Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jan 17;71(Pt 2):176–179. doi: 10.1107/S2056989015000195

Crystal structure of 3-benzoyl-2-[(5-bromo-2-hydroxy-3-meth­oxy­benzyl­idene)amino]-4,5,6,7-tetra­hydro­benzo[b]thio­phene

Manpreet Kaur a, Jerry P Jasinski b,*, H S Yathirajan a, Christopher Glidewell c, K Byrappa d
PMCID: PMC4384575  PMID: 25878812

In the title compound, the planes of the benzene and phenyl rings are inclined to the thio­phene ring by 35.2 (4) and 57.7 (3)°, respectively, while the planes of the two aryl rings are almost normal to one another, making a dihedral angle of 86.4 (6)°. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming chains propagating along the a-axis direction.

Keywords: crystal structure; 2-amino­thio­phene; 4,5,6,7-tetra­hydro­benzo[b]thio­phene; Schiff base; hydrogen bonding

Abstract

In the cyclo­hexene ring of the title compound, C23H20BrNO3S, the –(CH2)4– atoms are positionally disordered [occupancy ratio = 0.753 (6):0.247 (6)]. The ring has a half-chair conformation for both the major and minor components. The dihedral angles between the mean plane of the thio­phene ring and those of the benzene and phenyl rings are 35.2 (4) and 57.7 (3)°, respectively. The planes of the two aryl rings are twisted with respect to each other by 86.4 (6)°. In the mol­ecule, there is an O—H⋯N hydrogen bond forming an S(6) ring motif. In the crystal, mol­ecules are linked via C—H⋯O hydrogen bonds, forming chains parallel to [100].

Chemical context  

2-Amino­thio­phene derivatives have been used in a number of applications in pesticides, dyes and pharmaceuticals. Reviews on the synthesis and properties of these compounds have been reported (Sabnis et al. 1999; Puterová et al. 2010). Schiff base compounds are an important class of compounds both synthetically and biologically. These compounds show bio­log­ical activities including anti­bacterial, anti­fungal, anti­cancer and herbicidal activities (Desai et al., 2001; Karia & Parsania, 1999; Samadhiya & Halve, 2001; Singh & Dash, 1988). Furthermore, Schiff bases are utilized as starting materials in the synthesis of compounds of industrial (Aydogan et al., 2001) and biological inter­est, such as β-lactams (Taggi et al., 2002). The crystal and mol­ecular structures of two 2-amino­thio­phenes have been reported by our group (Kubicki et al., 2012). In a continuation of our work on Schiff base derivatives of 2-amino­thio­phenes, we report herein on the synthesis and crystal structure of the title Schiff base compound.graphic file with name e-71-00176-scheme1.jpg

Structural commentary  

In the title compound, Fig. 1, the cyclo­hexene ring is disordered with atoms C4/C44, C5/C45, C6/C46 and C7/C47 disordered about two positions with a refined occupancy ratio of 0.753 (6):0.247 (6). Both rings (C3A/C4–C7/C7A) and (C3A/C44–C47/C7A) adopt a half-chair conformation. The mean plane of the major component (C3A/C4–C7/C7A) is slightly twisted from the mean plane of the thio­phene ring (S1/C2/C3/C3A/C7A) by 5.18 (14)°. The dihedral angles between the mean plane of the thio­phene ring and the benzene (C21–C26) and phenyl (C31–C36) rings are 35.2 (4) and 57.7 (3)°, respectively. The two aryl rings are normal to each other, making a dihedral angle of 86.4 (6)°. In the mol­ecule there is an O—H⋯N hydrogen bond forming an S(6) ring motif (Table 1 and Fig. 1).

Figure 1.

Figure 1

A view of the mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. The intra­molecular hydrogen bond is shown as a dashed line (see Table 1 for details).

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
O22H22N2 0.84 2.00 2.731(3) 145
C35H35O22i 0.95 2.54 3.212(3) 128

Symmetry code: (i) Inline graphic.

Supra­molecular features  

In the crystal, mol­ecules are linked via C—H⋯O hydrogen bonds, observed between the benzene and phenyl rings of adjacent mol­ecules, forming chains parallel to the [100] direction (Fig. 2 and Table 1).

Figure 2.

Figure 2

A view along the b axis of the crystal packing of the title compound. Dashed lines indicate weak C—H⋯O hydrogen bonds (see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity).

Database survey  

A search of the Cambridge Structural Database (Version 5.36; Groom & Allen, 2014) for the substructure 4,5,6,7-tetra­hydro­benzo[b]thio­phene gave over 110 hits. Limiting the search to phen­yl(4,5,6,7-tetra­hydro­benzo[b]thio­phen-3-yl)methanone derivatives gave eight hits, which include five structures closely related to the title compound. These include [2-[(2-hy­droxy­benzyl­idene)amino][4,5,6,7-tetra­hydro-1-benzothio­phene-3-yl](phen­yl)methanone (I) [QOCGAS; Kaur et al., 2014a ], [2-[(4-nitro­benzyl­idene)amino]-4,5,6,7-tetra­hydro-1-benzo­thio­phene-3-yl](phen­yl)methanone (II) [SODGUP; Kaur et al., 2014b ], [2-(benzyl­idene­amino)-4,5,6,7-tetrahy­dro­benzo[b]thio­phen-3­yl](phen­yl)methanone (III) [YIYDAN; Kaur et al., 2014c ], [2-[(1H-indol-3-yl­methylidene)amino]-4,5,6,7-tetra­hydro­benzo[b]thio­phen-3-yl](phen­­yl)methanone (IV) [YIWJUL; Kaur et al., 2014d ] and [2-[2-bromo-5-meth­oxy­benzyl­idene)amino]-4,5,6,7-tetrahydro­benzo[b]thio­phene-3-yl](phen­yl)methanone (V) [CIZYIV; Kaur et al., 2014e ]. Two of the compounds, (II) and (IV), crystallize in the monoclinic space group P21, while the others, including the title compound, crystallize in centrosymmetric monoclinic space groups.

A comparison of the structural properties of the title compound to these five closely related mol­ecules reveals the following:

(a) The cyclo­hexene ring is disordered in compounds (II), (III), and (V), and has a slightly distorted half-chair conformation in (I), (III), (IV), and (V), and a distorted chair conformation in (II);

(b) The dihedral angle between the mean planes of the thio­phene and phenyl rings is 70.4 (5)° in (I), ca. 63.6° in (II), 65.7 (3)° in (III), 63.0 (4) and 58.8 (9)° for the two independent mol­ecules in (IV) and 66.1 (2)° in (V). The same dihedral angle in the title compound is 57.7 (3)°;

(c) The dihedral angle between the mean planes of the thio­phene and benzene rings is 12.1 (9)° in (I), 30.9 (8)° in (II), 8.3 (4)° in (III), 8.3 (5) and 6.7 (5)° for the two independent mol­ecules in (IV) and 9.2 (2)° in (V). In the title compound this dihedral angle is 35.2 (4)°, similar to the situation in compound (III);

(d) In (I), (II), (III) and (V) the benzil­idene and phenyl rings are inclined to one another by 81.0 (6), ca. 84.6, 73.8 (4) and 74.8 (8)°, respectively, compared to 86.4 (6)° in the title compound;

(e) There is an O—H⋯N intra­molecular hydrogen bond in (I), as in the title compound;

(f) In the crystals of (I) and (III), C—H⋯O hydrogen bonds link mol­ecules into chains along [100], as in the crystal of the title compound. In the crystal of (II), an array of C—H⋯O hydrogen bonds along [001] and [101] forms sheets parallel to (011). In the crystal of (IV), N—H⋯O hydrogen bonds link the mol­ecules, forming chains along [101]. There are also π–π stacking inter­actions present, involving the thio­phene and pyrrole rings of the two independent mol­ecules, with an inter-centroid distance of 3.468 (2) Å. In the crystal of (V), mol­ecules are linked by pairs of C—H⋯O hydrogen bonds, forming inversion dimers.

Synthesis and crystallization  

To a solution of (2-amino-4,5,6,7-tetra­hydro-benzo[b]thiophen-3-yl)-phenyl­methanone (200 mg, 0.79 mmol) in 10 ml of methanol an equimolar amount of 5-bromo-2-hy­droxy-3-meth­oxy­benzaldehyde (183 mg, 0.79 mmol) was added with constant stirring. The mixture was refluxed for 6 h. A yellowish brown precipitate was obtained. Completion of the reaction was confirmed by thin layer chromatography. The precipitate obtained was filtered and dried at room temperature overnight. The solid was then recrystallized using a 1:1 solution of aceto­nitrile and di­chloro­methane, giving colourless block-like crystals.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. It was apparent from an early stage in the refinement that the saturated portion of the tetra­hydro­benzo­thio­phene unit exhibited conformational disorder over two sets of atomic sites having unequal occupancies. For the minor conformer, involving atoms C44–C47 (cf. Fig. 1), the bonded distances and the one-angle non-bonded distances were restrained to be the same as the corresponding distances in the major conformer, involving atoms C4–C7, subject to uncertainties of 0.005 and 0.01 Å, respectively. The atomic coordinates of atoms C4 and C44 were constrained to be identical, as were those of atoms C7 and C47. In addition, the anisotropic displacement parameters for pairs of partial-occupancy atoms occupying essentially the same physical space were constrained to be identical. The ratio of the occupancies of the disordered components refined to 0.753 (6):0.247 (6).

Table 2. Experimental details.

Crystal data
Chemical formula C23H20BrNO3S
M r 470.36
Crystal system, space group Monoclinic, P21/c
Temperature (K) 173
a, b, c () 4.81267(18), 22.1919(8), 18.7012(7)
() 97.392(3)
V (3) 1980.73(13)
Z 4
Radiation type Cu K
(mm1) 4.03
Crystal size (mm) 0.32 0.22 0.16
 
Data collection
Diffractometer Agilent Eos Gemini
Absorption correction Multi-scan (SADABS; Sheldrick, 2008)
T min, T max 0.281, 0.525
No. of measured, independent and observed [I > 2(I)] reflections 7659, 3787, 3569
R int 0.024
(sin /)max (1) 0.614
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.040, 0.108, 1.10
No. of reflections 3787
No. of parameters 271
No. of restraints 5
H-atom treatment H-atom parameters constrained
max, min (e 3) 0.97, 0.47

Computer programs: CrysAlis PRO and CrysAlis RED (Agilent, 2012), SHELXS97 (Sheldrick, 2008), PLATON (Spek, 2009) and SHELXL2014 (Sheldrick, 2015).

The H atoms in the disordered portion of the mol­ecule were included in the refinement in calculated positions, but all of the H atoms in the ordered portion of the mol­ecule were located in difference maps. All the H atoms were then treated as riding atoms in geometrically idealized positions: O—H = 0.84 Å, C—H = 0.95–0.99 Å with U iso(H) = 1.5U eq(O,C) for the hydroxyl and methyl H atoms, and = 1.2U eq(C) for other H atoms. A single weak outlier reflection (Inline graphic,13,14) was omitted from the refinement.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015000195/su5055sup1.cif

e-71-00176-sup1.cif (284.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015000195/su5055Isup2.hkl

e-71-00176-Isup2.hkl (207.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015000195/su5055Isup3.cml

CCDC reference: 1042320

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

MK is grateful to CPEPA–UGC for the award of a Junior Research Fellowship and thanks the University of Mysore for research facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

supplementary crystallographic information

Crystal data

C23H20BrNO3S F(000) = 960
Mr = 470.36 Dx = 1.577 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54184 Å
a = 4.81267 (18) Å Cell parameters from 3787 reflections
b = 22.1919 (8) Å θ = 4.0–71.1°
c = 18.7012 (7) Å µ = 4.03 mm1
β = 97.392 (3)° T = 173 K
V = 1980.73 (13) Å3 Block, colourless
Z = 4 0.32 × 0.22 × 0.16 mm

Data collection

Agilent Eos Gemini diffractometer 3787 independent reflections
Radiation source: Enhance (Cu) X-ray Source 3569 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1 Rint = 0.024
ω scans θmax = 71.1°, θmin = 4.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 2008) h = −5→4
Tmin = 0.281, Tmax = 0.525 k = −23→27
7659 measured reflections l = −19→22

Refinement

Refinement on F2 5 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040 H-atom parameters constrained
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0688P)2 + 1.0707P] where P = (Fo2 + 2Fc2)/3
S = 1.10 (Δ/σ)max = 0.001
3787 reflections Δρmax = 0.97 e Å3
271 parameters Δρmin = −0.46 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1 0.69785 (12) 0.48921 (2) 0.30795 (3) 0.02408 (15)
C2 0.5317 (5) 0.42375 (10) 0.27216 (12) 0.0209 (5)
C3 0.5569 (5) 0.41833 (10) 0.19965 (12) 0.0217 (5)
C3A 0.7019 (5) 0.46860 (11) 0.17283 (12) 0.0230 (5)
C4 0.7525 (5) 0.47825 (12) 0.09563 (13) 0.0292 (5) 0.753 (6)
H4A 0.5712 0.4860 0.0656 0.035* 0.753 (6)
H4B 0.8335 0.4411 0.0775 0.035* 0.753 (6)
C5 0.9516 (10) 0.53138 (18) 0.0881 (2) 0.0417 (11) 0.753 (6)
H5A 1.1474 0.5171 0.0987 0.050* 0.753 (6)
H5B 0.9236 0.5457 0.0375 0.050* 0.753 (6)
C6 0.9090 (10) 0.58370 (16) 0.1374 (2) 0.0405 (10) 0.753 (6)
H6A 0.7144 0.5988 0.1267 0.049* 0.753 (6)
H6B 1.0376 0.6169 0.1287 0.049* 0.753 (6)
C7 0.9640 (6) 0.56445 (12) 0.21574 (15) 0.0316 (5) 0.753 (6)
H7A 1.1660 0.5560 0.2292 0.038* 0.753 (6)
H7B 0.9093 0.5971 0.2472 0.038* 0.753 (6)
C44 0.7525 (5) 0.47825 (12) 0.09563 (13) 0.0292 (5) 0.247 (6)
H44A 0.5808 0.4681 0.0628 0.035* 0.247 (6)
H44B 0.9051 0.4514 0.0842 0.035* 0.247 (6)
C45 0.833 (3) 0.5441 (3) 0.0844 (4) 0.0417 (11) 0.247 (6)
H45A 0.8962 0.5485 0.0364 0.050* 0.247 (6)
H45B 0.6657 0.5700 0.0856 0.050* 0.247 (6)
C46 1.063 (2) 0.5648 (5) 0.1419 (3) 0.0405 (10) 0.247 (6)
H46A 1.1222 0.6060 0.1305 0.049* 0.247 (6)
H46B 1.2268 0.5378 0.1423 0.049* 0.247 (6)
C47 0.9640 (6) 0.56445 (12) 0.21574 (15) 0.0316 (5) 0.247 (6)
H47A 1.1281 0.5659 0.2535 0.038* 0.247 (6)
H47B 0.8480 0.6006 0.2211 0.038* 0.247 (6)
C7A 0.7954 (5) 0.50878 (11) 0.22528 (13) 0.0248 (5)
N2 0.3809 (4) 0.38630 (9) 0.31246 (10) 0.0214 (4)
C27 0.2835 (5) 0.40820 (11) 0.36777 (12) 0.0228 (5)
H27 0.3226 0.4492 0.3798 0.027*
C21 0.1168 (5) 0.37392 (10) 0.41313 (12) 0.0213 (4)
C22 0.0790 (4) 0.31190 (10) 0.40655 (11) 0.0199 (4)
C23 −0.0965 (5) 0.28198 (10) 0.45045 (12) 0.0214 (4)
C24 −0.2273 (5) 0.31462 (10) 0.49988 (12) 0.0216 (4)
H24 −0.3471 0.2950 0.5291 0.026*
C25 −0.1808 (5) 0.37664 (10) 0.50617 (12) 0.0221 (4)
Br25 −0.34996 (6) 0.42100 (2) 0.57603 (2) 0.03072 (12)
C26 −0.0130 (5) 0.40670 (11) 0.46400 (12) 0.0242 (5)
H26 0.0150 0.4489 0.4691 0.029*
O22 0.2048 (4) 0.27806 (7) 0.35966 (9) 0.0251 (3)
H22 0.2957 0.3006 0.3350 0.038*
O23 −0.1211 (4) 0.22165 (8) 0.44037 (10) 0.0286 (4)
C28 −0.3190 (5) 0.19060 (11) 0.47808 (14) 0.0298 (5)
H28A −0.5067 0.2072 0.4638 0.045*
H28B −0.2674 0.1958 0.5301 0.045*
H28C −0.3183 0.1476 0.4661 0.045*
C37 0.4280 (5) 0.36935 (11) 0.15198 (12) 0.0241 (5)
O37 0.3043 (4) 0.38180 (9) 0.09281 (10) 0.0383 (5)
C31 0.4593 (5) 0.30534 (11) 0.17603 (12) 0.0225 (4)
C32 0.2770 (5) 0.26251 (12) 0.14146 (14) 0.0314 (5)
H32 0.1365 0.2746 0.1038 0.038*
C33 0.2995 (6) 0.20244 (13) 0.16173 (17) 0.0377 (6)
H33 0.1737 0.1735 0.1384 0.045*
C34 0.5061 (6) 0.18479 (12) 0.21618 (16) 0.0344 (6)
H34 0.5205 0.1437 0.2302 0.041*
C35 0.6910 (5) 0.22637 (12) 0.25018 (14) 0.0305 (5)
H35 0.8332 0.2138 0.2872 0.037*
C36 0.6684 (5) 0.28688 (11) 0.23010 (13) 0.0255 (5)
H36 0.7960 0.3156 0.2533 0.031*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0302 (3) 0.0230 (3) 0.0203 (3) −0.0042 (2) 0.0079 (2) −0.0015 (2)
C2 0.0232 (11) 0.0205 (10) 0.0191 (11) 0.0011 (8) 0.0037 (8) −0.0007 (8)
C3 0.0228 (11) 0.0244 (11) 0.0183 (11) 0.0047 (8) 0.0042 (8) 0.0013 (8)
C3A 0.0218 (11) 0.0254 (11) 0.0232 (11) 0.0045 (9) 0.0084 (8) 0.0049 (9)
C4 0.0350 (13) 0.0341 (13) 0.0204 (11) 0.0045 (10) 0.0108 (9) 0.0041 (10)
C5 0.055 (3) 0.041 (2) 0.0355 (17) −0.005 (2) 0.030 (2) 0.0059 (15)
C6 0.056 (3) 0.0313 (19) 0.0381 (19) −0.0044 (16) 0.0191 (19) 0.0105 (15)
C7 0.0347 (13) 0.0265 (12) 0.0356 (14) −0.0045 (10) 0.0120 (11) 0.0022 (11)
C44 0.0350 (13) 0.0341 (13) 0.0204 (11) 0.0045 (10) 0.0108 (9) 0.0041 (10)
C45 0.055 (3) 0.041 (2) 0.0355 (17) −0.005 (2) 0.030 (2) 0.0059 (15)
C46 0.056 (3) 0.0313 (19) 0.0381 (19) −0.0044 (16) 0.0191 (19) 0.0105 (15)
C47 0.0347 (13) 0.0265 (12) 0.0356 (14) −0.0045 (10) 0.0120 (11) 0.0022 (11)
C7A 0.0264 (11) 0.0251 (11) 0.0239 (11) 0.0025 (9) 0.0077 (9) 0.0034 (9)
N2 0.0231 (9) 0.0230 (9) 0.0185 (8) −0.0013 (7) 0.0039 (7) 0.0005 (7)
C27 0.0257 (11) 0.0213 (10) 0.0222 (11) −0.0024 (9) 0.0055 (9) −0.0023 (9)
C21 0.0220 (10) 0.0249 (11) 0.0170 (10) −0.0009 (9) 0.0024 (8) 0.0002 (8)
C22 0.0194 (10) 0.0249 (11) 0.0149 (9) 0.0013 (8) 0.0002 (7) −0.0013 (8)
C23 0.0239 (11) 0.0201 (10) 0.0195 (10) −0.0016 (8) 0.0006 (8) 0.0005 (8)
C24 0.0221 (10) 0.0249 (11) 0.0180 (10) −0.0033 (8) 0.0036 (8) 0.0015 (8)
C25 0.0250 (11) 0.0253 (11) 0.0168 (10) 0.0004 (9) 0.0052 (8) −0.0035 (8)
Br25 0.04036 (19) 0.02851 (18) 0.02633 (17) −0.00364 (10) 0.01589 (12) −0.00703 (9)
C26 0.0286 (12) 0.0232 (10) 0.0212 (10) −0.0024 (9) 0.0044 (9) −0.0023 (9)
O22 0.0293 (9) 0.0237 (8) 0.0240 (8) −0.0016 (6) 0.0099 (6) −0.0028 (6)
O23 0.0361 (9) 0.0206 (8) 0.0314 (8) −0.0038 (7) 0.0141 (7) −0.0009 (7)
C28 0.0344 (13) 0.0248 (11) 0.0315 (12) −0.0091 (10) 0.0094 (10) 0.0014 (10)
C37 0.0241 (11) 0.0288 (12) 0.0198 (10) 0.0029 (9) 0.0037 (8) −0.0023 (9)
O37 0.0496 (11) 0.0379 (10) 0.0241 (9) 0.0043 (9) −0.0088 (8) 0.0008 (8)
C31 0.0215 (10) 0.0279 (12) 0.0185 (10) 0.0025 (9) 0.0043 (8) −0.0048 (9)
C32 0.0270 (12) 0.0334 (13) 0.0316 (12) 0.0023 (10) −0.0044 (10) −0.0071 (11)
C33 0.0310 (13) 0.0318 (13) 0.0484 (16) −0.0062 (11) −0.0025 (11) −0.0100 (12)
C34 0.0349 (13) 0.0248 (12) 0.0441 (15) 0.0034 (10) 0.0076 (11) −0.0022 (11)
C35 0.0314 (12) 0.0302 (13) 0.0289 (12) 0.0060 (10) 0.0003 (10) −0.0012 (10)
C36 0.0247 (11) 0.0257 (11) 0.0256 (11) 0.0004 (9) 0.0009 (9) −0.0043 (9)

Geometric parameters (Å, º)

S1—C7A 1.728 (2) C21—C26 1.406 (3)
S1—C2 1.749 (2) C22—O22 1.355 (3)
C2—C3 1.382 (3) C22—C23 1.417 (3)
C2—N2 1.388 (3) C23—O23 1.355 (3)
C3—C3A 1.440 (3) C23—C24 1.387 (3)
C3—C37 1.490 (3) C24—C25 1.397 (3)
C3A—C7A 1.359 (3) C24—H24 0.9500
C3A—C4 1.510 (3) C25—C26 1.372 (3)
C4—C5 1.537 (4) C25—Br25 1.901 (2)
C4—H4A 0.9900 C26—H26 0.9500
C4—H4B 0.9900 O22—H22 0.8400
C5—C6 1.514 (5) O23—C28 1.433 (3)
C5—H5A 0.9900 C28—H28A 0.9800
C5—H5B 0.9900 C28—H28B 0.9800
C6—C7 1.516 (4) C28—H28C 0.9800
C6—H6A 0.9900 C37—O37 1.219 (3)
C6—H6B 0.9900 C37—C31 1.492 (3)
C7—C7A 1.501 (3) C31—C36 1.394 (3)
C7—H7A 0.9900 C31—C32 1.395 (3)
C7—H7B 0.9900 C32—C33 1.386 (4)
C45—C46 1.512 (7) C32—H32 0.9500
C45—H45A 0.9900 C33—C34 1.385 (4)
C45—H45B 0.9900 C33—H33 0.9500
C46—H46A 0.9900 C34—C35 1.379 (4)
C46—H46B 0.9900 C34—H34 0.9500
N2—C27 1.285 (3) C35—C36 1.395 (4)
C27—C21 1.455 (3) C35—H35 0.9500
C27—H27 0.9500 C36—H36 0.9500
C21—C22 1.392 (3)
C7A—S1—C2 91.71 (12) C22—C21—C26 120.5 (2)
C3—C2—N2 126.8 (2) C22—C21—C27 122.8 (2)
C3—C2—S1 110.73 (17) C26—C21—C27 116.7 (2)
N2—C2—S1 122.33 (17) O22—C22—C21 122.8 (2)
C2—C3—C3A 112.5 (2) O22—C22—C23 117.7 (2)
C2—C3—C37 124.6 (2) C21—C22—C23 119.5 (2)
C3A—C3—C37 122.7 (2) O23—C23—C24 124.7 (2)
C7A—C3A—C3 112.8 (2) O23—C23—C22 115.5 (2)
C7A—C3A—C4 121.2 (2) C24—C23—C22 119.8 (2)
C3—C3A—C4 126.0 (2) C23—C24—C25 119.3 (2)
C3A—C4—C5 112.1 (2) C23—C24—H24 120.4
C3A—C4—H4A 109.2 C25—C24—H24 120.4
C5—C4—H4A 109.2 C26—C25—C24 122.0 (2)
C3A—C4—H4B 109.2 C26—C25—Br25 118.62 (18)
C5—C4—H4B 109.2 C24—C25—Br25 119.34 (17)
H4A—C4—H4B 107.9 C25—C26—C21 118.9 (2)
C6—C5—C4 113.4 (3) C25—C26—H26 120.6
C6—C5—H5A 108.9 C21—C26—H26 120.6
C4—C5—H5A 108.9 C22—O22—H22 109.5
C6—C5—H5B 108.9 C23—O23—C28 117.29 (19)
C4—C5—H5B 108.9 O23—C28—H28A 109.5
H5A—C5—H5B 107.7 O23—C28—H28B 109.5
C5—C6—C7 110.6 (3) H28A—C28—H28B 109.5
C5—C6—H6A 109.5 O23—C28—H28C 109.5
C7—C6—H6A 109.5 H28A—C28—H28C 109.5
C5—C6—H6B 109.5 H28B—C28—H28C 109.5
C7—C6—H6B 109.5 O37—C37—C3 119.7 (2)
H6A—C6—H6B 108.1 O37—C37—C31 120.5 (2)
C7A—C7—C6 108.5 (2) C3—C37—C31 119.8 (2)
C7A—C7—H7A 110.0 C36—C31—C32 119.2 (2)
C6—C7—H7A 110.0 C36—C31—C37 122.3 (2)
C7A—C7—H7B 110.0 C32—C31—C37 118.4 (2)
C6—C7—H7B 110.0 C33—C32—C31 120.4 (2)
H7A—C7—H7B 108.4 C33—C32—H32 119.8
C46—C45—H45A 109.3 C31—C32—H32 119.8
C46—C45—H45B 109.3 C34—C33—C32 119.8 (2)
H45A—C45—H45B 108.0 C34—C33—H33 120.1
C45—C46—H46A 109.4 C32—C33—H33 120.1
C45—C46—H46B 109.4 C35—C34—C33 120.6 (3)
H46A—C46—H46B 108.0 C35—C34—H34 119.7
C3A—C7A—C7 126.0 (2) C33—C34—H34 119.7
C3A—C7A—S1 112.21 (18) C34—C35—C36 119.8 (2)
C7—C7A—S1 121.76 (19) C34—C35—H35 120.1
C27—N2—C2 118.8 (2) C36—C35—H35 120.1
N2—C27—C21 123.9 (2) C31—C36—C35 120.2 (2)
N2—C27—H27 118.1 C31—C36—H36 119.9
C21—C27—H27 118.1 C35—C36—H36 119.9
C7A—S1—C2—C3 0.59 (18) C27—C21—C22—C23 −177.2 (2)
C7A—S1—C2—N2 −175.17 (19) O22—C22—C23—O23 −0.3 (3)
N2—C2—C3—C3A 173.3 (2) C21—C22—C23—O23 180.0 (2)
S1—C2—C3—C3A −2.2 (2) O22—C22—C23—C24 179.26 (19)
N2—C2—C3—C37 −1.4 (4) C21—C22—C23—C24 −0.5 (3)
S1—C2—C3—C37 −176.97 (18) O23—C23—C24—C25 178.7 (2)
C2—C3—C3A—C7A 3.3 (3) C22—C23—C24—C25 −0.8 (3)
C37—C3—C3A—C7A 178.1 (2) C23—C24—C25—C26 1.2 (3)
C2—C3—C3A—C4 −176.9 (2) C23—C24—C25—Br25 −177.96 (16)
C37—C3—C3A—C4 −2.0 (4) C24—C25—C26—C21 −0.3 (3)
C7A—C3A—C4—C5 8.5 (4) Br25—C25—C26—C21 178.87 (17)
C3—C3A—C4—C5 −171.4 (3) C22—C21—C26—C25 −1.0 (3)
C3A—C4—C5—C6 −37.5 (4) C27—C21—C26—C25 177.6 (2)
C4—C5—C6—C7 61.4 (5) C24—C23—O23—C28 6.8 (3)
C5—C6—C7—C7A −51.5 (4) C22—C23—O23—C28 −173.6 (2)
C3—C3A—C7A—C7 177.3 (2) C2—C3—C37—O37 133.9 (3)
C4—C3A—C7A—C7 −2.6 (4) C3A—C3—C37—O37 −40.3 (3)
C3—C3A—C7A—S1 −2.8 (3) C2—C3—C37—C31 −48.1 (3)
C4—C3A—C7A—S1 177.36 (18) C3A—C3—C37—C31 137.7 (2)
C6—C7—C7A—C3A 24.3 (4) O37—C37—C31—C36 158.4 (2)
C6—C7—C7A—S1 −155.6 (2) C3—C37—C31—C36 −19.6 (3)
C2—S1—C7A—C3A 1.30 (19) O37—C37—C31—C32 −19.7 (4)
C2—S1—C7A—C7 −178.8 (2) C3—C37—C31—C32 162.3 (2)
C3—C2—N2—C27 −152.3 (2) C36—C31—C32—C33 1.4 (4)
S1—C2—N2—C27 22.7 (3) C37—C31—C32—C33 179.6 (2)
C2—N2—C27—C21 178.5 (2) C31—C32—C33—C34 −0.6 (4)
N2—C27—C21—C22 9.0 (4) C32—C33—C34—C35 −0.4 (5)
N2—C27—C21—C26 −169.6 (2) C33—C34—C35—C36 0.6 (4)
C26—C21—C22—O22 −178.3 (2) C32—C31—C36—C35 −1.2 (4)
C27—C21—C22—O22 3.1 (3) C37—C31—C36—C35 −179.3 (2)
C26—C21—C22—C23 1.4 (3) C34—C35—C36—C31 0.2 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O22—H22···N2 0.84 2.00 2.731 (3) 145
C35—H35···O22i 0.95 2.54 3.212 (3) 128

Symmetry code: (i) x+1, y, z.

References

  1. Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.
  2. Aydogan, F., Ocal, N., Turgut, Z. & Yolacan, C. (2001). Bull. Korean Chem. Soc. 22, 476–480.
  3. Desai, S. B., Desai, P. B. & Desai, K. R. (2001). Heterocycl. Commun. 7, 83–90.
  4. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  5. Karia, F. D. & Parsania, P. H. (1999). Asian J. Chem. 11, 991–995.
  6. Kaur, M., Jasinski, J. P., Kavitha, C. N., Yathirajan, H. S. & Byrappa, K. (2014a). Acta Cryst. E70, o476–o477. [DOI] [PMC free article] [PubMed]
  7. Kaur, M., Jasinski, J. P., Kavitha, C. N., Yathirajan, H. S. & Byrappa, K. (2014b). Acta Cryst. E70, o738–o739. [DOI] [PMC free article] [PubMed]
  8. Kaur, M., Jasinski, J. P., Kavitha, C. N., Yathirajan, H. S. & Byrappa, K. (2014c). Acta Cryst. E70, o507–o508. [DOI] [PMC free article] [PubMed]
  9. Kaur, M., Jasinski, J. P., Yamuna, T. S., Yathirajan, H. S. & Byrappa, K. (2014d). Acta Cryst. E70, o501–o502. [DOI] [PMC free article] [PubMed]
  10. Kaur, M., Jasinski, J. P., Yamuna, T. S., Yathirajan, H. S. & Byrappa, K. (2014e). Acta Cryst. E70, o581–o582. [DOI] [PMC free article] [PubMed]
  11. Kubicki, M., Dutkiewicz, G., Yathirajan, H. S., Dawar, P., Ramesha, A. R. & Dayananda, A. S. (2012). Crystals, 2, 1058–1066.
  12. Puterová, Z., Krutošiková, A. & Végh, D. (2010). Arkivoc, (i), 209–246.
  13. Sabnis, R. W., Rangnekar, D. W. & Sonawane, N. D. (1999). J. Heterocycl. Chem. 36, 333–345.
  14. Samadhiya, S. & Halve, A. (2001). Orient. J. Chem. 17 119–122.
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  17. Singh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33–37.
  18. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  19. Taggi, A. E., Hafez, A. M., Wack, H., Young, B., Ferraris, D. & Lectka, T. (2002). J. Am. Chem. Soc. 124, 6626–6635. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015000195/su5055sup1.cif

e-71-00176-sup1.cif (284.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015000195/su5055Isup2.hkl

e-71-00176-Isup2.hkl (207.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015000195/su5055Isup3.cml

CCDC reference: 1042320

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES