In the title salt, crystalline water molecules serve as donors for the weak intermolecular O—H⋯O and O—H⋯Br hydrogen bonds which link adjacent polymeric chains.
Keywords: crystal structure, l-proline cadmium bromide, cadmium coordination polymer, N/O—H⋯Br/O hydrogen bonds, distorted octahedral geometry.
Abstract
In the title coordination polymer, {[CdBr2(C5H9NO2)]·H2O}n, the CdII ion is coordinated by four bromido ligands and two carboxylate oxygen atoms of two symmetry-related proline ligands, which exist in a zwitterionic form, in a distorted octahedral geometry. There is an intramolecular N—H⋯O hydrogen bond between the amino group and the carboxylate fragment. Each coordinating ligand bridges two CdII atoms, thus forming polymeric chains running along the c-axis direction. The water molecules of crystallization serve as donors for the weak intermolecular O—H⋯O and O—H⋯Br hydrogen bonds that link adjacent polymeric chains, thus forming a three-dimensional structure. N—H⋯O and N—H⋯Br hydrogen bonds also occur.
Chemical context
The characterization of second-order non-linear optical (NLO) materials is important because of their potential applications such as frequency shifting, optical modulation, optical switching, telecommunication and signal processing. It is known that the chiral amino acids and their complexes are potential materials for NLO applications (Eimerl et al., 1989 ▸; Pal et al., 2004 ▸; Srinivasan et al., 2006 ▸). This study is a part of an ongoing investigation of the crystal and molecular structures of a series of amino acid–metal complexes (Sathiskumar et al., 2015 ▸; Balakrishnan et al., 2013 ▸).
Structural commentary
The asymmetric unit of the title complex (I) (Fig. 1 ▸) contains one CdII ion, one proline and two bromido ligands, and one water molecule of crystallization. The title complex has a very similar structure to that of the chloride analogue (Yukawa et al., 1983 ▸) and l-proline manganese dichloride monohydrate (Rzączyńska et al., 1997 ▸; Lamberts & Englert, 2012 ▸). In (I), proline exists in a zwitterionic form, as evident from the bond lengths involving the carboxylate atoms and the protonation of the ring N atom of the pyrrolidine fragment. The CdII ion is coordinated by four bromido ligands [Cd—Br = 2.7236 (13)–2.7737 (12) Å] and two carboxylate oxygen atoms [Cd—O = 2.312 (8) and 2.318 (8) Å] of two proline ligands in a slightly distorted octahedral geometry. The title complex is extended as a polymeric chain which runs parallel to the c axis. Within one chain, adjacent CdII ions are separated by 3.727 (1) Å. The closest Cd⋯Cd distance between neighbouring polymeric chains is 8.579 (2) Å. The five endocyclic torsion angles of the pyrrolidine ring of the proline residue are N1—C2—C3—C4 = 31.8 (13)°, C2—C3—C4—C5 = −39.1 (15)°, C3—C4—C5—N1 = 29.9 (14)°, C2—N1—C5—C4 = −9.7 (12)° and C5—N1—C2—C3 = −13.1 (11)°. The pyrrolidine ring exhibits twisted conformation on the C3—C4 bond with a pseudo-rotation angle Δ = 249.3 (12)° and a maximum torsion angle ϕm = 38.5 (8)° (Rao et al., 1981 ▸).
Figure 1.
A portion of the crystal structure of the title complex, showing the atomic labeling. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (a)
− x, −y, z −
; (b)
− x, −y, z +
.]
In (I), as observed in the chloride analogue (Yukawa et al., 1983 ▸), there is an intramolecular N1—H1A⋯O2 hydrogen bond between the amino group and the carboxylate fragment.
Supramolecular features
The crystal structure of (I), is stabilized by intermolecular N—H⋯O, N—H⋯Br, O—H⋯O and O—H⋯Br hydrogen bonds (Table 1 ▸, Figs. 2 ▸ and 3 ▸). The water molecules serve as donors for the weak O—H⋯O and O—H⋯Br hydrogen bonds (Table 1 ▸) which link adjacent polymeric chains (Fig. 3 ▸), thus forming a three-dimensional structure.
Table 1. Hydrogen-bond geometry (, ).
| DHA | DH | HA | D A | DHA |
|---|---|---|---|---|
| N1H1AO2 | 0.89 | 2.16 | 2.626(12) | 112 |
| O1WH2WO1 | 0.84(17) | 2.6(2) | 3.175(19) | 132 |
| O1WH2WBr2 | 0.84(17) | 2.8(3) | 3.311(19) | 123 |
| N1H1AO1W i | 0.89 | 2.05 | 2.90(2) | 159 |
| N1H1BBr1ii | 0.89 | 2.69 | 3.416(11) | 140 |
| O1WH1WBr2iii | 0.88(16) | 2.7(3) | 3.197(19) | 116 |
Symmetry codes: (i)
; (ii)
; (iii)
.
Figure 2.
The crystal packing of (I) viewed along the a axis. Dashed lines denote intermolecular hydrogen bonds. C-bound H atoms have been omitted for clarity.
Figure 3.

A portion of the crystal packing viewed along the a axis and showing hydrogen bonds (dashed lines) between two neighbouring polymeric chains.
Database survey
A search in the Cambridge Structural Database (Version 5.35, last update May 2014; Groom & Allen, 2014 ▸) for the structures with metal ions coordinated by one of the carboxylate oxygen atoms of the proline moiety yielded 44 hits. Of these, two structures contain a cadmium metal ion, viz. catena-[dichlorido-(4-hydroxy-l-proline)cadmium] (refcode BOHVID; Yukawa et al., 1982 ▸) and catena-[bis(μ2-chlorido)(μ2-l-proline)cadmium monohydrate] (refcode BUXBUR; Yukawa et al., 1983 ▸). The latter structure is isotypic with the title complex. Another compound, catena-[bis(μ2-chlorido)(μ2-l-prolinato-κ2-O,O′)manganese(II) monohydrate], has been structurally determined three times and has similar cell parameters and the same space group as the title compound (refcode ROJQEM: Rzączyńska et al., 1997 ▸; refcode ROJEQM01: Tilborg et al., 2010 ▸; refcode ROJQEM02: Lamberts & Englert, 2012 ▸).
Synthesis and crystallization
To prepare the title compound, l-proline (Loba) and cadmium bromide tetrahydrate (Loba) in an equimolar ratio were dissolved in double-distilled water. The obtained solution of the homogeneous mixture was evaporated at room temperature to afford the white crystalline title compound, which was then recrystallized by slow evaporation from an aqueous solution.
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 2 ▸. As the title compound is isotypic with its chlorido analogue (Yukawa et al., 1983 ▸), the atomic coordinates of the latter were used as starting values in the initial cycles of the refinement. The positions of water hydrogen atoms were calculated by method of Nardelli (1999 ▸). Further, the O—H and H1W⋯H2W distances of the water molecules were restrained to 0.85 (2) and 1.38 (2) Å, respectively, using the DFIX option and included in the structure-factor calculations with U iso(H1W/H2W) = 1.1U eq(O1W). The remaining hydrogen atoms were placed in geometrically idealized positions (C—H = 0.97–0.98 Å and N—H = 0.89 Å) with U iso(H) = 1.2U eq(C/N) and were constrained to ride on their parent atoms. Reflections 110 and 020 were partially obscured by the beam stop and were omitted.
Table 2. Experimental details.
| Crystal data | |
| Chemical formula | [CdBr2(C5H9NO2)]H2O |
| M r | 405.37 |
| Crystal system, space group | Orthorhombic, P212121 |
| Temperature (K) | 296 |
| a, b, c () | 10.1891(8), 13.4961(11), 7.4491(5) |
| V (3) | 1024.35(13) |
| Z | 4 |
| Radiation type | Mo K |
| (mm1) | 9.90 |
| Crystal size (mm) | 0.35 0.30 0.30 |
| Data collection | |
| Diffractometer | Bruker SMART CCD area detector |
| Absorption correction | Multi-scan (SADABS; Bruker, 2008 ▸) |
| T min, T max | 0.129, 0.155 |
| No. of measured, independent and observed [I > 2(I)] reflections | 8264, 2481, 1964 |
| R int | 0.068 |
| (sin /)max (1) | 0.666 |
| Refinement | |
| R[F 2 > 2(F 2)], wR(F 2), S | 0.041, 0.089, 1.06 |
| No. of reflections | 2481 |
| No. of parameters | 115 |
| No. of restraints | 3 |
| H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
| max, min (e 3) | 1.02, 1.07 |
| Absolute structure | Flack x determined using 705 quotients [(I +)(I )]/[(I +)+(I )] (Parsons et al., 2013 ▸) |
| Absolute structure parameter | 0.035(15) |
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015001176/cv5483sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015001176/cv5483Isup2.hkl
CCDC reference: 1044327
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
TB and SS acknowledge the University Grants Commission (UGC), New Delhi, India, for providing financial support [project ref. No. 41–956/2012(SR)]. ST is very grateful to the management of SASTRA University for infrastructural and financial support (Professor TRR grant).
supplementary crystallographic information
Crystal data
| [CdBr2(C5H9NO2)]·H2O | Dx = 2.629 Mg m−3 |
| Mr = 405.37 | Mo Kα radiation, λ = 0.71073 Å |
| Orthorhombic, P212121 | Cell parameters from 4066 reflections |
| a = 10.1891 (8) Å | θ = 5.0–55.2° |
| b = 13.4961 (11) Å | µ = 9.90 mm−1 |
| c = 7.4491 (5) Å | T = 296 K |
| V = 1024.35 (13) Å3 | Block, colourless |
| Z = 4 | 0.35 × 0.30 × 0.30 mm |
| F(000) = 760 |
Data collection
| Bruker SMART CCD area detector diffractometer | 1964 reflections with I > 2σ(I) |
| Radiation source: fine-focus sealed tube | Rint = 0.068 |
| ω and φ scan | θmax = 28.2°, θmin = 3.1° |
| Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −13→13 |
| Tmin = 0.129, Tmax = 0.155 | k = −17→14 |
| 8264 measured reflections | l = −9→6 |
| 2481 independent reflections |
Refinement
| Refinement on F2 | Hydrogen site location: mixed |
| Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
| R[F2 > 2σ(F2)] = 0.041 | w = 1/[σ2(Fo2) + (0.0243P)2 + 1.4185P] where P = (Fo2 + 2Fc2)/3 |
| wR(F2) = 0.089 | (Δ/σ)max < 0.001 |
| S = 1.06 | Δρmax = 1.02 e Å−3 |
| 2481 reflections | Δρmin = −1.07 e Å−3 |
| 115 parameters | Absolute structure: Flack x determined using 705 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
| 3 restraints | Absolute structure parameter: 0.035 (15) |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Cd1 | 0.24415 (7) | 0.00192 (7) | 0.31349 (9) | 0.0425 (2) | |
| Br1 | 0.44442 (8) | 0.03071 (8) | 0.06673 (14) | 0.0450 (3) | |
| Br2 | 0.37743 (10) | 0.11262 (9) | 0.56256 (15) | 0.0537 (3) | |
| O1 | 0.1309 (8) | 0.1397 (6) | 0.2136 (9) | 0.057 (2) | |
| O2 | 0.1420 (7) | 0.1362 (6) | −0.0865 (9) | 0.056 (2) | |
| N1 | −0.0870 (10) | 0.2205 (8) | −0.1393 (11) | 0.062 (3) | |
| H1A | −0.0168 | 0.2171 | −0.2100 | 0.075* | |
| H1B | −0.1202 | 0.2813 | −0.1471 | 0.075* | |
| C1 | 0.0861 (9) | 0.1560 (7) | 0.0564 (15) | 0.039 (2) | |
| C2 | −0.0488 (10) | 0.1988 (8) | 0.0510 (15) | 0.053 (3) | |
| H2 | −0.0524 | 0.2596 | 0.1229 | 0.064* | |
| C3 | −0.1523 (12) | 0.1260 (13) | 0.115 (2) | 0.084 (5) | |
| H3A | −0.1172 | 0.0826 | 0.2066 | 0.100* | |
| H3B | −0.2279 | 0.1607 | 0.1627 | 0.100* | |
| C4 | −0.1878 (13) | 0.0697 (13) | −0.047 (2) | 0.094 (5) | |
| H4A | −0.2733 | 0.0392 | −0.0326 | 0.113* | |
| H4B | −0.1236 | 0.0181 | −0.0701 | 0.113* | |
| C5 | −0.1899 (14) | 0.1441 (12) | −0.200 (2) | 0.086 (5) | |
| H5A | −0.2758 | 0.1743 | −0.2126 | 0.103* | |
| H5B | −0.1651 | 0.1134 | −0.3127 | 0.103* | |
| O1W | 0.111 (2) | 0.2521 (17) | 0.587 (2) | 0.183 (8) | |
| H1W | 0.11 (3) | 0.296 (11) | 0.50 (2) | 0.201* | |
| H2W | 0.13 (3) | 0.197 (8) | 0.54 (3) | 0.201* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Cd1 | 0.0453 (4) | 0.0579 (4) | 0.0243 (3) | 0.0069 (4) | −0.0005 (2) | 0.0045 (3) |
| Br1 | 0.0347 (4) | 0.0679 (7) | 0.0323 (4) | 0.0033 (5) | −0.0007 (4) | −0.0001 (5) |
| Br2 | 0.0597 (6) | 0.0687 (7) | 0.0327 (5) | −0.0117 (6) | 0.0013 (5) | −0.0056 (6) |
| O1 | 0.074 (5) | 0.066 (5) | 0.032 (4) | 0.025 (4) | −0.011 (3) | −0.005 (4) |
| O2 | 0.059 (5) | 0.068 (5) | 0.043 (4) | 0.016 (4) | 0.005 (4) | 0.007 (4) |
| N1 | 0.063 (6) | 0.066 (7) | 0.058 (6) | 0.037 (6) | −0.015 (5) | −0.001 (5) |
| C1 | 0.040 (5) | 0.039 (5) | 0.039 (5) | 0.005 (4) | −0.002 (5) | −0.003 (5) |
| C2 | 0.053 (6) | 0.060 (7) | 0.046 (5) | 0.024 (6) | −0.009 (6) | −0.010 (6) |
| C3 | 0.043 (7) | 0.113 (13) | 0.095 (10) | 0.005 (8) | 0.018 (6) | 0.008 (10) |
| C4 | 0.042 (6) | 0.110 (12) | 0.130 (13) | −0.008 (8) | 0.006 (9) | −0.021 (13) |
| C5 | 0.075 (9) | 0.090 (11) | 0.091 (10) | 0.040 (9) | −0.024 (8) | −0.037 (9) |
| O1W | 0.178 (16) | 0.22 (2) | 0.153 (13) | 0.061 (18) | 0.007 (14) | 0.061 (17) |
Geometric parameters (Å, º)
| Cd1—O1 | 2.312 (8) | N1—H1B | 0.8900 |
| Cd1—O2i | 2.318 (8) | C1—C2 | 1.491 (13) |
| Cd1—Br2ii | 2.7236 (13) | C2—C3 | 1.517 (19) |
| Cd1—Br1i | 2.7285 (11) | C2—H2 | 0.9800 |
| Cd1—Br2 | 2.7421 (13) | C3—C4 | 1.47 (2) |
| Cd1—Br1 | 2.7737 (12) | C3—H3A | 0.9700 |
| Br1—Cd1ii | 2.7285 (11) | C3—H3B | 0.9700 |
| Br2—Cd1i | 2.7236 (13) | C4—C5 | 1.52 (2) |
| O1—C1 | 1.276 (12) | C4—H4A | 0.9700 |
| O2—C1 | 1.237 (12) | C4—H4B | 0.9700 |
| O2—Cd1ii | 2.318 (8) | C5—H5A | 0.9700 |
| N1—C2 | 1.499 (13) | C5—H5B | 0.9700 |
| N1—C5 | 1.537 (17) | O1W—H1W | 0.87 (3) |
| N1—H1A | 0.8900 | O1W—H2W | 0.87 (3) |
| O1—Cd1—O2i | 179.9 (3) | O1—C1—C2 | 114.9 (9) |
| O1—Cd1—Br2ii | 90.50 (19) | C1—C2—N1 | 109.9 (9) |
| O2i—Cd1—Br2ii | 89.53 (19) | C1—C2—C3 | 112.4 (10) |
| O1—Cd1—Br1i | 90.0 (2) | N1—C2—C3 | 103.9 (10) |
| O2i—Cd1—Br1i | 90.03 (19) | C1—C2—H2 | 110.1 |
| Br2ii—Cd1—Br1i | 93.59 (4) | N1—C2—H2 | 110.1 |
| O1—Cd1—Br2 | 91.52 (19) | C3—C2—H2 | 110.1 |
| O2i—Cd1—Br2 | 88.44 (19) | C4—C3—C2 | 104.5 (11) |
| Br2ii—Cd1—Br2 | 177.29 (3) | C4—C3—H3A | 110.9 |
| Br1i—Cd1—Br2 | 88.22 (3) | C2—C3—H3A | 110.9 |
| O1—Cd1—Br1 | 92.4 (2) | C4—C3—H3B | 110.9 |
| O2i—Cd1—Br1 | 87.56 (19) | C2—C3—H3B | 110.9 |
| Br2ii—Cd1—Br1 | 87.67 (4) | H3A—C3—H3B | 108.9 |
| Br1i—Cd1—Br1 | 177.27 (4) | C3—C4—C5 | 106.0 (12) |
| Br2—Cd1—Br1 | 90.44 (4) | C3—C4—H4A | 110.5 |
| Cd1ii—Br1—Cd1 | 85.27 (3) | C5—C4—H4A | 110.5 |
| Cd1i—Br2—Cd1 | 85.98 (3) | C3—C4—H4B | 110.5 |
| C1—O1—Cd1 | 127.7 (6) | C5—C4—H4B | 110.5 |
| C1—O2—Cd1ii | 132.9 (7) | H4A—C4—H4B | 108.7 |
| C2—N1—C5 | 108.9 (10) | C4—C5—N1 | 102.3 (10) |
| C2—N1—H1A | 109.9 | C4—C5—H5A | 111.3 |
| C5—N1—H1A | 109.9 | N1—C5—H5A | 111.3 |
| C2—N1—H1B | 109.9 | C4—C5—H5B | 111.3 |
| C5—N1—H1B | 109.9 | N1—C5—H5B | 111.3 |
| H1A—N1—H1B | 108.3 | H5A—C5—H5B | 109.2 |
| O2—C1—O1 | 126.0 (8) | H1W—O1W—H2W | 106 (4) |
| O2—C1—C2 | 119.0 (10) | ||
| Cd1ii—O2—C1—O1 | 44.5 (15) | C5—N1—C2—C1 | 107.4 (11) |
| Cd1ii—O2—C1—C2 | −132.7 (9) | C5—N1—C2—C3 | −13.1 (11) |
| Cd1—O1—C1—O2 | −40.4 (15) | C1—C2—C3—C4 | −87.0 (14) |
| Cd1—O1—C1—C2 | 136.8 (8) | N1—C2—C3—C4 | 31.8 (13) |
| O2—C1—C2—N1 | −6.1 (15) | C2—C3—C4—C5 | −39.1 (15) |
| O1—C1—C2—N1 | 176.4 (9) | C3—C4—C5—N1 | 29.9 (14) |
| O2—C1—C2—C3 | 109.1 (12) | C2—N1—C5—C4 | −9.7 (12) |
| O1—C1—C2—C3 | −68.3 (13) |
Symmetry codes: (i) −x+1/2, −y, z+1/2; (ii) −x+1/2, −y, z−1/2.
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N1—H1A···O2 | 0.89 | 2.16 | 2.626 (12) | 112 |
| O1W—H2W···O1 | 0.84 (17) | 2.6 (2) | 3.175 (19) | 132 |
| O1W—H2W···Br2 | 0.84 (17) | 2.8 (3) | 3.311 (19) | 123 |
| N1—H1A···O1Wiii | 0.89 | 2.05 | 2.90 (2) | 159 |
| N1—H1B···Br1iv | 0.89 | 2.69 | 3.416 (11) | 140 |
| O1W—H1W···Br2v | 0.88 (16) | 2.7 (3) | 3.197 (19) | 116 |
Symmetry codes: (iii) x, y, z−1; (iv) x−1/2, −y+1/2, −z; (v) x−1/2, −y+1/2, −z+1.
References
- Balakrishnan, T., Ramamurthi, K., Jeyakanthan, J. & Thamotharan, S. (2013). Acta Cryst. E69, m60–m61. [DOI] [PMC free article] [PubMed]
- Bruker (2008). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Eimerl, D., Velsko, S., Davis, L., Wang, F., Loiacono, G. & Kennedy, G. (1989). IEEE J. Quantum Electron. 25, 179–193.
- Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
- Lamberts, K. & Englert, U. (2012). Acta Cryst. B68, 610–618. [DOI] [PubMed]
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Nardelli, M. (1999). J. Appl. Cryst. 32, 563–571.
- Pal, T., Kar, T., Bocelli, G. & Rigi, L. (2004). Cryst. Growth Des. 4, 743–747.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
- Rao, S. T., Westhof, E. & Sundaralingam, M. (1981). Acta Cryst. A37, 421–425.
- Rzączyńska, Z., Mrozek, R. & Glowiak, T. (1997). J. Chem. Crystallogr. 27, 417–422.
- Sathiskumar, S., Balakrishnan, T., Ramamurthi, K. & Thamotharan, S. (2015). Spectrochim. Acta Part A, 138, 187–194. [DOI] [PubMed]
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
- Srinivasan, P., Kanagasekaran, T., Gopalakrishnan, R., Bhagavannarayana, G. & Ramasamy, P. (2006). Cryst. Growth Des. 6, 1663–1670.
- Tilborg, A., Michaux, C., Norberg, B. & Wouters, J. (2010). Eur. J. Med. Chem. 45, 3511–3517. [DOI] [PubMed]
- Yukawa, Y., Inomata, Y. & Takeuchi, T. (1983). Bull. Chem. Soc. Jpn, 56, 2125–2128.
- Yukawa, Y., Inomata, Y., Takeuchi, T., Shimoi, M. & Ouchi, A. (1982). Bull. Chem. Soc. Jpn, 55, 3135–3137.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015001176/cv5483sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015001176/cv5483Isup2.hkl
CCDC reference: 1044327
Additional supporting information: crystallographic information; 3D view; checkCIF report


