Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jan 10;71(Pt 2):o103–o104. doi: 10.1107/S2056989015000080

Crystal structure of S-hexyl (E)-3-(4-methyl­benzyl­idene)di­thio­carbazate

M B H Howlader a, M S Begum a,*, M C Sheikh b, R Miyatake c, E Zangrando d
PMCID: PMC4384598  PMID: 25878852

Abstract

In the title compound, C15H22N2S2, the di­thio­carbazate group adopts an E conformation with respect to the C=N bond of the benzyl­idene moiety. In the crystal, mol­ecules are linked by pairs of N—H⋯S hydrogen bonds, forming inversion dimers with an R 2 2(8) ring motif. The dimers are linked via C—H⋯π inter­actions, forming chains propagating along [100].

Keywords: crystal structure, S-hexyl di­thio­carbazate, bidentate Schiff base, N—H⋯S hydrogen bonds, C—H⋯π inter­actions.

Related literature  

For the biological properties of bidentate Schiff bases of S-methyl di­thio­carbazate or S-benzyl di­thio­carbaza­te and their bivalent metal complexes, see: Chan et al. (2008); How et al. (2008); Tarafder et al. (2002); Ali et al. (2002); Chew et al. (2004); Crouse et al. (2004). For their N,S-chelating behavior towards metal atoms, see for example: Islam et al. (2011). For the structures of related compounds, see: Tarafder et al. (2008, 2010).graphic file with name e-71-0o103-scheme1.jpg

Experimental  

Crystal data  

  • C15H22N2S2

  • M r = 294.47

  • Triclinic, Inline graphic

  • a = 4.79244 (9) Å

  • b = 11.3790 (2) Å

  • c = 14.5382 (3) Å

  • α = 100.1666 (7)°

  • β = 91.2117 (7)°

  • γ = 94.6754 (7)°

  • V = 777.26 (3) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 3.00 mm−1

  • T = 173 K

  • 0.19 × 0.11 × 0.07 mm

Data collection  

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Rigaku, 2001) T min = 0.615, T max = 0.811

  • 8970 measured reflections

  • 2802 independent reflections

  • 2162 reflections with F 2 > 2.0σ(F 2)

  • R int = 0.052

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.129

  • S = 1.04

  • 2802 reflections

  • 176 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: RAPID-AUTO (Rigaku, 2001); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure.

Supplementary Material

Crystal structure: contains datablock(s) General, I. DOI: 10.1107/S2056989015000080/su5050sup1.cif

e-71-0o103-sup1.cif (18KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015000080/su5050Isup2.hkl

e-71-0o103-Isup2.hkl (137.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015000080/su5050Isup3.cml

. DOI: 10.1107/S2056989015000080/su5050fig1.tif

A view of the mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

a . DOI: 10.1107/S2056989015000080/su5050fig2.tif

A partial view along the a axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity).

CCDC reference: 1035819

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

Cg1 is the centroid of the C1C6 ring.

DHA DH HA D A DHA
N2H9S1i 0.83(3) 2.56(3) 3.3760(19) 168(2)
C1H2Cg1ii 0.98 2.61 3.529(3) 157

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

MBHH and MSB are grateful to the Department of Chemistry, Rajshahi University, for the provision of laboratory facilities. MCS acknowledges the Department of Applied Chemistry, Toyama University, for providing funds for single-crystal X-ray analyses.

supplementary crystallographic information

S1. Synthesis and crystallization

To an ethano­lic solution of KOH (2.81 g, 0.05 mol) hydrazine hydrate (2.50 g, 0.05 mol, 99%) was added and the mixture was stirred at 273 K. To this solution carbon di­sulfide (3.81 g, 0.05 mol) was added drop wise with constant stirring for one hour. Then n-bromo­hexane (8.25 g, 0.05 mol) was added drop wise with vigorous stirring at 273 K for an additional hour. Finally, 4-methyl­benzaldehyde (6.0 g, 0.05 mol) in ethanol was added and the mixture refluxed for 30 min. The mixture was filtered while hot and then the filtrate was cooled to 273 K giving a precipitate of the Schiff base product. It was recrystallized from ethanol at room temperature and dried in a vacuum desiccator over anhydrous CaCl2. Colourless crystals, suitable for X-ray diffraction, of the title compound were obtained by slow evaporation of a solution in ethanol/aceto­nitrile (2:1) after 23 days (m.p.: 357 K).

S2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The H atom of the NH group was located in a difference Fourier map and freely refined. The C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.95–0.99 Å with Uiso(H) = 1.5Ueq(C) for methy H atoms and = 1.2Ueq(C) for other H atoms.

S3. Comment

Bidentate Schiff bases of S-methyl dithiocarbazate or S-benzyl dithiocarbazates and their bivalent metal complexes have received considerable attention in the field of medical science for their antibacterial, antifungal, antiviral, antitumour, and anticancer activities (Chan et al., 2008; How et al., 2008; Tarafder et al., 2002; Ali et al., 2002; Chew et al., 2004; Crouse et al., 2004)

The molecular structure of the title compound is shown in Fig. 1. The Schiff base exists in the thione tautomeric form with the dithiocarbazate fragment adopting an E conformation with respect to the C═N bond of the benzylidene moiety. The β-nitrogen and the thioketo sulphur are trans located with respect to the C9—N2 bond. The bond lengths and angles are within the normal ranges and are comparable to those in related structures (Tarafder et al., 2008, 2010). The molecule is in its thione tautomeric and the co-planarity of atoms (with the exception of the S-hexyl chain) indicates an electron delocalization within it. The molecule, when used in coordination chemistry, requires a rotation about the C9—N2 by 180 ° in order to allow the N,S chelating behavior towards the metal atom (Islam et al., 2011).

In the crystal, molecules are linked by pairs of N—H···S hydrogen bonds forming inversion dimers with an R22(8) ring motif (Table 1 and Fig. 2). The dimers are linked via C—H···π interactions forming chains propagating along the a axis direction (Table 1).

Figures

Fig. 1.

Fig. 1.

A view of the molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A partial view along the a axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity).

Crystal data

C15H22N2S2 Z = 2
Mr = 294.47 F(000) = 316.00
Triclinic, P1 Dx = 1.258 Mg m3
Hall symbol: -P 1 Cu Kα radiation, λ = 1.54187 Å
a = 4.79244 (9) Å Cell parameters from 7029 reflections
b = 11.3790 (2) Å θ = 3.1–68.2°
c = 14.5382 (3) Å µ = 3.00 mm1
α = 100.1666 (7)° T = 173 K
β = 91.2117 (7)° Prism, colorless
γ = 94.6754 (7)° 0.19 × 0.11 × 0.07 mm
V = 777.26 (3) Å3

Data collection

Rigaku R-AXIS RAPID diffractometer 2162 reflections with F2 > 2.0σ(F2)
Detector resolution: 10.000 pixels mm-1 Rint = 0.052
ω scans θmax = 68.2°
Absorption correction: multi-scan (ABSCOR; Rigaku, 2001) h = −5→5
Tmin = 0.615, Tmax = 0.811 k = −13→13
8970 measured reflections l = −17→17
2802 independent reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0784P)2] where P = (Fo2 + 2Fc2)/3
2802 reflections (Δ/σ)max < 0.001
176 parameters Δρmax = 0.43 e Å3
0 restraints Δρmin = −0.26 e Å3
Primary atom site location: structure-invariant direct methods

Special details

Experimental. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY
Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 1.54116 (12) 0.83289 (5) 0.90597 (4) 0.0326 (2)
S2 1.17201 (12) 0.64667 (5) 0.98677 (4) 0.0333 (2)
N1 1.0048 (4) 0.84542 (15) 1.10436 (12) 0.0293 (5)
N2 1.2012 (4) 0.87708 (16) 1.04349 (13) 0.0297 (5)
C1 0.0848 (5) 0.8428 (3) 1.42942 (17) 0.0390 (6)
C2 0.2994 (5) 0.8663 (2) 1.35925 (15) 0.0300 (5)
C3 0.3922 (5) 0.77235 (19) 1.29544 (15) 0.0333 (6)
C4 0.5864 (5) 0.79268 (19) 1.23002 (15) 0.0327 (6)
C5 0.6987 (5) 0.90853 (18) 1.22664 (14) 0.0282 (5)
C6 0.6060 (5) 1.00311 (19) 1.28972 (15) 0.0314 (6)
C7 0.4103 (5) 0.9817 (2) 1.35483 (15) 0.0334 (6)
C8 0.9098 (5) 0.93191 (19) 1.15966 (15) 0.0281 (5)
C9 1.3050 (5) 0.79357 (19) 0.98029 (15) 0.0290 (5)
C10 1.3277 (5) 0.55512 (19) 0.88956 (15) 0.0329 (6)
C11 1.1314 (5) 0.51925 (18) 0.80356 (15) 0.0333 (6)
C12 1.0591 (5) 0.62287 (19) 0.75707 (15) 0.0329 (6)
C13 0.8582 (5) 0.58746 (19) 0.67205 (15) 0.0330 (6)
C14 0.7870 (5) 0.69523 (19) 0.63000 (16) 0.0363 (6)
C15 0.5920 (6) 0.6635 (3) 0.54445 (17) 0.0445 (7)
H1 0.0707 0.7576 1.4338 0.0468*
H2 −0.0975 0.8647 1.4095 0.0468*
H3 0.1417 0.8908 1.4907 0.0468*
H4 0.3201 0.6925 1.2971 0.0400*
H5 0.6440 0.7270 1.1869 0.0393*
H6 0.6778 1.0830 1.2880 0.0377*
H7 0.3505 1.0474 1.3974 0.0401*
H8 0.9772 1.0121 1.1572 0.0337*
H9 1.266 (5) 0.948 (3) 1.0471 (17) 0.044 (8)*
H10 1.4987 0.6000 0.8723 0.0395*
H11 1.3848 0.4817 0.9098 0.0395*
H12 1.2193 0.4603 0.7573 0.0400*
H13 0.9556 0.4791 0.8220 0.0400*
H14 1.2346 0.6621 0.7376 0.0394*
H15 0.9745 0.6826 0.8037 0.0394*
H16 0.9442 0.5300 0.6240 0.0396*
H17 0.6834 0.5467 0.6907 0.0396*
H18 0.6990 0.7519 0.6781 0.0435*
H19 0.9628 0.7367 0.6129 0.0435*
H20 0.5574 0.7366 0.5206 0.0534*
H21 0.4142 0.6253 0.5612 0.0534*
H22 0.6782 0.6081 0.4961 0.0534*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0382 (4) 0.0272 (4) 0.0329 (4) 0.0014 (3) 0.0096 (3) 0.0062 (3)
S2 0.0453 (5) 0.0245 (3) 0.0317 (4) 0.0021 (3) 0.0077 (3) 0.0087 (3)
N1 0.0353 (12) 0.0273 (10) 0.0259 (10) 0.0011 (9) 0.0034 (9) 0.0070 (8)
N2 0.0342 (12) 0.0236 (10) 0.0318 (11) 0.0010 (9) 0.0072 (9) 0.0062 (8)
C1 0.0374 (15) 0.0452 (14) 0.0383 (14) 0.0048 (12) 0.0056 (11) 0.0169 (11)
C2 0.0308 (14) 0.0345 (12) 0.0266 (12) 0.0037 (10) −0.0019 (10) 0.0104 (10)
C3 0.0404 (15) 0.0240 (11) 0.0361 (13) −0.0023 (10) 0.0017 (11) 0.0091 (10)
C4 0.0413 (15) 0.0255 (11) 0.0312 (12) 0.0045 (11) 0.0007 (11) 0.0039 (10)
C5 0.0324 (14) 0.0268 (11) 0.0263 (12) 0.0034 (10) −0.0014 (10) 0.0071 (9)
C6 0.0350 (14) 0.0238 (11) 0.0364 (13) 0.0016 (10) 0.0032 (11) 0.0079 (10)
C7 0.0399 (15) 0.0290 (12) 0.0314 (12) 0.0060 (11) 0.0044 (11) 0.0033 (10)
C8 0.0296 (13) 0.0255 (11) 0.0304 (12) 0.0025 (10) 0.0003 (10) 0.0083 (9)
C9 0.0333 (14) 0.0280 (11) 0.0274 (11) 0.0054 (10) −0.0011 (10) 0.0084 (9)
C10 0.0406 (15) 0.0249 (11) 0.0346 (13) 0.0086 (11) 0.0042 (11) 0.0061 (10)
C11 0.0416 (15) 0.0245 (11) 0.0350 (13) 0.0034 (11) 0.0046 (11) 0.0074 (10)
C12 0.0396 (15) 0.0254 (11) 0.0345 (13) 0.0044 (10) 0.0050 (11) 0.0069 (10)
C13 0.0362 (14) 0.0272 (12) 0.0364 (13) 0.0021 (10) 0.0056 (11) 0.0077 (10)
C14 0.0416 (16) 0.0301 (12) 0.0388 (13) 0.0035 (11) 0.0048 (12) 0.0100 (10)
C15 0.0494 (17) 0.0415 (14) 0.0449 (15) 0.0004 (13) −0.0021 (13) 0.0160 (12)

Geometric parameters (Å, º)

S1—C9 1.670 (3) C1—H2 0.980
S2—C9 1.759 (3) C1—H3 0.980
S2—C10 1.814 (3) C3—H4 0.950
N1—N2 1.375 (3) C4—H5 0.950
N1—C8 1.277 (3) C6—H6 0.950
N2—C9 1.335 (3) C7—H7 0.950
C1—C2 1.505 (4) C8—H8 0.950
C2—C3 1.395 (3) C10—H10 0.990
C2—C7 1.389 (4) C10—H11 0.990
C3—C4 1.380 (4) C11—H12 0.990
C4—C5 1.392 (3) C11—H13 0.990
C5—C6 1.394 (3) C12—H14 0.990
C5—C8 1.460 (4) C12—H15 0.990
C6—C7 1.384 (4) C13—H16 0.990
C10—C11 1.524 (3) C13—H17 0.990
C11—C12 1.518 (4) C14—H18 0.990
C12—C13 1.526 (3) C14—H19 0.990
C13—C14 1.523 (4) C15—H20 0.980
C14—C15 1.512 (4) C15—H21 0.980
N2—H9 0.84 (3) C15—H22 0.980
C1—H1 0.980
C9—S2—C10 103.78 (11) C2—C7—H7 119.297
N2—N1—C8 115.97 (18) C6—C7—H7 119.294
N1—N2—C9 120.61 (18) N1—C8—H8 119.724
C1—C2—C3 120.9 (2) C5—C8—H8 119.729
C1—C2—C7 121.6 (2) S2—C10—H10 108.909
C3—C2—C7 117.5 (2) S2—C10—H11 108.910
C2—C3—C4 121.5 (2) C11—C10—H10 108.900
C3—C4—C5 120.6 (2) C11—C10—H11 108.913
C4—C5—C6 118.3 (2) H10—C10—H11 107.737
C4—C5—C8 121.55 (19) C10—C11—H12 108.647
C6—C5—C8 120.14 (19) C10—C11—H13 108.645
C5—C6—C7 120.6 (2) C12—C11—H12 108.656
C2—C7—C6 121.4 (2) C12—C11—H13 108.654
N1—C8—C5 120.5 (2) H12—C11—H13 107.587
S1—C9—S2 126.25 (13) C11—C12—H14 108.631
S1—C9—N2 120.30 (17) C11—C12—H15 108.636
S2—C9—N2 113.44 (17) C13—C12—H14 108.637
S2—C10—C11 113.33 (17) C13—C12—H15 108.627
C10—C11—C12 114.44 (17) H14—C12—H15 107.578
C11—C12—C13 114.52 (18) C12—C13—H16 109.166
C12—C13—C14 112.20 (17) C12—C13—H17 109.171
C13—C14—C15 113.80 (18) C14—C13—H16 109.159
N1—N2—H9 121.2 (17) C14—C13—H17 109.167
C9—N2—H9 118.1 (17) H16—C13—H17 107.879
C2—C1—H1 109.474 C13—C14—H18 108.795
C2—C1—H2 109.467 C13—C14—H19 108.797
C2—C1—H3 109.465 C15—C14—H18 108.803
H1—C1—H2 109.474 C15—C14—H19 108.808
H1—C1—H3 109.480 H18—C14—H19 107.672
H2—C1—H3 109.467 C14—C15—H20 109.472
C2—C3—H4 119.227 C14—C15—H21 109.469
C4—C3—H4 119.232 C14—C15—H22 109.470
C3—C4—H5 119.709 H20—C15—H21 109.471
C5—C4—H5 119.710 H20—C15—H22 109.473
C5—C6—H6 119.686 H21—C15—H22 109.472
C7—C6—H6 119.692
C9—S2—C10—C11 −99.27 (15) C3—C4—C5—C6 −1.2 (4)
C10—S2—C9—S1 −4.68 (19) C3—C4—C5—C8 178.37 (19)
C10—S2—C9—N2 176.19 (15) C4—C5—C6—C7 0.9 (4)
N2—N1—C8—C5 179.48 (17) C4—C5—C8—N1 −2.6 (4)
C8—N1—N2—C9 −177.29 (18) C6—C5—C8—N1 176.96 (19)
N1—N2—C9—S1 179.41 (16) C8—C5—C6—C7 −178.62 (18)
N1—N2—C9—S2 −1.4 (3) C5—C6—C7—C2 −0.3 (4)
C1—C2—C3—C4 179.25 (19) S2—C10—C11—C12 66.6 (2)
C1—C2—C7—C6 −179.50 (19) C10—C11—C12—C13 −178.90 (17)
C3—C2—C7—C6 −0.1 (4) C11—C12—C13—C14 178.41 (17)
C7—C2—C3—C4 −0.2 (4) C12—C13—C14—C15 178.99 (17)
C2—C3—C4—C5 0.8 (4)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C1–C6 ring.

D—H···A D—H H···A D···A D—H···A
N2—H9···S1i 0.83 (3) 2.56 (3) 3.3760 (19) 168 (2)
C1—H2···Cg1ii 0.98 2.61 3.529 (3) 157

Symmetry codes: (i) −x+3, −y+2, −z+2; (ii) x−1, y, z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU5050).

References

  1. Ali, M. A., Mirza, A. H., Butcher, R. J., Tarafder, M. T. H., Keat, T. B. & Ali Manaf, A. (2002). J. Inorg. Biochem. 92, 141–148. [DOI] [PubMed]
  2. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
  3. Chan, M. H. E., Crouse, K. A., Tahir, M. I. M., Rosli, R., Umar-Tsafe, N. & Cowley, A. R. (2008). Polyhedron, 27, 1141–1149.
  4. Chew, K. B., Tarafder, M. T. H., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H. K. (2004). Polyhedron, 23, 1385–1392.
  5. Crouse, K. A., Chew, K. B., Tarafder, M. T. H., Kasbollah, A., Ali, A. M., Yamin, B. M. & Fun, H. K. (2004). Polyhedron, 23, 161–168.
  6. How, F. N. F., Crouse, K. A., Tahir, M. I. M., Tarafder, M. T. H. & Cowley, A. R. (2008). Polyhedron, 27, 3325–3329.
  7. Islam, M. A.-A. A. A., Tarafder, M. T. H., Sheikh, M. C., Alam, M. A. & Zangrando, E. (2011). Transition Met. Chem. 36, 531–537.
  8. Rigaku (2001). RAPID AUTO and ABSCOR. Rigaku Corporation, Tokyo, Japan.
  9. Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Tarafder, M. T. H., Chew, K. B., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H. K. (2002). Polyhedron, 21, 2683–2690.
  12. Tarafder, M. T. H., Crouse, K. A., Islam, M. T., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, o1042–o1043. [DOI] [PMC free article] [PubMed]
  13. Tarafder, M. T. H., Khan, S. S., Islam, M. A. A. A. A., Lorenzi, L. & Zangrando, E. (2010). Acta Cryst. E66, o2851. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) General, I. DOI: 10.1107/S2056989015000080/su5050sup1.cif

e-71-0o103-sup1.cif (18KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015000080/su5050Isup2.hkl

e-71-0o103-Isup2.hkl (137.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015000080/su5050Isup3.cml

. DOI: 10.1107/S2056989015000080/su5050fig1.tif

A view of the mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

a . DOI: 10.1107/S2056989015000080/su5050fig2.tif

A partial view along the a axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity).

CCDC reference: 1035819

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES