Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jan 24;71(Pt 2):m33–m34. doi: 10.1107/S2056989015001309

Crystal structure of bis­(2-{[(3-bromo­prop­yl)imino]­meth­yl}phenolato-κ2 N,O)copper(II)

Ali Ourari a, Chahinaz Zoubeidi a, Sofiane Bouacida b,c,*, Wassila Derafa a, Hocine Merazig c
PMCID: PMC4384597  PMID: 25878842

Abstract

In the title compound, [Cu(C10H11BrNO)2], the asymmetric unit consists of one-half of the mol­ecule, the other half being generated by an inversion centre. Hence the CuII cation is symmetrically coordinated by two bidentate Schiff base anions in a slightly distorted square-planar environment with Cu—O and Cu—N bond lengths of 1.8786 (19) and 2.009 (2) Å, respectively. In the crystal, individual mol­ecules are packed in alternating zigzag layers parallel to (001). Weak C—H⋯π inter­actions exist between the mol­ecules.

Keywords: crystal structure, copper(II) complex, C—H⋯π inter­actions

Related literature  

For synthesis and applications of similar complexes derived from salicyl­aldehyde, see: Ghelenji et al. (2011); Kia et al. (2010); Zhang et al. (2013). For the importance of copper in biological systems, see: Siegel (1973); Mohan et al. (1998). For isotypic structures, see: Floyd et al. (2005); Ourari et al. (2015).graphic file with name e-71-00m33-scheme1.jpg

Experimental  

Crystal data  

  • [Cu(C10H11BrNO)2]

  • M r = 545.75

  • Monoclinic, Inline graphic

  • a = 10.6478 (4) Å

  • b = 7.1990 (3) Å

  • c = 13.9283 (5) Å

  • β = 104.900 (2)°

  • V = 1031.75 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.95 mm−1

  • T = 295 K

  • 0.19 × 0.18 × 0.15 mm

Data collection  

  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2011) T min = 0.677, T max = 0.796

  • 8212 measured reflections

  • 2594 independent reflections

  • 2088 reflections with I > 2σ(I)

  • R int = 0.020

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.089

  • S = 1.04

  • 2594 reflections

  • 124 parameters

  • H-atom parameters constrained

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.58 e Å−3

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2011); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015001309/wm5116sup1.cif

e-71-00m33-sup1.cif (21.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015001309/wm5116Isup2.hkl

e-71-00m33-Isup2.hkl (124.8KB, hkl)

. DOI: 10.1107/S2056989015001309/wm5116fig1.tif

The mol­ecular structure of the title compound with the atomic labelling scheme. Displacement are drawn at the 50% probability level. Non-labelled atoms are generated by symmetry code −x+2, −y, −z+2.

. DOI: 10.1107/S2056989015001309/wm5116fig2.tif

Formation of alternating zigzag layers parallel to (001).

. DOI: 10.1107/S2056989015001309/wm5116fig3.tif

A view of the layers along [010].

CCDC reference: 1044698

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

Cg1 is the centroid of the C5C10 ring.

DHA DH HA D A DHA
C1H1A Cg1i 0.97 2.74 3.645(4) 155
C4H4Cg1ii 0.93 2.90 3.805(3) 164

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We acknowledge the MESRS and DG–RSDT (Ministére de l’Enseignement Supérieur et de la Recherche Scientifique et la Direction Générale de la Recherche - Algérie) for financial support.

supplementary crystallographic information

S1. Experimental

Ligand (HL) synthesis: 331.5 mg (1.5 mmol) of 2-bromopropyl ammonium hydrobromide were dissolved in absolute ethanol (15 ml). First, 756 mg (1.5 mmol; excess of 5%) and then 183 mg salicylaldehyde, each dissolved in 10 ml of absolute ethanol, were added and the resulting solution was refluxed under nitrogen atmosphere for 2 h at 333 K. The solvent was removed under reduced pressure and 15 ml of dichloromethane were added to the residue obtained. The mixture was stirred for 15 min, filtered and the solvent evaporated, resulting in a yellow viscous oil (yield: 82%).

Synthesis of the copper complex (I): 215 mg ligand HL (1 mmol) were placed in 10 ml of absolute ethanol. 99.8 mg of copper acetate monohydrate (0.5 mmol), dissolved in 5 ml of absolute ethanol, were added to this solution. The content of the flask was refluxed under stirring and nitrogen atmosphere for 2 h at 333 K. The precipitate obtained was filtered, washed with ethanol and then dried in an oven at moderate temperature (yield 70%; m. p. 393 K). Suitable single crystals were obtained from acetone solution by slow evaporation yielding green single crystals.

S2. Refinement

H atoms were localized in Fourier maps but introduced in calculated positions and treated as riding on their parent atom, with C—H = 0.97 Å (methylene) or 0.93 Å (aromatic) and with Uiso(H) = 1.2Ueq. Reflection 101 was obstructed from the beam stop and was omitted from the refinement.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atomic labelling scheme. Displacement are drawn at the 50% probability level. Non-labelled atoms are generated by symmetry code -x+2, -y, -z+2.

Fig. 2.

Fig. 2.

Formation of alternating zigzag layers parallel to (001).

Fig. 3.

Fig. 3.

A view of the layers along [010].

Crystal data

[Cu(C10H11BrNO)2] F(000) = 542.0
Mr = 545.75 Dx = 1.757 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 10.6478 (4) Å Cell parameters from 3645 reflections
b = 7.1990 (3) Å θ = 3.2–27.7°
c = 13.9283 (5) Å µ = 4.95 mm1
β = 104.900 (2)° T = 295 K
V = 1031.75 (7) Å3 Prism, green
Z = 2 0.19 × 0.18 × 0.15 mm

Data collection

Bruker APEXII diffractometer 2088 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.020
CCD rotation images, thin slices scans θmax = 28.5°, θmin = 2.8°
Absorption correction: multi-scan (SADABS; Bruker, 2011) h = −12→14
Tmin = 0.677, Tmax = 0.796 k = −9→6
8212 measured reflections l = −18→18
2594 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0419P)2 + 0.8205P] where P = (Fo2 + 2Fc2)/3
2594 reflections (Δ/σ)max = 0.001
124 parameters Δρmax = 0.62 e Å3
0 restraints Δρmin = −0.58 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 1 0 1 0.03472 (12)
Br1 1.32859 (3) −0.62235 (6) 0.86101 (3) 0.06803 (14)
O1 0.81891 (18) −0.0114 (3) 0.98050 (16) 0.0559 (6)
N1 0.99577 (19) −0.2004 (3) 0.89887 (15) 0.0350 (4)
C5 0.7594 (2) −0.2139 (3) 0.84019 (19) 0.0368 (5)
C8 0.5014 (3) −0.1335 (4) 0.8310 (2) 0.0476 (7)
H8 0.4152 −0.1059 0.8282 0.057*
C4 0.8909 (2) −0.2635 (4) 0.84046 (19) 0.0382 (5)
H4 0.9006 −0.3503 0.7934 0.046*
C9 0.5984 (3) −0.0546 (4) 0.9037 (2) 0.0468 (6)
H9 0.5767 0.0251 0.9494 0.056*
C6 0.6576 (3) −0.2913 (4) 0.7663 (2) 0.0492 (7)
H6 0.677 −0.3702 0.7192 0.059*
C3 1.1185 (2) −0.2808 (4) 0.88563 (19) 0.0394 (5)
H3A 1.1795 −0.1817 0.8837 0.047*
H3B 1.1011 −0.3469 0.8229 0.047*
C10 0.7306 (2) −0.0917 (4) 0.91054 (19) 0.0392 (5)
C2 1.1783 (3) −0.4136 (4) 0.9701 (2) 0.0471 (6)
H2A 1.1776 −0.3551 1.0326 0.056*
H2B 1.1249 −0.5245 0.9633 0.056*
C7 0.5294 (3) −0.2529 (5) 0.7621 (2) 0.0522 (7)
H7 0.4628 −0.3068 0.7134 0.063*
C1 1.3158 (3) −0.4696 (4) 0.9730 (2) 0.0493 (7)
H1A 1.3521 −0.5375 1.034 0.059*
H1B 1.3676 −0.3584 0.9742 0.059*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0302 (2) 0.0403 (2) 0.0355 (2) −0.00058 (17) 0.01176 (16) −0.00451 (17)
Br1 0.0490 (2) 0.0798 (3) 0.0742 (2) 0.01763 (16) 0.01380 (16) −0.01284 (18)
O1 0.0347 (9) 0.0754 (15) 0.0616 (12) −0.0084 (9) 0.0195 (9) −0.0318 (11)
N1 0.0324 (10) 0.0359 (11) 0.0380 (10) 0.0046 (8) 0.0115 (8) 0.0000 (8)
C5 0.0342 (12) 0.0326 (12) 0.0428 (13) 0.0009 (10) 0.0083 (10) 0.0000 (10)
C8 0.0324 (12) 0.0529 (17) 0.0582 (16) 0.0005 (12) 0.0129 (12) 0.0067 (13)
C4 0.0403 (12) 0.0333 (12) 0.0416 (13) 0.0047 (10) 0.0118 (10) −0.0034 (10)
C9 0.0382 (13) 0.0504 (15) 0.0570 (16) −0.0021 (12) 0.0213 (12) −0.0063 (13)
C6 0.0428 (14) 0.0445 (15) 0.0576 (17) 0.0020 (12) 0.0082 (12) −0.0117 (13)
C3 0.0372 (12) 0.0427 (14) 0.0405 (13) 0.0073 (11) 0.0141 (10) −0.0014 (11)
C10 0.0344 (12) 0.0411 (14) 0.0443 (13) −0.0041 (10) 0.0140 (10) −0.0024 (11)
C2 0.0452 (15) 0.0470 (16) 0.0515 (15) 0.0099 (12) 0.0172 (12) 0.0093 (13)
C7 0.0359 (13) 0.0553 (17) 0.0590 (17) −0.0034 (13) 0.0008 (12) −0.0053 (14)
C1 0.0411 (14) 0.0502 (17) 0.0534 (16) 0.0057 (12) 0.0062 (12) 0.0030 (13)

Geometric parameters (Å, º)

Cu1—O1i 1.8786 (19) C4—H4 0.93
Cu1—O1 1.8786 (19) C9—C10 1.412 (4)
Cu1—N1 2.009 (2) C9—H9 0.93
Cu1—N1i 2.009 (2) C6—C7 1.380 (4)
Br1—C1 1.942 (3) C6—H6 0.93
O1—C10 1.302 (3) C3—C2 1.522 (4)
N1—C4 1.284 (3) C3—H3A 0.97
N1—C3 1.484 (3) C3—H3B 0.97
C5—C6 1.404 (4) C2—C1 1.509 (4)
C5—C10 1.408 (4) C2—H2A 0.97
C5—C4 1.444 (3) C2—H2B 0.97
C8—C9 1.369 (4) C7—H7 0.93
C8—C7 1.377 (4) C1—H1A 0.97
C8—H8 0.93 C1—H1B 0.97
O1i—Cu1—O1 180.0000 (10) N1—C3—C2 110.9 (2)
O1i—Cu1—N1 88.28 (8) N1—C3—H3A 109.5
O1—Cu1—N1 91.72 (8) C2—C3—H3A 109.5
O1i—Cu1—N1i 91.72 (8) N1—C3—H3B 109.5
O1—Cu1—N1i 88.28 (8) C2—C3—H3B 109.5
N1—Cu1—N1i 180.0000 (10) H3A—C3—H3B 108.1
C10—O1—Cu1 130.10 (17) O1—C10—C5 123.6 (2)
C4—N1—C3 115.7 (2) O1—C10—C9 118.8 (2)
C4—N1—Cu1 123.89 (16) C5—C10—C9 117.6 (2)
C3—N1—Cu1 120.39 (16) C1—C2—C3 113.5 (2)
C6—C5—C10 119.5 (2) C1—C2—H2A 108.9
C6—C5—C4 118.0 (2) C3—C2—H2A 108.9
C10—C5—C4 122.5 (2) C1—C2—H2B 108.9
C9—C8—C7 121.1 (3) C3—C2—H2B 108.9
C9—C8—H8 119.4 H2A—C2—H2B 107.7
C7—C8—H8 119.4 C8—C7—C6 118.9 (3)
N1—C4—C5 126.8 (2) C8—C7—H7 120.5
N1—C4—H4 116.6 C6—C7—H7 120.5
C5—C4—H4 116.6 C2—C1—Br1 113.4 (2)
C8—C9—C10 121.4 (3) C2—C1—H1A 108.9
C8—C9—H9 119.3 Br1—C1—H1A 108.9
C10—C9—H9 119.3 C2—C1—H1B 108.9
C7—C6—C5 121.4 (3) Br1—C1—H1B 108.9
C7—C6—H6 119.3 H1A—C1—H1B 107.7
C5—C6—H6 119.3
N1—Cu1—O1—C10 −13.1 (3) Cu1—N1—C3—C2 75.6 (3)
N1i—Cu1—O1—C10 166.9 (3) Cu1—O1—C10—C5 9.8 (4)
O1i—Cu1—N1—C4 −170.0 (2) Cu1—O1—C10—C9 −169.8 (2)
O1—Cu1—N1—C4 10.0 (2) C6—C5—C10—O1 −178.9 (3)
O1i—Cu1—N1—C3 7.98 (19) C4—C5—C10—O1 1.0 (4)
O1—Cu1—N1—C3 −172.02 (19) C6—C5—C10—C9 0.8 (4)
C3—N1—C4—C5 177.6 (2) C4—C5—C10—C9 −179.4 (3)
Cu1—N1—C4—C5 −4.3 (4) C8—C9—C10—O1 179.3 (3)
C6—C5—C4—N1 176.5 (3) C8—C9—C10—C5 −0.3 (4)
C10—C5—C4—N1 −3.3 (4) N1—C3—C2—C1 −168.0 (2)
C7—C8—C9—C10 0.3 (5) C9—C8—C7—C6 −0.7 (5)
C10—C5—C6—C7 −1.2 (4) C5—C6—C7—C8 1.1 (5)
C4—C5—C6—C7 179.0 (3) C3—C2—C1—Br1 −67.5 (3)
C4—N1—C3—C2 −106.3 (3)

Symmetry code: (i) −x+2, −y, −z+2.

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C5–C10 ring.

D—H···A D—H H···A D···A D—H···A
C1—H1A···Cg1ii 0.97 2.74 3.645 (4) 155
C4—H4···Cg1iii 0.93 2.90 3.805 (3) 164

Symmetry codes: (ii) −x+2, −y−1, −z+2; (iii) −x+3/2, y−1/2, −z+3/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: WM5116).

References

  1. Brandenburg, K. (2001). DIAMOND. Crystal Impact, Bonn, Germany.
  2. Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Floyd, J. M., Gray, G. M., VanEngen Spivey, A. G., Lawson, C. M., Pritchett, T. M., Ferry, M. J., Hoffman, R. C. & Mott, A. G. (2005). Inorg. Chim. Acta, 358, 3773–3785.
  6. Ghelenji, S., Kargar, H., Sharafi, Z. & Kia, R. (2011). Acta Cryst. E67, m1393. [DOI] [PMC free article] [PubMed]
  7. Kia, R., Kargar, H., Zare, K. & Khan, I. U. (2010). Acta Cryst. E66, m366–m367. [DOI] [PMC free article] [PubMed]
  8. Mohan, A., Radha, K. & Srinivas Mohan, M. (1998). Asian J. Chem., 10, 50–55.
  9. Ourari, A., Zoubeidi, C., Derafa, W., Bouacida, S. & Merazig, H. (2015). Spectrochim. Acta Part A. Submitted. [DOI] [PMC free article] [PubMed]
  10. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  11. Siegel, H. (1973). Metal Ions in Biological Systems, Vol. 2, ch. 2. New York: Marcel Dekker.
  12. Zhang, S. H., Zhang, Y. D., Zou, H. H., Guo, J. J., Li, H. P., Song, Y. & Liang, H. (2013). Inorg. Chim. Acta, 396, 119–125.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015001309/wm5116sup1.cif

e-71-00m33-sup1.cif (21.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015001309/wm5116Isup2.hkl

e-71-00m33-Isup2.hkl (124.8KB, hkl)

. DOI: 10.1107/S2056989015001309/wm5116fig1.tif

The mol­ecular structure of the title compound with the atomic labelling scheme. Displacement are drawn at the 50% probability level. Non-labelled atoms are generated by symmetry code −x+2, −y, −z+2.

. DOI: 10.1107/S2056989015001309/wm5116fig2.tif

Formation of alternating zigzag layers parallel to (001).

. DOI: 10.1107/S2056989015001309/wm5116fig3.tif

A view of the layers along [010].

CCDC reference: 1044698

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES