Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jan 21;71(Pt 2):o123–o124. doi: 10.1107/S2056989015000833

Crystal structure of 2-methyl-4-[(thio­phen-2-yl)methyl­idene]-1,3-oxazol-5(4H)-one

Preetika Sharma a, K N Subbulakshmi b, B Narayana b, K Byrappa c, Rajni Kant a,*
PMCID: PMC4384586  PMID: 25878864

Abstract

The asymmetric unit of the title compound, C9H7NO2S, contains two crystallographically independent mol­ecules (A and B). Both mol­ecules are almost planar [maximum deviations = 0.047 (1) and 0.090 (1) Å, respectively, for the S atoms] with the oxazole and thio­phene rings being inclined to one another by 2.65 (16)° in mol­ecule A and by 4.55 (15)° in mol­ecule B. In the crystal, the individual mol­ecules are linked via C—H⋯O hydrogen bonds, forming –ABAB– chains along the [10-1] direction. The chains are linked via C—H⋯π and π–π inter­actions [inter­centroid distances = 3.767 (2) and 3.867 (2) Å] involving inversion-related oxazole and thio­phene rings in both mol­ecules, forming a three-dimensional structure.

Keywords: crystal structure; azlactones; 1,3-oxazol-5(4H)-one; hydrogen bonding; C—H⋯π and π–π inter­actions

Related literature  

For the different roles of 1,3-oxazol-5(4H)-one derivatives, see: Etschenberg et al. (1980); Reed & Kingston (1986). For the crystal structure of 2-(naphthalen-1-yl)-4-[(thio­phen-2-yl)methyl­idene]-1,3-oxazol-5(4H)-one, see: Gündoğdu et al. (2011b ). For the crystal structures of some oxazole compounds, see: Gündoğdu et al. (2011a ); Sun & Cui (2008); Huang et al. (2012); Asiri & Ng (2009).graphic file with name e-71-0o123-scheme1.jpg

Experimental  

Crystal data  

  • C9H7NO2S

  • M r = 193.22

  • Monoclinic, Inline graphic

  • a = 12.2264 (11) Å

  • b = 9.8581 (7) Å

  • c = 15.8735 (13) Å

  • β = 112.129 (10)°

  • V = 1772.3 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection  

  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010) T min = 0.842, T max = 1.000

  • 7052 measured reflections

  • 3472 independent reflections

  • 2477 reflections with I > 2σ(I)

  • R int = 0.029

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.126

  • S = 1.04

  • 3472 reflections

  • 237 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015000833/su5054sup1.cif

e-71-0o123-sup1.cif (24.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015000833/su5054Isup2.hkl

e-71-0o123-Isup2.hkl (166.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015000833/su5054Isup3.cml

. DOI: 10.1107/S2056989015000833/su5054fig1.tif

A view of the mol­ecular structure of the two independent mol­ecules of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 40% probability level.

b A B . DOI: 10.1107/S2056989015000833/su5054fig2.tif

A view along the b axis of the crystal packing of the title compound. The C—H⋯O ydrogen bonds are shown as dashed lines (see Table 1 for details; mol­ecule A blue; mol­ecule B red).

CCDC reference: 1043723

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

Cg1 is the centroid of the thiophene ring S1A/C1AC4A.

DHA DH HA D A DHA
C3AH3AO2B i 0.93 2.56 3.449(3) 161
C3BH3BO2A ii 0.93 2.49 3.336(3) 151
C9BH9B2Cg1iii 0.96 2.96 3.783(4) 145

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

RK acknowledges the Department of Science and Technology for the single-crystal X-ray diffractometer, sanctioned as a National Facility under Project No. SR/S2/CMP-47/2003. KNS gratefully acknowledges the Department of Chemistry and Shri Madhwa Vadiraja Institute of Technology, Bantakal, for providing research facilities.

supplementary crystallographic information

S1. Comment

Erlenmeyer azlactones have been used in a wide variety of reactions as precursors for biologically active peptides (Etschenberg et al., 1980; Reed & Kingston, 1986), herbicides and fungicides, pesticides, agrochemical intermediates and as drugs. The crystal structures of some 1,3-oxazol-5(4H)-one derivative viz., 2-(naphthalen-1-yl)-4-(naphthalen-1-ylmethylidene)-1,3-oxazol-5(4H)-one (Gündoğdu et al., 2011a), 2-phenyl-4-(3,4,5-trimethoxybenzylidene)-1,3-oxazol-5(4H)-one (Sun & Cui, 2008), 4-[(3-methoxyanilino)methylidene]-2-phenyl-1,3-oxazol-5(4H)-one (Huang et al., 2012), (E)-4-(2,5-dimethoxybenzylidene)-2-phenyl-1,3-oxazol-5(4H)-one (Asiri & Ng, 2009) have been reported. In view of the importance of 1,3-oxazol-5(4H)-one, we report herein on the crystal structure of the title compound.

The asymmetric unit of the title compound, Fig. 1, contains two crystallographically independent molecules (A and B), which are almost identical (Fig. 2). The molecular structure is comprised of an oxazole and a thiophene ring which are almost coplanar with a dihedral angle between the rings of 2.65 (16)° in molecule A and 4.55 (15)° in molecule B. All the bond lengths and angles of the title molecule are within normal ranges, and are close to those observed for a very similar structure, viz. 2-(naphthalen-1-yl)-4-[(thiophen-2-yl)methylidene]-1,3-oxazol-5(4H)-one (Gündoğdu et al., 2011b).

In the crystal, the individual molecules are linked via C—H···O hydrogen bonds forming -A-B-A-B- chains along direction [101]; Fig. 2 and Table 1. The chains are linked via C-H···π (Table 1) and π-π interactions forming a three dimensional structure [Cg1···Cg2i = 3.767 (2) A° and Cg3···Cg4ii = 3.886 (2) Å where Cg1, Cg2, Cg3 and Cg4 are the centroids of rings S1A/C1A-C4A, O1A/N1A/C6A-C8A, S1B/C1B-C4B and O1B/N1B/C6B-C8B, respectively, with symmetry codes: (i) -x+1, -y+1, -z and (ii) -x+1, -y+1, -z+1].

S2. Experimental

A mixture of acetyl glycine (2 g, 0.017 mol), thiophene-2-carbaldehyde (1.91 g, 0.017 mol), anhydrous sodium acetate (1.39 g, 0.017 mol) and acetic anhydride (5.20 g, 0.051 mol) was heated on electric plate with constant stirring. As soon as the mixture liquefied completely, the resulting solution was refluxed for 2 h. 25 ml of ethanol was added slowly to the contents of the flask and the mixture was allowed to stand overnight in a refrigerator. The solid mass that separated out was stirred with 60 ml of cold water, filtered, washed with cold water and recrystallized from carbon tetrachloride. Single crystals were grown from chloroform by the slow evaporation method (m.p.: 411-412 K).

S3. Refinement

All the H atoms were positioned geometrically and refined using a riding model: C—H = 0.93–0.96 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms.

Figures

Fig. 1.

Fig. 1.

A view of the molecular structure of the two independent molecules of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 40% probability level.

Fig. 2.

Fig. 2.

A view along the b axis of the crystal packing of the title compound. The C—H···O ydrogen bonds are shown as dashed lines (see Table 1 for details; molecule A blue; molecule B red).

Crystal data

C9H7NO2S F(000) = 800
Mr = 193.22 Dx = 1.448 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 2325 reflections
a = 12.2264 (11) Å θ = 4.2–29.2°
b = 9.8581 (7) Å µ = 0.33 mm1
c = 15.8735 (13) Å T = 293 K
β = 112.129 (10)° Block, white
V = 1772.3 (2) Å3 0.30 × 0.20 × 0.20 mm
Z = 8

Data collection

Oxford Diffraction Xcalibur Sapphire3 diffractometer 3472 independent reflections
Radiation source: fine-focus sealed tube 2477 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.029
ω scans θmax = 26.0°, θmin = 3.9°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010) h = −15→9
Tmin = 0.842, Tmax = 1.000 k = −12→10
7052 measured reflections l = −19→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0531P)2 + 0.4552P] where P = (Fo2 + 2Fc2)/3
3472 reflections (Δ/σ)max = 0.001
237 parameters Δρmax = 0.23 e Å3
0 restraints Δρmin = −0.34 e Å3

Special details

Experimental. CrysAlis PRO, Agilent Technologies, Version 1.171.36.28 (release 01–02-2013 CrysAlis171. NET) (compiled Feb 1 2013,16:14:44) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1A 0.74841 (6) 0.94228 (7) 0.01475 (4) 0.0500 (2)
S1B 0.40438 (6) 1.07198 (8) 0.32806 (5) 0.0541 (2)
O1B 0.38555 (17) 1.22165 (19) 0.63729 (11) 0.0545 (5)
O1A 0.45883 (16) 1.33631 (19) 0.00039 (13) 0.0563 (5)
N1A 0.57961 (19) 1.1832 (2) −0.02547 (14) 0.0480 (5)
N1B 0.42087 (19) 1.2003 (2) 0.50804 (14) 0.0458 (5)
C5B 0.2829 (2) 1.0126 (3) 0.44127 (16) 0.0433 (6)
H5B 0.2275 0.9572 0.4513 0.052*
O2B 0.2489 (2) 1.0587 (2) 0.61918 (14) 0.0730 (7)
C4A 0.7190 (2) 0.9654 (3) 0.11220 (16) 0.0415 (6)
O2A 0.47256 (17) 1.2787 (2) 0.14163 (13) 0.0672 (6)
C5A 0.6410 (2) 1.0659 (3) 0.12201 (17) 0.0445 (6)
H5A 0.6315 1.0662 0.1774 0.053*
C6A 0.5796 (2) 1.1602 (3) 0.06201 (17) 0.0433 (6)
C4B 0.3004 (2) 0.9890 (2) 0.35782 (16) 0.0403 (6)
C7A 0.5013 (2) 1.2586 (3) 0.07877 (19) 0.0500 (7)
C3B 0.2367 (2) 0.8952 (3) 0.29012 (16) 0.0442 (6)
H3B 0.1768 0.8396 0.2930 0.053*
C8A 0.5108 (2) 1.2838 (3) −0.05642 (18) 0.0504 (7)
C3A 0.7808 (2) 0.8734 (3) 0.17737 (17) 0.0517 (7)
H3A 0.7770 0.8694 0.2347 0.062*
C6B 0.3358 (2) 1.1033 (3) 0.50605 (16) 0.0430 (6)
C7B 0.3128 (2) 1.1171 (3) 0.59019 (18) 0.0511 (7)
C8B 0.4457 (2) 1.2636 (3) 0.58308 (18) 0.0496 (7)
C2A 0.8503 (3) 0.7863 (3) 0.1489 (2) 0.0606 (8)
H2A 0.8977 0.7184 0.1852 0.073*
C9B 0.5305 (3) 1.3745 (3) 0.6211 (2) 0.0647 (8)
H9B1 0.5995 1.3399 0.6689 0.097*
H9B2 0.4949 1.4435 0.6450 0.097*
H9B3 0.5526 1.4125 0.5741 0.097*
C1B 0.3648 (3) 0.9860 (3) 0.22912 (18) 0.0571 (7)
H1B 0.4004 0.9985 0.1872 0.068*
C2B 0.2765 (3) 0.8976 (3) 0.21714 (18) 0.0581 (7)
H2B 0.2446 0.8432 0.1658 0.070*
C1A 0.8410 (3) 0.8114 (3) 0.06350 (19) 0.0560 (7)
H1A 0.8810 0.7624 0.0340 0.067*
C9A 0.4771 (3) 1.3503 (3) −0.1459 (2) 0.0706 (9)
H9A1 0.5186 1.3084 −0.1798 0.106*
H9A2 0.4972 1.4448 −0.1375 0.106*
H9A3 0.3936 1.3408 −0.1787 0.106*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1A 0.0587 (4) 0.0545 (4) 0.0420 (4) 0.0065 (3) 0.0249 (3) −0.0013 (3)
S1B 0.0542 (4) 0.0596 (5) 0.0523 (4) −0.0088 (4) 0.0244 (3) 0.0029 (3)
O1B 0.0650 (12) 0.0575 (12) 0.0457 (10) −0.0038 (10) 0.0261 (9) −0.0097 (9)
O1A 0.0525 (11) 0.0511 (11) 0.0619 (12) 0.0123 (10) 0.0176 (9) −0.0031 (10)
N1A 0.0516 (13) 0.0454 (13) 0.0478 (12) 0.0037 (11) 0.0197 (10) −0.0024 (11)
N1B 0.0505 (13) 0.0448 (12) 0.0431 (12) −0.0026 (11) 0.0187 (10) −0.0015 (10)
C5B 0.0453 (14) 0.0428 (14) 0.0458 (14) −0.0010 (13) 0.0217 (12) 0.0025 (13)
O2B 0.0929 (17) 0.0800 (15) 0.0692 (13) −0.0172 (13) 0.0566 (13) −0.0081 (11)
C4A 0.0420 (13) 0.0436 (14) 0.0419 (13) −0.0010 (12) 0.0190 (11) −0.0035 (12)
O2A 0.0638 (13) 0.0782 (14) 0.0669 (13) 0.0154 (11) 0.0327 (11) −0.0119 (11)
C5A 0.0471 (15) 0.0476 (16) 0.0429 (14) 0.0002 (13) 0.0217 (12) −0.0041 (13)
C6A 0.0416 (14) 0.0434 (15) 0.0461 (14) 0.0008 (12) 0.0178 (11) −0.0062 (13)
C4B 0.0417 (13) 0.0380 (14) 0.0439 (13) 0.0027 (12) 0.0191 (11) 0.0049 (12)
C7A 0.0422 (15) 0.0516 (17) 0.0550 (16) 0.0030 (13) 0.0169 (13) −0.0084 (14)
C3B 0.0474 (15) 0.0451 (15) 0.0429 (14) −0.0044 (13) 0.0201 (12) −0.0036 (12)
C8A 0.0478 (15) 0.0485 (16) 0.0525 (16) −0.0018 (14) 0.0160 (13) −0.0062 (14)
C3A 0.0594 (17) 0.0580 (17) 0.0428 (14) 0.0134 (15) 0.0252 (13) 0.0071 (14)
C6B 0.0462 (14) 0.0445 (14) 0.0421 (13) 0.0019 (13) 0.0209 (11) 0.0018 (12)
C7B 0.0584 (17) 0.0526 (17) 0.0474 (15) 0.0049 (15) 0.0258 (14) −0.0014 (14)
C8B 0.0521 (16) 0.0468 (16) 0.0496 (15) 0.0044 (13) 0.0189 (13) 0.0014 (13)
C2A 0.0675 (19) 0.0581 (18) 0.0624 (18) 0.0195 (16) 0.0317 (16) 0.0121 (15)
C9B 0.0684 (19) 0.0578 (19) 0.0632 (18) −0.0108 (17) 0.0194 (16) −0.0138 (16)
C1B 0.0615 (18) 0.071 (2) 0.0457 (15) 0.0025 (17) 0.0287 (14) 0.0065 (15)
C2B 0.0682 (19) 0.0596 (18) 0.0437 (15) −0.0025 (16) 0.0181 (14) −0.0075 (14)
C1A 0.0621 (17) 0.0513 (17) 0.0645 (18) 0.0108 (15) 0.0350 (15) −0.0046 (15)
C9A 0.081 (2) 0.064 (2) 0.0627 (19) 0.0044 (18) 0.0216 (16) 0.0078 (17)

Geometric parameters (Å, º)

S1A—C1A 1.698 (3) C6A—C7A 1.456 (3)
S1A—C4A 1.730 (2) C4B—C3B 1.409 (3)
S1B—C1B 1.687 (3) C3B—C2B 1.416 (3)
S1B—C4B 1.721 (2) C3B—H3B 0.9300
O1B—C7B 1.383 (3) C8A—C9A 1.475 (4)
O1B—C8B 1.389 (3) C3A—C2A 1.397 (4)
O1A—C7A 1.385 (3) C3A—H3A 0.9300
O1A—C8A 1.385 (3) C6B—C7B 1.471 (3)
N1A—C8A 1.273 (3) C8B—C9B 1.471 (4)
N1A—C6A 1.407 (3) C2A—C1A 1.341 (4)
N1B—C8B 1.276 (3) C2A—H2A 0.9300
N1B—C6B 1.405 (3) C9B—H9B1 0.9600
C5B—C6B 1.332 (3) C9B—H9B2 0.9600
C5B—C4B 1.438 (3) C9B—H9B3 0.9600
C5B—H5B 0.9300 C1B—C2B 1.344 (4)
O2B—C7B 1.194 (3) C1B—H1B 0.9300
C4A—C3A 1.369 (3) C2B—H2B 0.9300
C4A—C5A 1.424 (3) C1A—H1A 0.9300
O2A—C7A 1.193 (3) C9A—H9A1 0.9600
C5A—C6A 1.340 (3) C9A—H9A2 0.9600
C5A—H5A 0.9300 C9A—H9A3 0.9600
C1A—S1A—C4A 91.16 (12) C5B—C6B—N1B 127.9 (2)
C1B—S1B—C4B 91.96 (13) C5B—C6B—C7B 124.1 (2)
C7B—O1B—C8B 105.64 (19) N1B—C6B—C7B 108.1 (2)
C7A—O1A—C8A 105.7 (2) O2B—C7B—O1B 122.2 (2)
C8A—N1A—C6A 105.1 (2) O2B—C7B—C6B 133.0 (3)
C8B—N1B—C6B 105.5 (2) O1B—C7B—C6B 104.8 (2)
C6B—C5B—C4B 128.5 (2) N1B—C8B—O1B 116.0 (2)
C6B—C5B—H5B 115.7 N1B—C8B—C9B 129.0 (3)
C4B—C5B—H5B 115.7 O1B—C8B—C9B 115.1 (2)
C3A—C4A—C5A 125.5 (2) C1A—C2A—C3A 112.5 (3)
C3A—C4A—S1A 110.28 (18) C1A—C2A—H2A 123.7
C5A—C4A—S1A 124.3 (2) C3A—C2A—H2A 123.7
C6A—C5A—C4A 128.6 (2) C8B—C9B—H9B1 109.5
C6A—C5A—H5A 115.7 C8B—C9B—H9B2 109.5
C4A—C5A—H5A 115.7 H9B1—C9B—H9B2 109.5
C5A—C6A—N1A 127.2 (2) C8B—C9B—H9B3 109.5
C5A—C6A—C7A 124.3 (2) H9B1—C9B—H9B3 109.5
N1A—C6A—C7A 108.5 (2) H9B2—C9B—H9B3 109.5
C3B—C4B—C5B 125.3 (2) C2B—C1B—S1B 113.0 (2)
C3B—C4B—S1B 110.85 (17) C2B—C1B—H1B 123.5
C5B—C4B—S1B 123.87 (19) S1B—C1B—H1B 123.5
O2A—C7A—O1A 122.1 (2) C1B—C2B—C3B 113.6 (2)
O2A—C7A—C6A 133.2 (3) C1B—C2B—H2B 123.2
O1A—C7A—C6A 104.7 (2) C3B—C2B—H2B 123.2
C4B—C3B—C2B 110.6 (2) C2A—C1A—S1A 112.9 (2)
C4B—C3B—H3B 124.7 C2A—C1A—H1A 123.6
C2B—C3B—H3B 124.7 S1A—C1A—H1A 123.6
N1A—C8A—O1A 116.0 (2) C8A—C9A—H9A1 109.5
N1A—C8A—C9A 128.5 (3) C8A—C9A—H9A2 109.5
O1A—C8A—C9A 115.5 (2) H9A1—C9A—H9A2 109.5
C4A—C3A—C2A 113.1 (2) C8A—C9A—H9A3 109.5
C4A—C3A—H3A 123.4 H9A1—C9A—H9A3 109.5
C2A—C3A—H3A 123.4 H9A2—C9A—H9A3 109.5
C1A—S1A—C4A—C3A 0.2 (2) C7A—O1A—C8A—C9A 179.2 (2)
C1A—S1A—C4A—C5A −179.6 (2) C5A—C4A—C3A—C2A 179.7 (3)
C3A—C4A—C5A—C6A 178.7 (3) S1A—C4A—C3A—C2A 0.0 (3)
S1A—C4A—C5A—C6A −1.5 (4) C4B—C5B—C6B—N1B 1.1 (4)
C4A—C5A—C6A—N1A −1.2 (4) C4B—C5B—C6B—C7B −178.7 (2)
C4A—C5A—C6A—C7A 179.7 (3) C8B—N1B—C6B—C5B −179.8 (3)
C8A—N1A—C6A—C5A −178.6 (3) C8B—N1B—C6B—C7B 0.0 (3)
C8A—N1A—C6A—C7A 0.6 (3) C8B—O1B—C7B—O2B 179.9 (3)
C6B—C5B—C4B—C3B −176.6 (3) C8B—O1B—C7B—C6B −0.1 (3)
C6B—C5B—C4B—S1B 4.0 (4) C5B—C6B—C7B—O2B −0.2 (5)
C1B—S1B—C4B—C3B 0.1 (2) N1B—C6B—C7B—O2B 180.0 (3)
C1B—S1B—C4B—C5B 179.6 (2) C5B—C6B—C7B—O1B 179.9 (2)
C8A—O1A—C7A—O2A −180.0 (3) N1B—C6B—C7B—O1B 0.1 (3)
C8A—O1A—C7A—C6A −0.1 (3) C6B—N1B—C8B—O1B −0.1 (3)
C5A—C6A—C7A—O2A −1.2 (5) C6B—N1B—C8B—C9B 179.1 (3)
N1A—C6A—C7A—O2A 179.5 (3) C7B—O1B—C8B—N1B 0.2 (3)
C5A—C6A—C7A—O1A 178.9 (2) C7B—O1B—C8B—C9B −179.2 (2)
N1A—C6A—C7A—O1A −0.3 (3) C4A—C3A—C2A—C1A −0.2 (4)
C5B—C4B—C3B—C2B −179.9 (2) C4B—S1B—C1B—C2B 0.2 (2)
S1B—C4B—C3B—C2B −0.4 (3) S1B—C1B—C2B—C3B −0.4 (3)
C6A—N1A—C8A—O1A −0.7 (3) C4B—C3B—C2B—C1B 0.5 (3)
C6A—N1A—C8A—C9A −179.2 (3) C3A—C2A—C1A—S1A 0.4 (4)
C7A—O1A—C8A—N1A 0.5 (3) C4A—S1A—C1A—C2A −0.3 (2)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the thiophene ring S1A/C1A–C4A.

D—H···A D—H H···A D···A D—H···A
C3A—H3A···O2Bi 0.93 2.56 3.449 (3) 161
C3B—H3B···O2Aii 0.93 2.49 3.336 (3) 151
C9B—H9B2···Cg1iii 0.96 2.96 3.783 (4) 145

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+1/2, y−1/2, −z+1/2; (iii) −x+1, −y+1, −z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU5054).

References

  1. Asiri, A. M. & Ng, S. W. (2009). Acta Cryst. E65, o1746. [DOI] [PMC free article] [PubMed]
  2. Etschenberg, E., Opitz, W. & Raddatz, S. (1980). Britannia, 25, ID 1570140.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Gündoğdu, C., Alp, S., Ergün, Y., Tercan, B. & Hökelek, T. (2011a). Acta Cryst. E67, o1258–o1259. [DOI] [PMC free article] [PubMed]
  5. Gündoğdu, C., Alp, S., Ergün, Y., Tercan, B. & Hökelek, T. (2011b). Acta Cryst. E67, o1321–o1322. [DOI] [PMC free article] [PubMed]
  6. Huang, W.-Y., Zhang, Y., Hu, K., Lin, Q.-M. & Liu, X.-X. (2012). Acta Cryst. E68, o1008. [DOI] [PMC free article] [PubMed]
  7. Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
  8. Reed, J. W. & Kingston, G. I. D. (1986). J. Nat. Prod. 49, 626–630. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Sun, Y.-F. & Cui, Y.-P. (2008). Acta Cryst. E64, o678. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015000833/su5054sup1.cif

e-71-0o123-sup1.cif (24.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015000833/su5054Isup2.hkl

e-71-0o123-Isup2.hkl (166.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015000833/su5054Isup3.cml

. DOI: 10.1107/S2056989015000833/su5054fig1.tif

A view of the mol­ecular structure of the two independent mol­ecules of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 40% probability level.

b A B . DOI: 10.1107/S2056989015000833/su5054fig2.tif

A view along the b axis of the crystal packing of the title compound. The C—H⋯O ydrogen bonds are shown as dashed lines (see Table 1 for details; mol­ecule A blue; mol­ecule B red).

CCDC reference: 1043723

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES