Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jan 31;71(Pt 2):o139. doi: 10.1107/S2056989015000353

Crystal structure of β-d,l-allose

Tomohiko Ishii a,*, Tatsuya Senoo a, Taro Kozakai b, Kazuhiro Fukada b, Genta Sakane c
PMCID: PMC4384602  PMID: 25878872

Abstract

The title compound, C6H12O6, a C-3 position epimer of glucose, was crystallized from an equimolar mixture of d- and l-allose. It was confirmed that d-allose (l-allose) formed β-pyran­ose with a 4 C 1 (1 C 4) conformation in the crystal. In the crystal, molecules are linked by O—H⋯O hydrogen bond, forming a three-dimensional framework. The cell volume of the racemic β-d,l-allose is 739.36 (3) Å3, which is about 10 Å3 smaller than that of chiral β-d-allose [V = 751.0 (2) Å3].

Keywords: crystal structure, racemic compound, rare sugar, O—H⋯O hydrogen bonding

Related literature  

For the crystal structure of the chiral β-d-allose, see: Kroon-Batenburg et al. (1984). For the crystal structure of racemic d,l-arabinose, see: Longchambon et al. (1985) and of chiral l-arabinose, see: Takagi & Jeffrey (1977). For the synthesis of chiral d- or l-allose, see: Menavuvu et al. (2006); Morimoto et al. (2006, 2013); Shimonishi & Izumori (1996).graphic file with name e-71-0o139-scheme1.jpg

Experimental  

Crystal data  

  • C6H12O6

  • M r = 180.16

  • Monoclinic, Inline graphic

  • a = 4.98211 (10) Å

  • b = 12.5624 (3) Å

  • c = 11.8156 (3) Å

  • β = 91.1262 (14)°

  • V = 739.36 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.29 mm−1

  • T = 295 K

  • 0.10 × 0.10 × 0.10 mm

Data collection  

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.687, T max = 0.879

  • 12963 measured reflections

  • 1350 independent reflections

  • 1232 reflections with F 2 > 2σ(F 2)

  • R int = 0.075

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.102

  • S = 1.07

  • 1350 reflections

  • 115 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: RAPID-AUTO (Rigaku, 2009); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SIR2008 in Il Milione (Burla et al., 2007); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure.

Supplementary Material

Crystal structure: contains datablock(s) General, I. DOI: 10.1107/S2056989015000353/is5386sup1.cif

e-71-0o139-sup1.cif (398.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015000353/is5386Isup2.hkl

e-71-0o139-Isup2.hkl (74.5KB, hkl)

ORTEP . DOI: 10.1107/S2056989015000353/is5386fig1.tif

ORTEP view of the title compound with the atom-labeling scheme. The thermal ellipsoids of all non-hydrogen atoms are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.

a . DOI: 10.1107/S2056989015000353/is5386fig2.tif

Part of the crystal structure of the title compound with hydrogen-bonding network represented as light green dashed lines, viewed down the tilted a axis. The hydrogen atoms are omitted for clarity.

d et al. a . DOI: 10.1107/S2056989015000353/is5386fig3.tif

Part of the crystal structure of the chiral β-d-allose (Kroon-Batenburg et al., 1984) with hydrogen-bonding network represented as light blue dashed lines, viewed down the a axis. The hydrogen atoms are omitted for clarity.

CCDC reference: 1037204

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
O1H1AO4i 0.82 1.88 2.6884(16) 171
O2H2AO6i 0.82 1.99 2.8044(16) 172
O3H3AO2ii 0.82 1.94 2.7494(16) 169
O4H4AO1iii 0.82 1.94 2.7384(16) 163
O6H6AO5iv 0.82 2.03 2.8439(15) 171

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

supplementary crystallographic information

S1. Comment

Orientations of three hydrogen atoms (H1A, H2A, H4A) located on three equatorial OH groups at C-1, C-2 and C-4 positions are perpendicular to the pyranose ring. A hydrogen atom (H3A) on the axial OH group at C-3 position is located along to the radial direction. Therefore, it is inconvenient to obtain the intramolecular hydrogen bonding. Only a weak intramolecular hydrogen bonding (O4—H4A···O3) is found in the racemic β-D,L-allose, with long interatomic distance (H4A···O3; 2.49 Å) and the small bond angle (O4—H4A···O3; 106°). In the case of the chiral β-D-allose, there are five hydrogen bonding (O1—H1A···O4, O2—H2A···O6, O3—H3A···O2, O4—H4A···O1, O6—H6A···O5) observed between two adjacent D-allose molecules (Kroon-Batenburg et al., 1984). These five hydrogen bondings are also observed in the racemic β-D,L-allose with a same corresponding sequential number. Three of them (O1—H1A···O4i, O2—H2A···O6i and O4—H4A···O1iii; Table 1) are used for creating the hydrogen bonding network between two adjacent D-molecules or L-molecules, forming a homochiral layer parallel to the ab-plane. The remaining hydrogen bonds (O3—H3A···O2ii and O6—H6A···O5iv; Table 1) are used for connecting between the D- and L-allose molecules. An example of the unit cell volume of racemic compound less than that of chiral one was also found in the case of racemic D,L-arabinose (V = 596.516 Å3 at 175 K; Longchambon et al., 1985) and chiral L-arabinose (V = 598.661 Å3 at 123 K; Takagi et al., 1977).

S2. Experimental

D-Allose and L-allose were biosynthesized from D-psicose and L-psicose using L-rhammose isomerase (Menavuvu et al., 2006; Morimoto et al., 2006) and L-ribose isomerase (Shimonishi et al., 1996; Morimoto et al., 2013), respectively. Equimolar mixture of D-allose and L-allose was dissolved in water to give 15 wt% solution, and then it was kept at 30 °C. After two days, small crystals appeared and they were grown at 25 °C for two weeks yielded prism-shaped crystals of sufficient size. Melting point of the obtained crystals was confirmed to be 181 °C, which was 30–35 °C higher than the melting point of β-D-allose.

S3. Refinement

H atoms bounded to methine-type C (H1B, H2B, H3B, H4B, H5A) were positioned geometrically and refined using a riding model with C—H = 0.98 Å and Uiso(H) = 1.2Ueq(C). H atoms bounded to methylene-type C (H6B, H6C) were positioned geometrically and refined using a riding model with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C). H atoms bounded to O (H1A, H2A, H3A, H4A, H6A) were positioned geometrically and refined using a riding model with O—H = 0.82 Å and Uiso(H) = 1.2Ueq(O), allowing for free rotation of the OH groups.

Figures

Fig. 1.

Fig. 1.

ORTEP view of the title compound with the atom-labeling scheme. The thermal ellipsoids of all non-hydrogen atoms are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Part of the crystal structure of the title compound with hydrogen-bonding network represented as light green dashed lines, viewed down the tilted a axis. The hydrogen atoms are omitted for clarity.

Fig. 3.

Fig. 3.

Part of the crystal structure of the chiral β-D-allose (Kroon-Batenburg et al., 1984) with hydrogen-bonding network represented as light blue dashed lines, viewed down the a axis. The hydrogen atoms are omitted for clarity.

Crystal data

C6H12O6 F(000) = 384.00
Mr = 180.16 Dx = 1.618 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54187 Å
Hall symbol: -P 2ybc Cell parameters from 11709 reflections
a = 4.98211 (10) Å θ = 3.5–68.2°
b = 12.5624 (3) Å µ = 1.29 mm1
c = 11.8156 (3) Å T = 295 K
β = 91.1262 (14)° Block, colorless
V = 739.36 (3) Å3 0.10 × 0.10 × 0.10 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer 1232 reflections with F2 > 2σ(F2)
Detector resolution: 10.000 pixels mm-1 Rint = 0.075
ω scans θmax = 68.2°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) h = −6→6
Tmin = 0.687, Tmax = 0.879 k = −15→15
12963 measured reflections l = −14→14
1350 independent reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037 H-atom parameters constrained
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0463P)2 + 0.3535P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max = 0.001
1350 reflections Δρmax = 0.37 e Å3
115 parameters Δρmin = −0.22 e Å3
0 restraints Extinction correction: SHELXL2013 (Sheldrick, 2015)
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0159 (15)
Secondary atom site location: difference Fourier map

Special details

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.1621 (3) 0.79703 (8) 0.67894 (10) 0.0283 (3)
O2 0.1676 (3) 0.85269 (9) 0.91826 (9) 0.0311 (4)
O3 −0.0213 (2) 1.05723 (8) 0.88005 (9) 0.0244 (3)
O4 0.3426 (3) 1.21319 (8) 0.80258 (10) 0.0270 (3)
O5 0.2673 (2) 0.96785 (8) 0.63757 (8) 0.0219 (3)
O6 0.6115 (3) 1.14807 (9) 0.56175 (9) 0.0282 (3)
C1 0.1454 (3) 0.90015 (11) 0.71937 (12) 0.0211 (4)
C2 0.2848 (3) 0.91736 (11) 0.83377 (12) 0.0207 (4)
C3 0.2552 (3) 1.03366 (11) 0.86734 (12) 0.0195 (4)
C4 0.3680 (3) 1.10357 (11) 0.77418 (12) 0.0189 (4)
C5 0.2263 (3) 1.07910 (11) 0.66196 (12) 0.0197 (4)
C6 0.3259 (4) 1.14427 (12) 0.56431 (13) 0.0259 (4)
H1A 0.3191 0.7774 0.6812 0.0340*
H1B −0.0442 0.9196 0.7254 0.0254*
H2A 0.2377 0.7936 0.9180 0.0373*
H2B 0.4758 0.8998 0.8280 0.0248*
H3A −0.0440 1.0847 0.9421 0.0293*
H3B 0.3529 1.0470 0.9387 0.0234*
H4B 0.5592 1.0872 0.7668 0.0226*
H4A 0.1849 1.2268 0.8151 0.0324*
H5A 0.0336 1.0920 0.6699 0.0237*
H6A 0.6640 1.1146 0.5069 0.0339*
H6C 0.2577 1.1140 0.4939 0.0311*
H6B 0.2565 1.2162 0.5702 0.0311*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0289 (7) 0.0177 (6) 0.0386 (7) −0.0020 (5) 0.0058 (5) −0.0067 (5)
O2 0.0465 (8) 0.0190 (6) 0.0283 (6) 0.0071 (5) 0.0162 (5) 0.0067 (5)
O3 0.0230 (6) 0.0284 (6) 0.0222 (6) 0.0063 (5) 0.0066 (4) −0.0025 (5)
O4 0.0271 (6) 0.0147 (6) 0.0393 (7) −0.0005 (4) 0.0044 (5) −0.0042 (5)
O5 0.0292 (7) 0.0174 (6) 0.0193 (6) −0.0019 (4) 0.0049 (5) −0.0011 (4)
O6 0.0303 (7) 0.0300 (7) 0.0247 (6) −0.0063 (5) 0.0089 (5) −0.0044 (5)
C1 0.0232 (8) 0.0154 (8) 0.0250 (8) −0.0019 (6) 0.0047 (6) −0.0016 (6)
C2 0.0233 (8) 0.0182 (8) 0.0207 (8) 0.0035 (6) 0.0054 (6) 0.0030 (6)
C3 0.0202 (8) 0.0195 (8) 0.0187 (7) 0.0025 (6) −0.0005 (6) −0.0010 (6)
C4 0.0187 (8) 0.0139 (7) 0.0240 (8) 0.0013 (6) 0.0013 (6) −0.0023 (6)
C5 0.0199 (8) 0.0165 (8) 0.0229 (8) 0.0017 (6) 0.0022 (6) 0.0002 (6)
C6 0.0282 (9) 0.0251 (8) 0.0245 (8) 0.0008 (6) 0.0025 (6) 0.0052 (7)

Geometric parameters (Å, º)

O1—C1 1.3837 (18) O1—H1A 0.820
O2—C2 1.4216 (19) O2—H2A 0.820
O3—C3 1.4199 (18) O3—H3A 0.820
O4—C4 1.4236 (18) O4—H4A 0.820
O5—C1 1.4314 (18) O6—H6A 0.820
O5—C5 1.4423 (18) C1—H1B 0.980
O6—C6 1.425 (2) C2—H2B 0.980
C1—C2 1.523 (2) C3—H3B 0.980
C2—C3 1.522 (2) C4—H4B 0.980
C3—C4 1.524 (2) C5—H5A 0.980
C4—C5 1.521 (2) C6—H6C 0.970
C5—C6 1.507 (2) C6—H6B 0.970
C1—O5—C5 112.16 (11) C6—O6—H6A 109.474
O1—C1—O5 107.10 (12) O1—C1—H1B 108.857
O1—C1—C2 114.20 (12) O5—C1—H1B 108.860
O5—C1—C2 108.84 (12) C2—C1—H1B 108.859
O2—C2—C1 110.83 (12) O2—C2—H2B 109.452
O2—C2—C3 108.80 (12) C1—C2—H2B 109.449
C1—C2—C3 108.83 (12) C3—C2—H2B 109.458
O3—C3—C2 109.09 (12) O3—C3—H3B 109.847
O3—C3—C4 109.17 (12) C2—C3—H3B 109.848
C2—C3—C4 109.02 (12) C4—C3—H3B 109.842
O4—C4—C3 110.57 (12) O4—C4—H4B 108.392
O4—C4—C5 111.04 (12) C3—C4—H4B 108.388
C3—C4—C5 109.98 (12) C5—C4—H4B 108.388
O5—C5—C4 107.75 (11) O5—C5—H5A 108.775
O5—C5—C6 108.87 (12) C4—C5—H5A 108.778
C4—C5—C6 113.79 (12) C6—C5—H5A 108.780
O6—C6—C5 112.25 (13) O6—C6—H6C 109.153
C1—O1—H1A 109.467 O6—C6—H6B 109.157
C2—O2—H2A 109.472 C5—C6—H6C 109.152
C3—O3—H3A 109.470 C5—C6—H6B 109.146
C4—O4—H4A 109.476 H6C—C6—H6B 107.880
C1—O5—C5—C4 63.92 (13) C1—C2—C3—C4 −56.31 (14)
C1—O5—C5—C6 −172.24 (10) O3—C3—C4—O4 60.68 (14)
C5—O5—C1—O1 171.24 (10) O3—C3—C4—C5 −62.31 (13)
C5—O5—C1—C2 −64.83 (13) C2—C3—C4—O4 179.76 (11)
O1—C1—C2—O2 −61.24 (16) C2—C3—C4—C5 56.77 (14)
O1—C1—C2—C3 179.15 (11) O4—C4—C5—O5 178.40 (10)
O5—C1—C2—O2 179.15 (10) O4—C4—C5—C6 57.59 (15)
O5—C1—C2—C3 59.54 (14) C3—C4—C5—O5 −58.88 (14)
O2—C2—C3—O3 −58.04 (14) C3—C4—C5—C6 −179.69 (10)
O2—C2—C3—C4 −177.17 (10) O5—C5—C6—O6 −74.12 (14)
C1—C2—C3—O3 62.82 (14) C4—C5—C6—O6 46.06 (16)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1A···O4i 0.82 1.88 2.6884 (16) 171
O2—H2A···O6i 0.82 1.99 2.8044 (16) 172
O3—H3A···O2ii 0.82 1.94 2.7494 (16) 169
O4—H4A···O1iii 0.82 1.94 2.7384 (16) 163
O4—H4A···O3 0.82 2.49 2.8333 (15) 106
O6—H6A···O5iv 0.82 2.03 2.8439 (15) 171

Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) −x, −y+2, −z+2; (iii) −x, y+1/2, −z+3/2; (iv) −x+1, −y+2, −z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: IS5386).

References

  1. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.
  2. Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
  3. Kroon-Batenburg, L. M. J., van der Sluis, P. & Kanters, J. A. (1984). Acta Cryst. C40, 1863–1865.
  4. Longchambon, F., Gillier-Pandraud, H., Wiest, R., Rees, B., Mitschler, A., Feld, R., Lehmann, M. & Becker, P. (1985). Acta Cryst. B41, 47–56.
  5. Menavuvu, B. T., Poonperm, W., Leang, K., Noguchi, N., Okada, H., Morimoto, K., Granström, T. B., Takada, G. & Izumori, K. (2006). J. Biosci. Bioeng. 101, 340–345. [DOI] [PubMed]
  6. Morimoto, K., Park, C.-S., Ozaki, M., Takeshita, K., Shimonishi, T., Granström, T. B., Takata, G., Tokuda, M. & Izumori, K. (2006). Enzyme Microb. Technol. 38, 855–859.
  7. Morimoto, K., Terami, Y., Maeda, Y., Yoshihara, A., Takata, G. & Izumori, K. (2013). J. Biosci. Bioeng. 115, 377–381. [DOI] [PubMed]
  8. Rigaku (2009). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
  9. Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
  10. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  11. Shimonishi, T. & Izumori, K. (1996). J. Ferment. Bioeng. 81, 493–497.
  12. Takagi, S. & Jeffrey, G. A. (1977). Acta Cryst. B33, 3033–3040.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) General, I. DOI: 10.1107/S2056989015000353/is5386sup1.cif

e-71-0o139-sup1.cif (398.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015000353/is5386Isup2.hkl

e-71-0o139-Isup2.hkl (74.5KB, hkl)

ORTEP . DOI: 10.1107/S2056989015000353/is5386fig1.tif

ORTEP view of the title compound with the atom-labeling scheme. The thermal ellipsoids of all non-hydrogen atoms are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.

a . DOI: 10.1107/S2056989015000353/is5386fig2.tif

Part of the crystal structure of the title compound with hydrogen-bonding network represented as light green dashed lines, viewed down the tilted a axis. The hydrogen atoms are omitted for clarity.

d et al. a . DOI: 10.1107/S2056989015000353/is5386fig3.tif

Part of the crystal structure of the chiral β-d-allose (Kroon-Batenburg et al., 1984) with hydrogen-bonding network represented as light blue dashed lines, viewed down the a axis. The hydrogen atoms are omitted for clarity.

CCDC reference: 1037204

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES