Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jan 17;71(Pt 2):161–164. doi: 10.1107/S205698901500047X

Crystal structure of the chalcone (E)-3-(furan-2-yl)-1-phenylprop-2-en-1-one

Oscar F Vázquez-Vuelvas a,, René A Enríquez-Figueroa a, Héctor García-Ortega b, Marcos Flores-Alamo b, Armando Pineda-Contreras a,*
PMCID: PMC4384596  PMID: 25878808

The crystal packing of the compound is described by an inter­molecular arrangement with the mol­ecules as inter­laced layers in a zigzag fashion, denoting inter­acting self-complementary dimers mainly by the localization of weak hydrogen bonds in a head-to-tail arrangement.

Keywords: crystal structure, Claisen–Schmidt reaction, chalcone derivative, hydrogen bonding, biological activity, zigzag fashion.

Abstract

The title chalcone derivative, C13H10O2, adopts an E conformation about the C=C double bond. The mol­ecule is composed of a furanyl and a phenyl ring, bridged by an α,β-unsaturated carbonyl system, which are inclined to one another by 24.07 (7)°. In the crystal, mol­ecules are connected by weak C—H⋯O hydrogen bonds involving the carbonyl O atom acting as a trifurcated acceptor and C—H⋯π inter­actions, forming ribbons extending along the c-axis direction.

Chemical context  

The Claisen–Schmidt condensation reaction between substituted aceto­phenones and aryl aldehydes under basic con­ditions has been widely used to synthesize chalcone derivatives (Ghosh & Das, 2014; Robinson et al., 2013; Sharma et al., 2013; Tiwari et al., 2010). Chalcones, belonging to the flavonoid family, are an important class of natural products with widespread distribution in fruits, vegetables, spices and tea. These compounds are also often used as the precursors for the synthesis of various heterocyclic compounds (Chimenti et al., 2010; Elarfi & Al-Difar, 2012; Ghosh & Das, 2014; Hamada & Sharshira, 2011; Mahé et al., 2012; Sharma et al., 2013). Chemically, chalcones are 1,3-diaryl-2-propen-1-ones in which two aromatic rings, mainly benzene groups, are joined by a three-carbon bridge having a carbonyl moiety and α,β-unsaturation.

Many studies have shown that chalcone derivatives exhibit a wide range of pharmacological activities, such as potential cytotoxic, anti­microbial, anti­viral, anti-inflammatory, anti-oxidant, anaesthetic, anti­malarial, anti­leishmanial, anti­tubercular, anti­tumor and anti­cancer activities (Boeck et al., 2006; Chimenti et al., 2010; Elarfi & Al-Difar, 2012; Hamada & Sharshira, 2011; Hsieh et al., 2000; Kumar et al., 2003; Sharma et al., 2013). These versatile compounds and their furan deriv­atives are often used as inter­mediates in the syntheses of mono­amine oxidase (MAO) inhibitors; moreover, the chalcones themselves have MAO inhibitory activity. Since the furan moiety represents a high π-electron density that contributes to the inter­action with the flavin nucleus of the co-factor in the inhibition of MAO, some furan-substituted chalcones, where an electron-rich heterocyclic oxygen replaces the benzene ring, have been synthesized to investigate their biological activity (Robinson et al., 2013; Shaikh et al., 2014; Sharma et al., 2013; Zheng et al., 2011). In view of the varied biological and pharmacological applications, we report herein on the synthesis and the mol­ecular and supra­molecular structure of the title compound, synthesized by a conventional base-catalysed Claisen–Schmidt condensation reaction.graphic file with name e-71-00161-scheme1.jpg

Structural commentary  

The symmetry-independent mol­ecule adopts an E conformation corresponding to an α,β-unsaturated non-planar structure, which bridges the pair of aromatic groups (Fig. 1). The two main planar groups, the furanyl and the phenyl rings, form a dihedral angle of 24.07 (7)°. In this context, the mol­ecular structure can be considered, for descriptive purposes, as two fragments basically described by the furanyl acryloyl and the benzoyl moieties. The benzoyl group shows a non-planar structure and presents rotation when observing the C2—C1—C7—O2 torsion angle of 19.4 (2)°, denoting a marked deviation from planarity at the C1—C7 bond, a single bond with rotational freedom. This deviation from planarity has also been reported previously in the crystal structure of an (E)-3-(4-hy­droxy­phen­yl)-1-(4-meth­oxy­phen­yl)-prop-2-en-1-one derivative, when observing the analogous reported inter­planar angle shown in the respectively 4-meth­oxy­benzoyl moiety (Qiu et al., 2006). In the same manner, the furanyl acryloyl entity presents a quasi-planar structure indicated by the two small torsion angles O2—C7—C8—C9 [−5.4 (2)°] and C7—C8—C9—C10 [−176.31 (13)°], similar to the structure of the di­furanyl chalcone derivative (E)-1,3-di(2-fur­yl)-2-propen-1-one (Ocak Iskeleli et al., 2005b ). On the other hand, the mol­ecule inter­atomic linkage coincides with similar reported structures, specifically in the α,β-unsaturated entity of the title crystal (Harrison et al., 2006; Ocak Iskeleli et al., 2005a ,b ). As a result, the inter­atomic distances are in agreement with the conjugative nature, which is additionally supported by other described types of different weak inter­actions (vide infra) and also define the characteristic quasi-planar structure of chalcone derivatives.

Figure 1.

Figure 1

The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.

Supra­molecular features  

The crystal packing does not present geometrical parameters corresponding to classical hydrogen bonding (Gilli & Gilli, 2009; Steiner, 2002), neither intra- nor inter­molecular. In the crystal, centrosymmetrically related mol­ecules inter­act through a pair of weak hydrogen contacts (Table 1) with the C9 and C11 carbon atoms as donors and the O2 oxygen atom as a bifurcated acceptor, generating a ring with an Inline graphic(6) graph-set motif (Bernstein et al., 1995). The reciprocal inter­actions with the corresponding mol­ecule positioned in a head-to-tail mode generate the same ring motif and, as a consequence, an Inline graphic(10) ring is formed, describing a three-fused-ring system (Fig. 2). In addition, a weak hydrogen contact is present involving the C3 carbon atom as H-donor and the O2 oxygen atom acting, in this way, as a trifurcated acceptor. The propagation of this inter­action generates a ribbon along the c-axis direction (Fig. 2). The supra­molecular assembly is additionally supported by weak C—H⋯π inter­actions, implicating the phenyl and furanyl π systems (Fig. 3).

Table 1. Hydrogen-bond geometry (, ).

Cg1 and Cg2 are the centroids of the O1/C10C13 furanyl ring and the C1C6 phenyl ring, respectively.

DHA DH HA D A DHA
C3H3O2i 0.95 2.51 3.457(2) 151
C9H9O2ii 0.95 2.62 3.416(1) 142
C11H11O2ii 0.95 2.51 3.277(2) 138
C6H6Cg1iii 0.95 2.88 3.687(2) 144
C13H13Cg2iv 0.95 2.71 3.519(9) 143

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Figure 2.

Figure 2

A partial packing diagram of the title compound, showing the hydrogen-bonded supra­molecular assembly via C—H⋯O inter­actions (blue dashed lines).

Figure 3.

Figure 3

A partial packing diagram of the title compound, showing the C—H⋯π stacking inter­actions, depicted as blue and purple dotted lines for the C6—H6⋯Cg1 and C13—H13⋯Cg2 contacts, respectively. H atoms not involved in hydrogen-bonding inter­actions have been omitted for clarity.

Synthesis and crystallization  

To a solution of NaOH (2.18 g, 55 mmol) in H2O/EtOH (30 ml, 2:1 v/v) was added pure aceto­phenone (5.2 g, 43 mmol), and stirring started; furfuraldehyde (4.6 g, 43 mmol) was then added at once. The reaction mixture was stirred for two hours and then kept in a refrigerator overnight. The resulting product was separated and then distilled under vacuum. The title compound was obtained as a yellow solid in 82% yield. Single-crystals suitable for X-ray determination were obtained by evaporation of an ethyl ether solution. M.p. 311–313 K; IR (ν, cm−1): 3123 (C—Halk), 3035 (C—Harom), 1658 (C=O), 1594, 1545, 1474 (C=C). 1H NMR (400 MHz, CDCl3, δ, p.p.m.): 8.04 (2H, dd), 7.61 (1H, d), 7.58 (1H, tt), 7.52 (2H, dd), 7.49 (1H, dd), 7.47 (1H, d), 6.72 (1H, dd), 6.51 (1H, dd). 13C NMR (100 MHz, CDCl3, δ, p.p.m.): 189.85 (C7), 151.69 (C10), 144.98 (C13), 138.16 (C1), 132.82 (C4), 130.72 (C9), 128.65 (C2,6), 128.47 (C3,5), 119.30 (C8), 116.33 (C11), 112.74 (C12). MS m/z: 199 (M +1); Analysis calculated for C13H10O2: C, 78.78; H, 5.05. Found: 78.80; H, 5.09.

Refinement details  

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms attached to C atoms were placed in geometrically idealized positions and refined as riding on their parent atoms, with C—H = 0.95 Å and with Uiso(H) = 1.2Ueq(C).

Table 2. Experimental details.

Crystal data
Chemical formula C13H10O2
M r 198.21
Crystal system, space group Monoclinic, P21/c
Temperature (K) 130
a, b, c () 9.5296(7), 10.1383(7), 11.1595(7)
() 103.922(6)
V (3) 1046.49(13)
Z 4
Radiation type Mo K
(mm1) 0.08
Crystal size (mm) 0.50 0.45 0.32
 
Data collection
Diffractometer Agilent Xcalibur Atlas Gemini
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2011)
T min, T max 0.781, 1
No. of measured, independent and observed [I > 2(I)] reflections 8114, 2553, 1755
R int 0.019
(sin /)max (1) 0.691
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.045, 0.115, 1.04
No. of reflections 2553
No. of parameters 136
H-atom treatment H-atom parameters constrained
max, min (e 3) 0.11, 0.17

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS2013 and SHELXL2013 (Sheldrick, 2008, 2015), ORTEP-3 for Windows and WinGX (Farrugia, 2012), Mercury (Macrae et al., 2006) and DIAMOND (Brandenburg, 2012).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S205698901500047X/rz5145sup1.cif

e-71-00161-sup1.cif (15.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901500047X/rz5145Isup2.hkl

e-71-00161-Isup2.hkl (140.3KB, hkl)

Supporting information file. DOI: 10.1107/S205698901500047X/rz5145Isup3.cml

CCDC reference: 1042952

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Claudio Andrade-Silva for his contribution to the laboratory work.

supplementary crystallographic information

Crystal data

C13H10O2 F(000) = 416
Mr = 198.21 Dx = 1.258 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2252 reflections
a = 9.5296 (7) Å θ = 3.8–29.4°
b = 10.1383 (7) Å µ = 0.08 mm1
c = 11.1595 (7) Å T = 130 K
β = 103.922 (6)° Prism, colorless
V = 1046.49 (13) Å3 0.50 × 0.45 × 0.32 mm
Z = 4

Data collection

Agilent Xcalibur Atlas Gemini diffractometer 2553 independent reflections
Graphite monochromator 1755 reflections with I > 2σ(I)
Detector resolution: 10.4685 pixels mm-1 Rint = 0.019
ω scans θmax = 29.4°, θmin = 3.8°
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) h = −12→11
Tmin = 0.781, Tmax = 1 k = −13→14
8114 measured reflections l = −14→14

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045 H-atom parameters constrained
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0462P)2 + 0.1328P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
2553 reflections Δρmax = 0.11 e Å3
136 parameters Δρmin = −0.17 e Å3

Special details

Experimental. Absorption correction: CrysAlisPro, Agilent Technologies (Agilent, 2011) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.96039 (10) 0.15914 (10) 0.09922 (8) 0.0619 (3)
C1 0.65936 (13) −0.05129 (13) 0.39220 (11) 0.0465 (3)
O2 0.50969 (10) −0.03589 (12) 0.19207 (8) 0.0724 (3)
C7 0.62831 (14) −0.01269 (13) 0.25976 (11) 0.0499 (3)
C9 0.72460 (14) 0.06998 (13) 0.09060 (12) 0.0498 (3)
H9 0.6322 0.049 0.0396 0.06*
C8 0.74268 (14) 0.04814 (14) 0.21095 (11) 0.0516 (3)
H8 0.8312 0.0724 0.2662 0.062*
C10 0.82803 (14) 0.12119 (13) 0.02963 (11) 0.0477 (3)
C11 0.82469 (15) 0.13668 (14) −0.09089 (12) 0.0549 (3)
H11 0.7452 0.1182 −0.1585 0.066*
C6 0.76975 (15) 0.00494 (14) 0.48148 (12) 0.0551 (4)
H6 0.8309 0.0694 0.4587 0.066*
C12 0.96066 (16) 0.18535 (14) −0.09817 (13) 0.0587 (4)
H12 0.991 0.2057 −0.1711 0.07*
C2 0.57275 (16) −0.14617 (15) 0.42759 (13) 0.0605 (4)
H2 0.4966 −0.1857 0.3675 0.073*
C13 1.03802 (17) 0.19718 (16) 0.01731 (14) 0.0649 (4)
H13 1.1349 0.2281 0.0399 0.078*
C5 0.79115 (17) −0.03262 (17) 0.60379 (13) 0.0674 (4)
H5 0.8662 0.0069 0.6649 0.081*
C4 0.70484 (19) −0.12620 (19) 0.63691 (15) 0.0745 (5)
H4 0.72 −0.1517 0.721 0.089*
C3 0.59661 (19) −0.18335 (18) 0.54951 (16) 0.0740 (5)
H3 0.5375 −0.2492 0.573 0.089*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0544 (6) 0.0759 (7) 0.0512 (5) −0.0135 (5) 0.0044 (4) 0.0031 (5)
C1 0.0452 (7) 0.0491 (7) 0.0454 (7) 0.0025 (5) 0.0115 (5) −0.0024 (5)
O2 0.0504 (6) 0.1151 (9) 0.0482 (6) −0.0173 (6) 0.0049 (4) −0.0038 (6)
C7 0.0457 (7) 0.0577 (8) 0.0448 (7) −0.0021 (6) 0.0080 (5) −0.0071 (6)
C9 0.0469 (7) 0.0538 (8) 0.0471 (7) −0.0012 (6) 0.0085 (5) −0.0031 (6)
C8 0.0476 (7) 0.0602 (8) 0.0455 (7) −0.0060 (6) 0.0081 (5) −0.0030 (6)
C10 0.0470 (7) 0.0475 (7) 0.0468 (7) −0.0015 (5) 0.0078 (5) −0.0010 (5)
C11 0.0556 (8) 0.0610 (8) 0.0473 (7) −0.0025 (7) 0.0110 (6) −0.0014 (6)
C6 0.0585 (8) 0.0595 (8) 0.0467 (7) −0.0017 (6) 0.0113 (6) −0.0054 (6)
C12 0.0610 (9) 0.0609 (9) 0.0582 (8) 0.0001 (7) 0.0217 (7) 0.0050 (7)
C2 0.0546 (8) 0.0661 (9) 0.0605 (9) −0.0038 (7) 0.0129 (6) 0.0034 (7)
C13 0.0533 (8) 0.0721 (10) 0.0702 (10) −0.0104 (7) 0.0164 (7) 0.0086 (8)
C5 0.0675 (10) 0.0847 (11) 0.0461 (8) 0.0074 (8) 0.0060 (7) −0.0061 (8)
C4 0.0788 (11) 0.0943 (13) 0.0523 (9) 0.0182 (10) 0.0193 (8) 0.0168 (9)
C3 0.0742 (11) 0.0777 (11) 0.0742 (11) 0.0007 (8) 0.0256 (9) 0.0199 (9)

Geometric parameters (Å, º)

O1—C13 1.3627 (17) C11—H11 0.95
O1—C10 1.3678 (15) C6—C5 1.3840 (19)
C1—C2 1.3855 (19) C6—H6 0.95
C1—C6 1.3857 (18) C12—C13 1.327 (2)
C1—C7 1.4882 (17) C12—H12 0.95
O2—C7 1.2218 (15) C2—C3 1.377 (2)
C7—C8 1.4664 (18) C2—H2 0.95
C9—C8 1.3308 (17) C13—H13 0.95
C9—C10 1.4236 (18) C5—C4 1.364 (2)
C9—H9 0.95 C5—H5 0.95
C8—H8 0.95 C4—C3 1.366 (2)
C10—C11 1.3468 (18) C4—H4 0.95
C11—C12 1.407 (2) C3—H3 0.95
C13—O1—C10 105.91 (10) C5—C6—H6 119.9
C2—C1—C6 118.81 (12) C1—C6—H6 119.9
C2—C1—C7 118.43 (11) C13—C12—C11 106.25 (13)
C6—C1—C7 122.76 (12) C13—C12—H12 126.9
O2—C7—C8 120.74 (12) C11—C12—H12 126.9
O2—C7—C1 119.78 (12) C3—C2—C1 120.25 (14)
C8—C7—C1 119.44 (11) C3—C2—H2 119.9
C8—C9—C10 127.34 (12) C1—C2—H2 119.9
C8—C9—H9 116.3 C12—C13—O1 111.18 (13)
C10—C9—H9 116.3 C12—C13—H13 124.4
C9—C8—C7 121.16 (12) O1—C13—H13 124.4
C9—C8—H8 119.4 C4—C5—C6 120.22 (15)
C7—C8—H8 119.4 C4—C5—H5 119.9
C11—C10—O1 109.34 (12) C6—C5—H5 119.9
C11—C10—C9 131.84 (12) C5—C4—C3 120.17 (14)
O1—C10—C9 118.76 (11) C5—C4—H4 119.9
C10—C11—C12 107.32 (12) C3—C4—H4 119.9
C10—C11—H11 126.3 C4—C3—C2 120.40 (16)
C12—C11—H11 126.3 C4—C3—H3 119.8
C5—C6—C1 120.15 (14) C2—C3—H3 119.8
C2—C1—C7—O2 19.4 (2) C9—C10—C11—C12 −176.65 (14)
C6—C1—C7—O2 −159.66 (14) C2—C1—C6—C5 −0.7 (2)
C2—C1—C7—C8 −158.15 (13) C7—C1—C6—C5 178.37 (13)
C6—C1—C7—C8 22.74 (19) C10—C11—C12—C13 −0.29 (17)
C10—C9—C8—C7 −176.31 (13) C6—C1—C2—C3 0.0 (2)
O2—C7—C8—C9 −5.4 (2) C7—C1—C2—C3 −179.11 (14)
C1—C7—C8—C9 172.14 (12) C11—C12—C13—O1 −0.03 (18)
C13—O1—C10—C11 −0.50 (16) C10—O1—C13—C12 0.33 (17)
C13—O1—C10—C9 177.07 (12) C1—C6—C5—C4 0.8 (2)
C8—C9—C10—C11 173.72 (14) C6—C5—C4—C3 −0.1 (2)
C8—C9—C10—O1 −3.2 (2) C5—C4—C3—C2 −0.7 (3)
O1—C10—C11—C12 0.49 (16) C1—C2—C3—C4 0.7 (3)

Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of the O1/C10–C13 furanyl ring and the C1–C6 phenyl ring, respectively.

D—H···A D—H H···A D···A D—H···A
C3—H3···O2i 0.95 2.51 3.457 (2) 151
C9—H9···O2ii 0.95 2.62 3.416 (1) 142
C11—H11···O2ii 0.95 2.51 3.277 (2) 138
C6—H6···Cg1iii 0.95 2.88 3.687 (2) 144
C13—H13···Cg2iv 0.95 2.71 3.519 (9) 143

Symmetry codes: (i) x, −y−1/2, z+1/2; (ii) −x+1, −y, −z; (iii) x, −y+1/2, z+1/2; (iv) −x−2, y+1/2, −z+1/2.

References

  1. Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Boeck, P., Bandeira Falcão, C. A., Leal, P. C., Yunes, R. A., Filho, V. C., Torres-Santos, E. C. & Rossi-Bergmann, B. (2006). Bioorg. Med. Chem. 14, 1538–1545. [DOI] [PubMed]
  4. Brandenburg, K. (2012). DIAMOND. Crystal Impact GbR. Bonn, Germany.
  5. Chimenti, F., Fioravanti, R., Bolasco, A., Chimenti, P., Secci, D., Rossi, F., Yáñez, M., Orallo, F., Ortuso, F., Alcaro, S., Cirilli, R., Ferretti, R. & Sanna, M. L. (2010). Bioorg. Med. Chem. 18, 1273–1279. [DOI] [PubMed]
  6. Elarfi, M. J. & Al-Difar, H. A. (2012). Sci. Rev. Chem. Commun. 2, 103–107.
  7. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  8. Ghosh, R. & Das, A. (2014). World J. Pharm. Pharma. Sci. 3, 578–595.
  9. Gilli, G. & Gilli, P. (2009). The Nature of the Hydrogen Bond: Outline of a Comprehensive Hydrogen Bond Theory. Oxford: International Union of Crystallography and Oxford Science Publications.
  10. Hamada, N. M. & Sharshira, E. M. (2011). Molecules, 16, 2304–2312. [DOI] [PMC free article] [PubMed]
  11. Harrison, W. T. A., Yathirajan, H. S., Anilkumar, H. G., Sarojini, B. K. & Narayana, B. (2006). Acta Cryst. E62, o3251–o3253. [DOI] [PubMed]
  12. Hsieh, H.-K., Tsao, L.-T., Wang, J. P. & Lin, C. N. (2000). J. Pharm. Pharmacol. 52, 163–171. [DOI] [PubMed]
  13. Kumar, S. K., Hager, E., Pettit, C., Gurulingappa, H., Davidson, N. E. & Khan, S. R. (2003). J. Med. Chem. 46, 2813–2815. [DOI] [PubMed]
  14. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  15. Mahé, O., Dez, I., Levacher, V. & Brière, J. F. (2012). Org. Biomol. Chem. 10, 3946–3954. [DOI] [PubMed]
  16. Ocak Ískeleli, N., Işık, Ş., Özdemir, Z. & Bilgin, A. (2005a). Acta Cryst. E61, o1278–o1279.
  17. Ocak Ískeleli, N., Işık, S., Özdemir, Z. & Bilgin, A. (2005b). Acta Cryst. E61, o1356–o1358.
  18. Qiu, X.-Y., Yang, S.-L., Liu, W.-S. & Zhu, H.-L. (2006). Acta Cryst. E62, o3324–o3325.
  19. Robinson, S. J., Petzer, J. P., Petzer, A., Bergh, J. J. & Lourens, A. C. U. (2013). Bioorg. Med. Chem. Lett. 23, 4985–4989. [DOI] [PubMed]
  20. Shaikh, S. B., Mujahid, S., Tambat, N., Salgar, K. & Nimbale, R. V. (2014). Int. J. Pharm. Res. Sch. 3, 317–329.
  21. Sharma, P., Kumar, S., Ali, F., Anthal, S., Gupta, V., Khan, I., Singh, S., Sangwan, P., Suri, K., Gupta, B., Gupta, D., Dutt, P., Vishwakarma, R. & Satti, N. (2013). Med. Chem. Res. 22, 3969–3983.
  22. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  23. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  24. Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.
  25. Tiwari, B., Pratapwar, A. S., Tapas, A. R. & Butle, S. R. (2010). Int. J. ChemTech Res. 2, 499–503.
  26. Zheng, C. J., Jiang, S.-M., Chen, Z. H., Ye, B.-J. & Piao, H. R. (2011). Arch. Pharm. Pharm. Med. Chem. 344, 689–695. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S205698901500047X/rz5145sup1.cif

e-71-00161-sup1.cif (15.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901500047X/rz5145Isup2.hkl

e-71-00161-Isup2.hkl (140.3KB, hkl)

Supporting information file. DOI: 10.1107/S205698901500047X/rz5145Isup3.cml

CCDC reference: 1042952

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES