Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jan 24;71(Pt 2):217–219. doi: 10.1107/S2056989015001176

Crystal structure of catena-poly[[cadmium(II)-di-μ2-bromido-μ2-l-proline-κ2 O:O′] monohydrate]

S Sathiskumar a, T Balakrishnan a,*, K Ramamurthi b, S Thamotharan c,
PMCID: PMC4384587  PMID: 25878823

In the title salt, crystalline water mol­ecules serve as donors for the weak inter­molecular O—H⋯O and O—H⋯Br hydrogen bonds which link adjacent polymeric chains.

Keywords: crystal structure, l-proline cadmium bromide, cadmium coordination polymer, N/O—H⋯Br/O hydrogen bonds, distorted octa­hedral geometry.

Abstract

In the title coordination polymer, {[CdBr2(C5H9NO2)]·H2O}n, the CdII ion is coordinated by four bromido ligands and two carboxyl­ate oxygen atoms of two symmetry-related proline ligands, which exist in a zwitterionic form, in a distorted octa­hedral geometry. There is an intra­molecular N—H⋯O hydrogen bond between the amino group and the carboxyl­ate fragment. Each coordinating ligand bridges two CdII atoms, thus forming polymeric chains running along the c-axis direction. The water mol­ecules of crystallization serve as donors for the weak inter­molecular O—H⋯O and O—H⋯Br hydrogen bonds that link adjacent polymeric chains, thus forming a three-dimensional structure. N—H⋯O and N—H⋯Br hydrogen bonds also occur.

Chemical context  

The characterization of second-order non-linear optical (NLO) materials is important because of their potential applications such as frequency shifting, optical modulation, optical switching, telecommunication and signal processing. It is known that the chiral amino acids and their complexes are potential materials for NLO applications (Eimerl et al., 1989; Pal et al., 2004; Srinivasan et al., 2006). This study is a part of an ongoing investigation of the crystal and mol­ecular structures of a series of amino acid–metal complexes (Sathiskumar et al., 2015; Balakrishnan et al., 2013).graphic file with name e-71-00217-scheme1.jpg

Structural commentary  

The asymmetric unit of the title complex (I) (Fig. 1) contains one CdII ion, one proline and two bromido ligands, and one water mol­ecule of crystallization. The title complex has a very similar structure to that of the chloride analogue (Yukawa et al., 1983) and l-proline manganese dichloride monohydrate (Rzączyńska et al., 1997; Lamberts & Englert, 2012). In (I), proline exists in a zwitterionic form, as evident from the bond lengths involving the carboxyl­ate atoms and the protonation of the ring N atom of the pyrrolidine fragment. The CdII ion is coordinated by four bromido ligands [Cd—Br = 2.7236 (13)–2.7737 (12) Å] and two carboxyl­ate oxygen atoms [Cd—O = 2.312 (8) and 2.318 (8) Å] of two proline ligands in a slightly distorted octa­hedral geometry. The title complex is extended as a polymeric chain which runs parallel to the c axis. Within one chain, adjacent CdII ions are separated by 3.727 (1) Å. The closest Cd⋯Cd distance between neighbouring polymeric chains is 8.579 (2) Å. The five endocyclic torsion angles of the pyrrolidine ring of the proline residue are N1—C2—C3—C4 = 31.8 (13)°, C2—C3—C4—C5 = −39.1 (15)°, C3—C4—C5—N1 = 29.9 (14)°, C2—N1—C5—C4 = −9.7 (12)° and C5—N1—C2—C3 = −13.1 (11)°. The pyrrolidine ring exhibits twisted conformation on the C3—C4 bond with a pseudo-rotation angle Δ = 249.3 (12)° and a maximum torsion angle ϕm = 38.5 (8)° (Rao et al., 1981).

Figure 1.

Figure 1

A portion of the crystal structure of the title complex, showing the atomic labeling. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (a) Inline graphic − x, −y, z − Inline graphic; (b) Inline graphic − x, −y, z + Inline graphic.]

In (I), as observed in the chloride analogue (Yukawa et al., 1983), there is an intra­molecular N1—H1A⋯O2 hydrogen bond between the amino group and the carboxyl­ate fragment.

Supra­molecular features  

The crystal structure of (I), is stabilized by inter­molecular N—H⋯O, N—H⋯Br, O—H⋯O and O—H⋯Br hydrogen bonds (Table 1, Figs. 2 and 3). The water mol­ecules serve as donors for the weak O—H⋯O and O—H⋯Br hydrogen bonds (Table 1) which link adjacent polymeric chains (Fig. 3), thus forming a three-dimensional structure.

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N1H1AO2 0.89 2.16 2.626(12) 112
O1WH2WO1 0.84(17) 2.6(2) 3.175(19) 132
O1WH2WBr2 0.84(17) 2.8(3) 3.311(19) 123
N1H1AO1W i 0.89 2.05 2.90(2) 159
N1H1BBr1ii 0.89 2.69 3.416(11) 140
O1WH1WBr2iii 0.88(16) 2.7(3) 3.197(19) 116

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 2.

Figure 2

The crystal packing of (I) viewed along the a axis. Dashed lines denote inter­molecular hydrogen bonds. C-bound H atoms have been omitted for clarity.

Figure 3.

Figure 3

A portion of the crystal packing viewed along the a axis and showing hydrogen bonds (dashed lines) between two neighbouring polymeric chains.

Database survey  

A search in the Cambridge Structural Database (Version 5.35, last update May 2014; Groom & Allen, 2014) for the structures with metal ions coordinated by one of the carboxyl­ate oxygen atoms of the proline moiety yielded 44 hits. Of these, two structures contain a cadmium metal ion, viz. catena-[di­chlorido-(4-hy­droxy-l-proline)cadmium] (refcode BOHVID; Yukawa et al., 1982) and catena-[bis­(μ2-chlorido)(μ2-l-pro­line)cadmium monohydrate] (refcode BUXBUR; Yukawa et al., 1983). The latter structure is isotypic with the title complex. Another compound, catena-[bis­(μ2-chlorido)(μ2-l-prolinato-κ2-O,O′)manganese(II) monohydrate], has been structurally determined three times and has similar cell parameters and the same space group as the title compound (refcode ROJQEM: Rzączyńska et al., 1997; refcode ROJEQM01: Tilborg et al., 2010; refcode ROJQEM02: Lamberts & Englert, 2012).

Synthesis and crystallization  

To prepare the title compound, l-proline (Loba) and cadmium bromide tetra­hydrate (Loba) in an equimolar ratio were dissolved in double-distilled water. The obtained solution of the homogeneous mixture was evaporated at room temperature to afford the white crystalline title compound, which was then recrystallized by slow evaporation from an aqueous solution.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. As the title compound is isotypic with its chlorido analogue (Yukawa et al., 1983), the atomic coordinates of the latter were used as starting values in the initial cycles of the refinement. The positions of water hydrogen atoms were calculated by method of Nardelli (1999). Further, the O—H and H1W⋯H2W distances of the water mol­ecules were restrained to 0.85 (2) and 1.38 (2) Å, respectively, using the DFIX option and included in the structure-factor calculations with U iso(H1W/H2W) = 1.1U eq(O1W). The remaining hydrogen atoms were placed in geometrically idealized positions (C—H = 0.97–0.98 Å and N—H = 0.89 Å) with U iso(H) = 1.2U eq(C/N) and were constrained to ride on their parent atoms. Reflections 110 and 020 were partially obscured by the beam stop and were omitted.

Table 2. Experimental details.

Crystal data
Chemical formula [CdBr2(C5H9NO2)]H2O
M r 405.37
Crystal system, space group Orthorhombic, P212121
Temperature (K) 296
a, b, c () 10.1891(8), 13.4961(11), 7.4491(5)
V (3) 1024.35(13)
Z 4
Radiation type Mo K
(mm1) 9.90
Crystal size (mm) 0.35 0.30 0.30
 
Data collection
Diffractometer Bruker SMART CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2008)
T min, T max 0.129, 0.155
No. of measured, independent and observed [I > 2(I)] reflections 8264, 2481, 1964
R int 0.068
(sin /)max (1) 0.666
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.041, 0.089, 1.06
No. of reflections 2481
No. of parameters 115
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
max, min (e 3) 1.02, 1.07
Absolute structure Flack x determined using 705 quotients [(I +)(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter 0.035(15)

Computer programs: APEX2, SAINT and XPREP (Bruker, 2008), SHELXL2014/6 (Sheldrick, 2015), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015001176/cv5483sup1.cif

e-71-00217-sup1.cif (256.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015001176/cv5483Isup2.hkl

e-71-00217-Isup2.hkl (136.4KB, hkl)

CCDC reference: 1044327

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

TB and SS acknowledge the University Grants Commission (UGC), New Delhi, India, for providing financial support [project ref. No. 41–956/2012(SR)]. ST is very grateful to the management of SASTRA University for infrastructural and financial support (Professor TRR grant).

supplementary crystallographic information

Crystal data

[CdBr2(C5H9NO2)]·H2O Dx = 2.629 Mg m3
Mr = 405.37 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121 Cell parameters from 4066 reflections
a = 10.1891 (8) Å θ = 5.0–55.2°
b = 13.4961 (11) Å µ = 9.90 mm1
c = 7.4491 (5) Å T = 296 K
V = 1024.35 (13) Å3 Block, colourless
Z = 4 0.35 × 0.30 × 0.30 mm
F(000) = 760

Data collection

Bruker SMART CCD area detector diffractometer 1964 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.068
ω and φ scan θmax = 28.2°, θmin = 3.1°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −13→13
Tmin = 0.129, Tmax = 0.155 k = −17→14
8264 measured reflections l = −9→6
2481 independent reflections

Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0243P)2 + 1.4185P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.089 (Δ/σ)max < 0.001
S = 1.06 Δρmax = 1.02 e Å3
2481 reflections Δρmin = −1.07 e Å3
115 parameters Absolute structure: Flack x determined using 705 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
3 restraints Absolute structure parameter: 0.035 (15)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cd1 0.24415 (7) 0.00192 (7) 0.31349 (9) 0.0425 (2)
Br1 0.44442 (8) 0.03071 (8) 0.06673 (14) 0.0450 (3)
Br2 0.37743 (10) 0.11262 (9) 0.56256 (15) 0.0537 (3)
O1 0.1309 (8) 0.1397 (6) 0.2136 (9) 0.057 (2)
O2 0.1420 (7) 0.1362 (6) −0.0865 (9) 0.056 (2)
N1 −0.0870 (10) 0.2205 (8) −0.1393 (11) 0.062 (3)
H1A −0.0168 0.2171 −0.2100 0.075*
H1B −0.1202 0.2813 −0.1471 0.075*
C1 0.0861 (9) 0.1560 (7) 0.0564 (15) 0.039 (2)
C2 −0.0488 (10) 0.1988 (8) 0.0510 (15) 0.053 (3)
H2 −0.0524 0.2596 0.1229 0.064*
C3 −0.1523 (12) 0.1260 (13) 0.115 (2) 0.084 (5)
H3A −0.1172 0.0826 0.2066 0.100*
H3B −0.2279 0.1607 0.1627 0.100*
C4 −0.1878 (13) 0.0697 (13) −0.047 (2) 0.094 (5)
H4A −0.2733 0.0392 −0.0326 0.113*
H4B −0.1236 0.0181 −0.0701 0.113*
C5 −0.1899 (14) 0.1441 (12) −0.200 (2) 0.086 (5)
H5A −0.2758 0.1743 −0.2126 0.103*
H5B −0.1651 0.1134 −0.3127 0.103*
O1W 0.111 (2) 0.2521 (17) 0.587 (2) 0.183 (8)
H1W 0.11 (3) 0.296 (11) 0.50 (2) 0.201*
H2W 0.13 (3) 0.197 (8) 0.54 (3) 0.201*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cd1 0.0453 (4) 0.0579 (4) 0.0243 (3) 0.0069 (4) −0.0005 (2) 0.0045 (3)
Br1 0.0347 (4) 0.0679 (7) 0.0323 (4) 0.0033 (5) −0.0007 (4) −0.0001 (5)
Br2 0.0597 (6) 0.0687 (7) 0.0327 (5) −0.0117 (6) 0.0013 (5) −0.0056 (6)
O1 0.074 (5) 0.066 (5) 0.032 (4) 0.025 (4) −0.011 (3) −0.005 (4)
O2 0.059 (5) 0.068 (5) 0.043 (4) 0.016 (4) 0.005 (4) 0.007 (4)
N1 0.063 (6) 0.066 (7) 0.058 (6) 0.037 (6) −0.015 (5) −0.001 (5)
C1 0.040 (5) 0.039 (5) 0.039 (5) 0.005 (4) −0.002 (5) −0.003 (5)
C2 0.053 (6) 0.060 (7) 0.046 (5) 0.024 (6) −0.009 (6) −0.010 (6)
C3 0.043 (7) 0.113 (13) 0.095 (10) 0.005 (8) 0.018 (6) 0.008 (10)
C4 0.042 (6) 0.110 (12) 0.130 (13) −0.008 (8) 0.006 (9) −0.021 (13)
C5 0.075 (9) 0.090 (11) 0.091 (10) 0.040 (9) −0.024 (8) −0.037 (9)
O1W 0.178 (16) 0.22 (2) 0.153 (13) 0.061 (18) 0.007 (14) 0.061 (17)

Geometric parameters (Å, º)

Cd1—O1 2.312 (8) N1—H1B 0.8900
Cd1—O2i 2.318 (8) C1—C2 1.491 (13)
Cd1—Br2ii 2.7236 (13) C2—C3 1.517 (19)
Cd1—Br1i 2.7285 (11) C2—H2 0.9800
Cd1—Br2 2.7421 (13) C3—C4 1.47 (2)
Cd1—Br1 2.7737 (12) C3—H3A 0.9700
Br1—Cd1ii 2.7285 (11) C3—H3B 0.9700
Br2—Cd1i 2.7236 (13) C4—C5 1.52 (2)
O1—C1 1.276 (12) C4—H4A 0.9700
O2—C1 1.237 (12) C4—H4B 0.9700
O2—Cd1ii 2.318 (8) C5—H5A 0.9700
N1—C2 1.499 (13) C5—H5B 0.9700
N1—C5 1.537 (17) O1W—H1W 0.87 (3)
N1—H1A 0.8900 O1W—H2W 0.87 (3)
O1—Cd1—O2i 179.9 (3) O1—C1—C2 114.9 (9)
O1—Cd1—Br2ii 90.50 (19) C1—C2—N1 109.9 (9)
O2i—Cd1—Br2ii 89.53 (19) C1—C2—C3 112.4 (10)
O1—Cd1—Br1i 90.0 (2) N1—C2—C3 103.9 (10)
O2i—Cd1—Br1i 90.03 (19) C1—C2—H2 110.1
Br2ii—Cd1—Br1i 93.59 (4) N1—C2—H2 110.1
O1—Cd1—Br2 91.52 (19) C3—C2—H2 110.1
O2i—Cd1—Br2 88.44 (19) C4—C3—C2 104.5 (11)
Br2ii—Cd1—Br2 177.29 (3) C4—C3—H3A 110.9
Br1i—Cd1—Br2 88.22 (3) C2—C3—H3A 110.9
O1—Cd1—Br1 92.4 (2) C4—C3—H3B 110.9
O2i—Cd1—Br1 87.56 (19) C2—C3—H3B 110.9
Br2ii—Cd1—Br1 87.67 (4) H3A—C3—H3B 108.9
Br1i—Cd1—Br1 177.27 (4) C3—C4—C5 106.0 (12)
Br2—Cd1—Br1 90.44 (4) C3—C4—H4A 110.5
Cd1ii—Br1—Cd1 85.27 (3) C5—C4—H4A 110.5
Cd1i—Br2—Cd1 85.98 (3) C3—C4—H4B 110.5
C1—O1—Cd1 127.7 (6) C5—C4—H4B 110.5
C1—O2—Cd1ii 132.9 (7) H4A—C4—H4B 108.7
C2—N1—C5 108.9 (10) C4—C5—N1 102.3 (10)
C2—N1—H1A 109.9 C4—C5—H5A 111.3
C5—N1—H1A 109.9 N1—C5—H5A 111.3
C2—N1—H1B 109.9 C4—C5—H5B 111.3
C5—N1—H1B 109.9 N1—C5—H5B 111.3
H1A—N1—H1B 108.3 H5A—C5—H5B 109.2
O2—C1—O1 126.0 (8) H1W—O1W—H2W 106 (4)
O2—C1—C2 119.0 (10)
Cd1ii—O2—C1—O1 44.5 (15) C5—N1—C2—C1 107.4 (11)
Cd1ii—O2—C1—C2 −132.7 (9) C5—N1—C2—C3 −13.1 (11)
Cd1—O1—C1—O2 −40.4 (15) C1—C2—C3—C4 −87.0 (14)
Cd1—O1—C1—C2 136.8 (8) N1—C2—C3—C4 31.8 (13)
O2—C1—C2—N1 −6.1 (15) C2—C3—C4—C5 −39.1 (15)
O1—C1—C2—N1 176.4 (9) C3—C4—C5—N1 29.9 (14)
O2—C1—C2—C3 109.1 (12) C2—N1—C5—C4 −9.7 (12)
O1—C1—C2—C3 −68.3 (13)

Symmetry codes: (i) −x+1/2, −y, z+1/2; (ii) −x+1/2, −y, z−1/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O2 0.89 2.16 2.626 (12) 112
O1W—H2W···O1 0.84 (17) 2.6 (2) 3.175 (19) 132
O1W—H2W···Br2 0.84 (17) 2.8 (3) 3.311 (19) 123
N1—H1A···O1Wiii 0.89 2.05 2.90 (2) 159
N1—H1B···Br1iv 0.89 2.69 3.416 (11) 140
O1W—H1W···Br2v 0.88 (16) 2.7 (3) 3.197 (19) 116

Symmetry codes: (iii) x, y, z−1; (iv) x−1/2, −y+1/2, −z; (v) x−1/2, −y+1/2, −z+1.

References

  1. Balakrishnan, T., Ramamurthi, K., Jeyakanthan, J. & Thamotharan, S. (2013). Acta Cryst. E69, m60–m61. [DOI] [PMC free article] [PubMed]
  2. Bruker (2008). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Eimerl, D., Velsko, S., Davis, L., Wang, F., Loiacono, G. & Kennedy, G. (1989). IEEE J. Quantum Electron. 25, 179–193.
  4. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  5. Lamberts, K. & Englert, U. (2012). Acta Cryst. B68, 610–618. [DOI] [PubMed]
  6. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  7. Nardelli, M. (1999). J. Appl. Cryst. 32, 563–571.
  8. Pal, T., Kar, T., Bocelli, G. & Rigi, L. (2004). Cryst. Growth Des. 4, 743–747.
  9. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  10. Rao, S. T., Westhof, E. & Sundaralingam, M. (1981). Acta Cryst. A37, 421–425.
  11. Rzączyńska, Z., Mrozek, R. & Glowiak, T. (1997). J. Chem. Crystallogr. 27, 417–422.
  12. Sathiskumar, S., Balakrishnan, T., Ramamurthi, K. & Thamotharan, S. (2015). Spectrochim. Acta Part A, 138, 187–194. [DOI] [PubMed]
  13. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  15. Srinivasan, P., Kanagasekaran, T., Gopalakrishnan, R., Bhagavannarayana, G. & Ramasamy, P. (2006). Cryst. Growth Des. 6, 1663–1670.
  16. Tilborg, A., Michaux, C., Norberg, B. & Wouters, J. (2010). Eur. J. Med. Chem. 45, 3511–3517. [DOI] [PubMed]
  17. Yukawa, Y., Inomata, Y. & Takeuchi, T. (1983). Bull. Chem. Soc. Jpn, 56, 2125–2128.
  18. Yukawa, Y., Inomata, Y., Takeuchi, T., Shimoi, M. & Ouchi, A. (1982). Bull. Chem. Soc. Jpn, 55, 3135–3137.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015001176/cv5483sup1.cif

e-71-00217-sup1.cif (256.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015001176/cv5483Isup2.hkl

e-71-00217-Isup2.hkl (136.4KB, hkl)

CCDC reference: 1044327

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES