Xcalibur Sapphire3 diffractometer 6037 independent reflections
Radiation source: Enhance (Mo) X-ray Source 4458 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.029
Detector resolution: 16.1827 pixels mm-1 θmax = 26.4°, θmin = 3.1°
ω and π scans h = −12→12
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) k = −15→15
Tmin = 0.951, Tmax = 1.000 l = −28→28
27330 measured reflections

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060 H-atom parameters constrained
wR(F2) = 0.179 w = 1/[σ2(Fo2) + (0.0837P)2 + 1.4781P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
6037 reflections Δρmax = 0.37 e Å3
363 parameters Δρmin = −0.33 e Å3
87 restraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.72746 (17) 0.14319 (15) 0.71062 (9) 0.0685 (5)
O2 0.7339 (3) 0.25979 (17) 0.58916 (9) 0.0915 (7)
N2 0.67413 (16) 0.47485 (14) 0.66538 (8) 0.0421 (4)
H2 0.5935 0.4962 0.6583 0.051*
N1 0.84449 (16) 0.39425 (14) 0.70494 (7) 0.0416 (4)
C7 0.71299 (19) 0.40741 (15) 0.70699 (9) 0.0383 (4)
C8 0.8863 (2) 0.45571 (18) 0.66063 (9) 0.0450 (5)
H8 0.9735 0.4614 0.6501 0.054*
C1 0.62173 (19) 0.36474 (16) 0.74861 (9) 0.0398 (4)
C6 0.5700 (2) 0.26255 (16) 0.74384 (9) 0.0420 (5)
C9 0.7801 (2) 0.50599 (18) 0.63519 (9) 0.0442 (5)
N3 0.54488 (19) 0.17087 (15) 0.65053 (8) 0.0496 (5)
C17 0.6201 (2) 0.18761 (16) 0.70018 (10) 0.0463 (5)
C10 0.9309 (2) 0.32719 (18) 0.74425 (10) 0.0488 (5)
H10 0.8739 0.2799 0.7650 0.059*
C2 0.5770 (2) 0.43279 (19) 0.79004 (11) 0.0537 (6)
H2A 0.6106 0.5009 0.7931 0.064*
C5 0.4771 (2) 0.23065 (19) 0.78176 (10) 0.0538 (6)
H5 0.4437 0.1624 0.7795 0.065*
C4 0.4338 (3) 0.2986 (2) 0.82254 (11) 0.0609 (7)
H4 0.3710 0.2763 0.8475 0.073*
C21 0.6048 (3) 0.10861 (19) 0.60668 (11) 0.0570 (6)
H21A 0.5351 0.0816 0.5795 0.068*
H21B 0.6509 0.0490 0.6250 0.068*
C13 0.7626 (2) 0.5776 (2) 0.58316 (11) 0.0566 (6)
C3 0.4831 (3) 0.3996 (2) 0.82658 (11) 0.0625 (7)
H3 0.4529 0.4456 0.8540 0.075*
C22 0.7029 (3) 0.1726 (2) 0.57379 (11) 0.0625 (7)
C18 0.4094 (3) 0.2141 (2) 0.63707 (11) 0.0592 (6)
H18 0.3952 0.2695 0.6654 0.071*
C11 1.0206 (3) 0.2608 (3) 0.70900 (14) 0.0773 (8)
H11A 0.9682 0.2274 0.6779 0.116*
H11B 1.0637 0.2080 0.7334 0.116*
H11C 1.0867 0.3049 0.6934 0.116*
C12 1.0089 (3) 0.3951 (3) 0.78810 (14) 0.0817 (9)
H12A 1.0651 0.4422 0.7685 0.123*
H12B 1.0630 0.3512 0.8141 0.123*
H12C 0.9484 0.4351 0.8097 0.123*
C14 0.6630 (4) 0.5257 (3) 0.53881 (14) 0.0929 (11)
H14A 0.6956 0.4577 0.5286 0.139*
H14B 0.6524 0.5689 0.5048 0.139*
H14C 0.5786 0.5181 0.5552 0.139*
C20 0.3049 (3) 0.1288 (3) 0.64423 (14) 0.0758 (8)
H20A 0.3203 0.0711 0.6188 0.114*
H20B 0.2177 0.1573 0.6348 0.114*
H20C 0.3111 0.1045 0.6836 0.114*
C16 0.7086 (4) 0.6841 (3) 0.60196 (16) 0.0877 (10)
H16A 0.6257 0.6736 0.6193 0.132*
H16B 0.6946 0.7291 0.5688 0.132*
H16C 0.7717 0.7162 0.6296 0.132*
C23 0.7609 (3) 0.1226 (3) 0.52116 (13) 0.0782 (9)
C25 0.7743 (5) 0.0024 (3) 0.52725 (19) 0.1192 (15)
H25A 0.8327 −0.0139 0.5607 0.179*
H25B 0.8104 −0.0259 0.4933 0.179*
H25C 0.6882 −0.0278 0.5316 0.179*
C15 0.8972 (3) 0.5924 (3) 0.55791 (15) 0.0943 (11)
H15A 0.9590 0.6232 0.5866 0.141*
H15B 0.8870 0.6379 0.5248 0.141*
H15C 0.9304 0.5253 0.5464 0.141*
C19 0.3955 (4) 0.2640 (3) 0.57734 (13) 0.0843 (9)
H19A 0.4649 0.3151 0.5741 0.127*
H19B 0.3103 0.2980 0.5718 0.127*
H19C 0.4024 0.2106 0.5484 0.127*
C26 0.6614 (5) 0.1441 (4) 0.46941 (16) 0.1277 (16)
H26A 0.5769 0.1131 0.4764 0.192*
H26B 0.6939 0.1139 0.4351 0.192*
H26C 0.6508 0.2187 0.4643 0.192*
C24 0.8914 (5) 0.1763 (5) 0.5105 (3) 0.177 (3)
H24A 0.8760 0.2501 0.5039 0.265*
H24B 0.9277 0.1458 0.4771 0.265*
H24C 0.9532 0.1671 0.5436 0.265*
Cl1 0.29860 (6) 0.54707 (6) 0.65153 (4) 0.0755 (3)
O3 0.4025 (3) 0.4841 (3) 0.64132 (19) 0.1626 (16)
O4A 0.1909 (7) 0.4970 (13) 0.6233 (5) 0.233 (7) 0.591 (14)
O5A 0.2680 (11) 0.5578 (8) 0.7063 (3) 0.177 (5) 0.591 (14)
O6A 0.3130 (16) 0.6413 (6) 0.6273 (7) 0.276 (10) 0.591 (14)
O6B 0.3652 (14) 0.6383 (9) 0.6691 (8) 0.235 (10) 0.409 (14)
O4B 0.2175 (13) 0.5692 (15) 0.6066 (6) 0.216 (10) 0.409 (14)
O5B 0.2331 (17) 0.5113 (17) 0.6954 (8) 0.316 (17) 0.409 (14)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0517 (10) 0.0604 (11) 0.0927 (13) 0.0105 (8) 0.0006 (9) −0.0208 (10)
O2 0.1285 (19) 0.0672 (13) 0.0840 (14) −0.0322 (13) 0.0444 (13) −0.0187 (11)
N2 0.0307 (8) 0.0455 (10) 0.0506 (10) 0.0019 (7) 0.0051 (7) 0.0055 (8)
N1 0.0334 (8) 0.0437 (9) 0.0480 (10) 0.0036 (7) 0.0054 (7) 0.0018 (8)
C7 0.0356 (10) 0.0363 (10) 0.0435 (10) −0.0001 (8) 0.0072 (8) −0.0008 (8)
C8 0.0339 (10) 0.0532 (12) 0.0489 (12) −0.0025 (9) 0.0100 (8) 0.0042 (10)
C1 0.0357 (10) 0.0408 (11) 0.0437 (11) 0.0003 (8) 0.0075 (8) 0.0001 (9)
C6 0.0419 (11) 0.0407 (11) 0.0437 (11) −0.0004 (8) 0.0062 (8) 0.0012 (9)
C9 0.0364 (10) 0.0496 (12) 0.0471 (11) −0.0044 (9) 0.0064 (8) 0.0047 (9)
N3 0.0583 (11) 0.0440 (10) 0.0474 (10) 0.0052 (8) 0.0108 (8) −0.0045 (8)
C17 0.0500 (12) 0.0341 (10) 0.0562 (13) −0.0023 (9) 0.0129 (10) −0.0007 (9)
C10 0.0425 (11) 0.0502 (13) 0.0532 (12) 0.0078 (9) 0.0003 (9) 0.0068 (10)
C2 0.0567 (14) 0.0449 (12) 0.0614 (14) −0.0075 (10) 0.0185 (11) −0.0092 (10)
C5 0.0567 (14) 0.0501 (13) 0.0561 (13) −0.0130 (10) 0.0151 (11) 0.0002 (10)
C4 0.0593 (14) 0.0713 (17) 0.0550 (14) −0.0132 (12) 0.0241 (11) −0.0034 (12)
C21 0.0699 (16) 0.0465 (13) 0.0565 (14) 0.0007 (11) 0.0176 (12) −0.0113 (11)
C13 0.0482 (13) 0.0664 (15) 0.0549 (13) −0.0077 (11) 0.0015 (10) 0.0206 (12)
C3 0.0661 (16) 0.0669 (16) 0.0578 (14) −0.0076 (13) 0.0273 (12) −0.0159 (12)
C22 0.0750 (17) 0.0586 (16) 0.0553 (14) −0.0039 (13) 0.0150 (12) −0.0095 (12)
C18 0.0714 (16) 0.0542 (14) 0.0512 (13) 0.0172 (12) −0.0007 (11) −0.0072 (11)
C11 0.0663 (17) 0.0764 (19) 0.090 (2) 0.0317 (15) 0.0076 (15) −0.0001 (16)
C12 0.085 (2) 0.079 (2) 0.0765 (19) 0.0132 (17) −0.0260 (16) −0.0101 (16)
C14 0.104 (3) 0.107 (3) 0.0633 (18) −0.032 (2) −0.0244 (17) 0.0306 (18)
C20 0.0575 (16) 0.087 (2) 0.083 (2) 0.0093 (14) 0.0054 (14) −0.0102 (16)
C16 0.093 (2) 0.071 (2) 0.099 (2) 0.0079 (17) 0.0018 (18) 0.0326 (18)
C23 0.084 (2) 0.088 (2) 0.0668 (17) −0.0032 (16) 0.0307 (15) −0.0167 (15)
C25 0.150 (4) 0.109 (3) 0.103 (3) 0.036 (3) 0.042 (3) −0.029 (2)
C15 0.0691 (19) 0.134 (3) 0.082 (2) −0.0079 (19) 0.0244 (16) 0.048 (2)
C19 0.115 (3) 0.076 (2) 0.0605 (17) 0.0214 (18) −0.0077 (16) 0.0058 (15)
C26 0.169 (4) 0.150 (4) 0.064 (2) 0.021 (3) 0.011 (2) −0.016 (2)
C24 0.136 (4) 0.234 (7) 0.174 (5) −0.073 (4) 0.105 (4) −0.088 (5)
Cl1 0.0441 (4) 0.0817 (5) 0.1017 (6) 0.0188 (3) 0.0118 (3) −0.0090 (4)
O3 0.0613 (15) 0.151 (3) 0.274 (5) 0.0386 (17) 0.002 (2) −0.070 (3)
O4A 0.054 (3) 0.45 (2) 0.195 (10) −0.068 (7) 0.005 (4) −0.011 (11)
O5A 0.236 (12) 0.177 (8) 0.126 (6) 0.064 (8) 0.076 (6) −0.025 (5)
O6A 0.38 (2) 0.108 (6) 0.37 (2) 0.114 (9) 0.229 (15) 0.112 (9)
O6B 0.272 (16) 0.184 (13) 0.248 (18) −0.150 (12) 0.012 (13) −0.095 (12)
O4B 0.089 (9) 0.35 (3) 0.194 (12) 0.039 (11) −0.079 (9) 0.058 (14)
O5B 0.179 (14) 0.45 (3) 0.33 (3) −0.035 (18) 0.145 (18) 0.20 (3)

Geometric parameters (Å, º)

O1—C17 1.227 (3) C11—H11B 0.9600
O2—C22 1.197 (3) C11—H11C 0.9600
N2—H2 0.8600 C12—H12A 0.9600
N2—C7 1.327 (3) C12—H12B 0.9600
N2—C9 1.374 (3) C12—H12C 0.9600
N1—C7 1.338 (2) C14—H14A 0.9600
N1—C8 1.379 (3) C14—H14B 0.9600
N1—C10 1.482 (3) C14—H14C 0.9600
C7—C1 1.480 (3) C20—H20A 0.9600
C8—H8 0.9300 C20—H20B 0.9600
C8—C9 1.344 (3) C20—H20C 0.9600
C1—C6 1.400 (3) C16—H16A 0.9600
C1—C2 1.389 (3) C16—H16B 0.9600
C6—C17 1.501 (3) C16—H16C 0.9600
C6—C5 1.388 (3) C23—C25 1.537 (5)
C9—C13 1.510 (3) C23—C26 1.530 (5)
N3—C17 1.347 (3) C23—C24 1.516 (5)
N3—C21 1.451 (3) C25—H25A 0.9600
N3—C18 1.482 (3) C25—H25B 0.9600
C10—H10 0.9800 C25—H25C 0.9600
C10—C11 1.515 (4) C15—H15A 0.9600
C10—C12 1.508 (4) C15—H15B 0.9600
C2—H2A 0.9300 C15—H15C 0.9600
C2—C3 1.379 (3) C19—H19A 0.9600
C5—H5 0.9300 C19—H19B 0.9600
C5—C4 1.373 (3) C19—H19C 0.9600
C4—H4 0.9300 C26—H26A 0.9600
C4—C3 1.376 (4) C26—H26B 0.9600
C21—H21A 0.9700 C26—H26C 0.9600
C21—H21B 0.9700 C24—H24A 0.9600
C21—C22 1.524 (4) C24—H24B 0.9600
C13—C14 1.532 (4) C24—H24C 0.9600
C13—C16 1.532 (4) Cl1—O3 1.350 (3)
C13—C15 1.524 (4) Cl1—O4A 1.380 (7)
C3—H3 0.9300 Cl1—O5A 1.333 (6)
C22—C23 1.526 (4) Cl1—O6A 1.334 (6)
C18—H18 0.9800 Cl1—O6B 1.385 (7)
C18—C20 1.527 (4) Cl1—O4B 1.306 (8)
C18—C19 1.518 (4) Cl1—O5B 1.329 (9)
C11—H11A 0.9600
C7—N2—H2 124.6 C10—C12—H12A 109.5
C7—N2—C9 110.85 (17) C10—C12—H12B 109.5
C9—N2—H2 124.6 C10—C12—H12C 109.5
C7—N1—C8 108.12 (17) H12A—C12—H12B 109.5
C7—N1—C10 126.04 (18) H12A—C12—H12C 109.5
C8—N1—C10 125.83 (17) H12B—C12—H12C 109.5
N2—C7—N1 107.20 (17) C13—C14—H14A 109.5
N2—C7—C1 122.99 (17) C13—C14—H14B 109.5
N1—C7—C1 129.68 (18) C13—C14—H14C 109.5
N1—C8—H8 125.7 H14A—C14—H14B 109.5
C9—C8—N1 108.64 (18) H14A—C14—H14C 109.5
C9—C8—H8 125.7 H14B—C14—H14C 109.5
C6—C1—C7 122.16 (18) C18—C20—H20A 109.5
C2—C1—C7 117.89 (19) C18—C20—H20B 109.5
C2—C1—C6 119.65 (19) C18—C20—H20C 109.5
C1—C6—C17 120.04 (18) H20A—C20—H20B 109.5
C5—C6—C1 119.0 (2) H20A—C20—H20C 109.5
C5—C6—C17 120.9 (2) H20B—C20—H20C 109.5
N2—C9—C13 121.92 (19) C13—C16—H16A 109.5
C8—C9—N2 105.19 (18) C13—C16—H16B 109.5
C8—C9—C13 132.8 (2) C13—C16—H16C 109.5
C17—N3—C21 116.5 (2) H16A—C16—H16B 109.5
C17—N3—C18 124.95 (18) H16A—C16—H16C 109.5
C21—N3—C18 118.49 (19) H16B—C16—H16C 109.5
O1—C17—C6 119.5 (2) C22—C23—C25 112.1 (3)
O1—C17—N3 121.9 (2) C22—C23—C26 106.6 (3)
N3—C17—C6 118.65 (19) C26—C23—C25 107.3 (3)
N1—C10—H10 108.4 C24—C23—C22 109.1 (3)
N1—C10—C11 109.6 (2) C24—C23—C25 113.0 (4)
N1—C10—C12 109.8 (2) C24—C23—C26 108.5 (4)
C11—C10—H10 108.4 C23—C25—H25A 109.5
C12—C10—H10 108.4 C23—C25—H25B 109.5
C12—C10—C11 112.3 (2) C23—C25—H25C 109.5
C1—C2—H2A 119.9 H25A—C25—H25B 109.5
C3—C2—C1 120.2 (2) H25A—C25—H25C 109.5
C3—C2—H2A 119.9 H25B—C25—H25C 109.5
C6—C5—H5 119.6 C13—C15—H15A 109.5
C4—C5—C6 120.8 (2) C13—C15—H15B 109.5
C4—C5—H5 119.6 C13—C15—H15C 109.5
C5—C4—H4 119.9 H15A—C15—H15B 109.5
C5—C4—C3 120.2 (2) H15A—C15—H15C 109.5
C3—C4—H4 119.9 H15B—C15—H15C 109.5
N3—C21—H21A 109.2 C18—C19—H19A 109.5
N3—C21—H21B 109.2 C18—C19—H19B 109.5
N3—C21—C22 112.0 (2) C18—C19—H19C 109.5
H21A—C21—H21B 107.9 H19A—C19—H19B 109.5
C22—C21—H21A 109.2 H19A—C19—H19C 109.5
C22—C21—H21B 109.2 H19B—C19—H19C 109.5
C9—C13—C14 108.0 (2) C23—C26—H26A 109.5
C9—C13—C16 109.2 (2) C23—C26—H26B 109.5
C9—C13—C15 108.9 (2) C23—C26—H26C 109.5
C14—C13—C16 110.0 (3) H26A—C26—H26B 109.5
C15—C13—C14 110.6 (3) H26A—C26—H26C 109.5
C15—C13—C16 110.1 (3) H26B—C26—H26C 109.5
C2—C3—H3 119.9 C23—C24—H24A 109.5
C4—C3—C2 120.2 (2) C23—C24—H24B 109.5
C4—C3—H3 119.9 C23—C24—H24C 109.5
O2—C22—C21 120.6 (2) H24A—C24—H24B 109.5
O2—C22—C23 121.1 (3) H24A—C24—H24C 109.5
C21—C22—C23 118.3 (2) H24B—C24—H24C 109.5
N3—C18—H18 107.6 O3—Cl1—O4A 103.6 (6)
N3—C18—C20 110.1 (2) O3—Cl1—O6B 100.5 (6)
N3—C18—C19 111.7 (2) O5A—Cl1—O3 117.5 (5)
C20—C18—H18 107.6 O5A—Cl1—O4A 105.7 (6)
C19—C18—H18 107.6 O5A—Cl1—O6A 110.3 (6)
C19—C18—C20 112.1 (2) O6A—Cl1—O3 110.4 (5)
C10—C11—H11A 109.5 O6A—Cl1—O4A 108.7 (7)
C10—C11—H11B 109.5 O4B—Cl1—O3 115.8 (7)
C10—C11—H11C 109.5 O4B—Cl1—O6B 108.4 (8)
H11A—C11—H11B 109.5 O4B—Cl1—O5B 111.5 (8)
H11A—C11—H11C 109.5 O5B—Cl1—O3 111.3 (8)
H11B—C11—H11C 109.5 O5B—Cl1—O6B 108.6 (9)
O2—C22—C23—C25 148.6 (4) C1—C2—C3—C4 0.5 (4)
O2—C22—C23—C26 −94.3 (4) C6—C1—C2—C3 0.5 (4)
O2—C22—C23—C24 22.6 (5) C6—C5—C4—C3 −0.4 (4)
N2—C7—C1—C6 103.3 (2) C9—N2—C7—N1 0.5 (2)
N2—C7—C1—C2 −70.4 (3) C9—N2—C7—C1 176.64 (19)
N2—C9—C13—C14 −56.9 (3) N3—C21—C22—O2 8.0 (4)
N2—C9—C13—C16 62.6 (3) N3—C21—C22—C23 −172.3 (2)
N2—C9—C13—C15 −177.1 (3) C17—C6—C5—C4 178.5 (2)
N1—C7—C1—C6 −81.5 (3) C17—N3—C21—C22 −78.2 (3)
N1—C7—C1—C2 104.8 (3) C17—N3—C18—C20 −102.9 (3)
N1—C8—C9—N2 0.8 (2) C17—N3—C18—C19 131.9 (2)
N1—C8—C9—C13 −175.9 (2) C10—N1—C7—N2 178.70 (19)
C7—N2—C9—C8 −0.8 (2) C10—N1—C7—C1 2.9 (3)
C7—N2—C9—C13 176.3 (2) C10—N1—C8—C9 −179.2 (2)
C7—N1—C8—C9 −0.5 (2) C2—C1—C6—C17 −178.5 (2)
C7—N1—C10—C11 133.0 (2) C2—C1—C6—C5 −1.5 (3)
C7—N1—C10—C12 −103.2 (3) C5—C6—C17—O1 −98.6 (3)
C7—C1—C6—C17 7.9 (3) C5—C6—C17—N3 81.1 (3)
C7—C1—C6—C5 −175.1 (2) C5—C4—C3—C2 −0.6 (4)
C7—C1—C2—C3 174.4 (2) C21—N3—C17—O1 −7.9 (3)
C8—N1—C7—N2 0.0 (2) C21—N3—C17—C6 172.35 (19)
C8—N1—C7—C1 −175.8 (2) C21—N3—C18—C20 79.4 (3)
C8—N1—C10—C11 −48.5 (3) C21—N3—C18—C19 −45.8 (3)
C8—N1—C10—C12 75.3 (3) C21—C22—C23—C25 −31.2 (4)
C8—C9—C13—C14 119.3 (3) C21—C22—C23—C26 85.9 (4)
C8—C9—C13—C16 −121.2 (3) C21—C22—C23—C24 −157.1 (4)
C8—C9—C13—C15 −0.9 (4) C18—N3—C17—O1 174.4 (2)
C1—C6—C17—O1 78.3 (3) C18—N3—C17—C6 −5.4 (3)
C1—C6—C17—N3 −101.9 (2) C18—N3—C21—C22 99.7 (3)
C1—C6—C5—C4 1.5 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2···O3 0.86 1.94 2.752 (4) 157
C2—H2A···O1i 0.93 2.44 3.319 (3) 158
C5—H5···O5Aii 0.93 2.55 3.328 (11) 141
C8—H8···O4Aiii 0.93 2.36 3.285 (8) 173
C10—H10···O1 0.98 2.55 3.167 (3) 121

Symmetry codes: (i) −x+3/2, y+1/2, −z+3/2; (ii) −x+1/2, y−1/2, −z+3/2; (iii) x+1, y, z.

References

  1. Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.
  2. Bartnik, R., Faure, R. & Gebicki, K. (1998). J. Chem. Crystallogr. 28, 119–123.
  3. Chai, D. I., Hoffmeister, L. & Lautens, M. (2011). Org. Lett. 13, 106–109. [DOI] [PubMed]
  4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  5. Gabriel, S. (1910). Berichte, 43, 1283–1287.
  6. Godfrey, A. G., Brooks, D. A., Hay, L. A., Peters, M., McCarthy, J. R. & Mitchell, D. (2003). J. Org. Chem. 68, 2623–2632. [DOI] [PubMed]
  7. Gold de Sigman, S. (1983). (Romikin) ES 512,316 (19. 05. 1982) [CA 99, 88229j].
  8. Hashmi, A. S. K., Molinari, L., Rominger, F. & Oeser, T. (2011). Eur. J. Org. Chem. 2011, 2256–2264.
  9. Hoffman, T. J., Kolleth, A., Rigby, J. H., Arseniyadis, S. & Cossy, J. (2010). Org. Lett. 12, 3348–3351. [DOI] [PubMed]
  10. Hordiyenko, O. V., Rudenko, I. V., Biitseva, A. V., Turov, A. V., Arrault, A., Brosse, N., Fabre, O., Jamart-Grégoire, B., Zubatyuk, R. I. & Shishkin, O. V. (2009). Tetrahedron, 65, 6218–6225.
  11. Nicolaou, K. C., Hao, J., Reddy, M. V., Rao, P. B., Rassias, G., Snyder, S. A., Huang, X., Chen, D. Y.-K., Brenzovich, W. E., Giuseppone, N., Giannakakou, P. & O’Brate, A. (2004). J. Am. Chem. Soc. 126, 12897–12906. [DOI] [PubMed]
  12. Robinson, R. (1909). J. Chem. Soc. Trans. 95, 2167–2174.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  15. Su, S., Rodriguez, R. A. & Baran, P. S. (2011). J. Am. Chem. Soc. 133, 13922–13925. [DOI] [PMC free article] [PubMed]
  16. Tinant, B., Laurent, M. & Marchand-Brynaert, J. (2006). Z. Kristallogr. New Cryst. Struct. 221, 68–70.
  17. Wasserman, H. H. & Vinick, F. J. (1973). J. Org. Chem. 38, 2407–2408.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015001486/lh5748sup1.cif

e-71-00223-sup1.cif (940.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015001486/lh5748Isup2.hkl

e-71-00223-Isup2.hkl (330.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015001486/lh5748Isup3.smi

Supporting information file. DOI: 10.1107/S2056989015001486/lh5748Isup4.cml

CCDC reference: 1045018

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES