Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jan 28;71(Pt 2):o131–o132. doi: 10.1107/S2056989015001346

Crystal structure of (2S/2R,3S/3R)-3-hydroxy-2-phenyl­chroman-4-one

Roumaissa Belguedj a, Sofiane Bouacida a,b,*, Hocine Merazig a, Aissa Chibani a, Abdelmalek Bouraiou a
PMCID: PMC4384603  PMID: 25878868

Abstract

In the title mol­ecule, C15H12O3, the C atoms bearing the hy­droxy group and the phenyl ring are disordered over two sets of sites with refined occupancies of 0.573 (7) and 0.427 (7). There is also disorder of the phenyl ring but the hy­droxy group was refined as ordered. The dihedral angles between the benzene ring of the chromane ring system and the phenyl ring are 89.7 (2)° for the major component of disorder and 72.1 (3)° for the minor component. Both disorder components of the the di­hydro­pyran ring are in a half-chair conformation. In the crystal, mol­ecules are linked by pairs of O—H⋯O hydrogen bonds, forming inversion dimers with an R 2 2(10) graph-set motif. Weak C—H⋯π inter­actions link these dimers into ladders along [001].

Keywords: crystal structure, flavone derivative, hydrogen bonds, C—H⋯π inter­actions

Related literature  

For the synthesis and applications of flavone derivatives, see: Gaspar et al. (2014); Huang et al. (2007); Yu et al. (2003); Phosrithong et al. (2012); Harborne & Williams (2000); Tanaka & Sugino (2001); Saxena et al. (1985). For the synthesis of the title compound, see: Juvale et al. (2013). For a related structure, see: Piaskowska et al. (2013).graphic file with name e-71-0o131-scheme1.jpg

Experimental  

Crystal data  

  • C15H12O3

  • M r = 240.25

  • Monoclinic, Inline graphic

  • a = 5.3068 (3) Å

  • b = 26.7110 (18) Å

  • c = 9.4679 (6) Å

  • β = 117.431 (3)°

  • V = 1191.18 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 K

  • 0.16 × 0.11 × 0.08 mm

Data collection  

  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002) T min = 0.615, T max = 0.745

  • 6701 measured reflections

  • 2356 independent reflections

  • 1517 reflections with I > 2σ(I)

  • R int = 0.031

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.058

  • wR(F 2) = 0.148

  • S = 1.06

  • 2356 reflections

  • 216 parameters

  • 30 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2011); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015001346/lh5747sup1.cif

e-71-0o131-sup1.cif (28.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015001346/lh5747Isup2.hkl

e-71-0o131-Isup2.hkl (113.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015001346/lh5747Isup3.cml

. DOI: 10.1107/S2056989015001346/lh5747fig1.tif

The mol­ecule structure of the title compound. Displacement are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radius. The minor component of disorder is not shown.

. DOI: 10.1107/S2056989015001346/lh5747fig2.tif

Part of the crystal structure of the title compound with hydrogen bonds shown as dashed lines and C—H⋯π intectations as green unbroken lines. The minor component of disorder is not shown.

CCDC reference: 1044756

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

Cg1 and Cg2 are the centroids of the C10C15 and C10AC15A rings, respectively.

DHA DH HA D A DHA
O3H3OO2i 0.89(4) 2.04(4) 2.856(3) 153(4)
C3H3A Cg1ii 0.93 2.74 3.596(5) 153
C3H3A Cg2ii 0.93 2.92 3.756(5) 151

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

Thanks are due to MESRS and the DG–RSDT (Ministére de l’Enseignement Supérieur et de la Recherche Scientifique et la Direction Générale de la Recherche - Algérie) for financial support.

supplementary crystallographic information

S1. Comment

Flavonoids are natural products derived from secondary metabolism of plants and play an important role in various biological processes (Harborne & Williams, 2000). All classes of flavonoids exhibit a variety of biological activities (Gaspar et al., 2014; Huang et al., 2007; Yu et al., 2003; Phosrithong et al., 2012). On the other hand, the Algar, Flynn and Oyamada (AFO) oxidation of substituted 2'-hydroxychalcones with alkaline hydrogen peroxide give flavonol derivatives (Juvale et al., 2013). Dihydroflavonol was also obtained by this reaction (Saxena et al., 1985; Tanaka & Sugino (2001). In this paper, we report the structure determination of the title compound resulting from the oxidation of 2'-hydroxychalcone using AFO reaction conditions.

The molecular structure of the title compound is shown in Fig. 1. The carbon atoms [C8 and C9] bearing the hydroxy group and the phenyl ring are disordered over two sets of sites with refined occupancies 0.573 (7) and 0.427 (7). This causes disorder of the phenyl ring [C10–C15] but the hydroxy group was refined as ordered. Atom O3 and the attached hydrogen atom occupy a single site. The dihedral angles between the benzene ring of the chromane ring system [C1–C6] and the phenyl ring are 89.7 (2)° for the major component of disorder [C10–C15] and 72.1 (3) for the minor component of disorder [C10A–C15A]. Both disorder components of the the dihydropyran are ring in a half-chair conformation. This type of geometry is comparable a published structure with a similar type of disorder (Piaskowska et al., 2013).

In the crystal, pairs of molecules are linked by O—H···O hydrogen bonds (Table 1), forming inversion dimers with R22(10) graph set motif. Weak C—H···pi interactions link these dimers into ladders along [001] (Fig. 2).

S2. Experimental

The title compound was obtained by subjecting the (E)-1-(2-hydroxyphenyl)-3-phenylprop-2-en-1-one to Algar-Flynn-Oymanda (AFO) conditions using aqueous hydrogen peroxide in the presence of sodium hydroxide. Colorless crystals of the title compound I with melting point: 449–251 K (yield: 52%) were grown by slow evaporation of a solution of the title compound in diethylether. The 1H NMR spectra is in full agreement with the proposed structure (Tanaka & Sugino, 2001). The relative position of the hydroxyl and phenyl ring on the new heterocyclic ring could not be determined efficiently by NMR spectroscopy (J H2—H3 ≈ 12.4 Hz). However, the X-ray structure determination revealed a trans-configuration.

S3. Refinement

Hydrogen atoms were located in differnce Fourier maps but introduced in calculated positions and treated as riding on their parent atom (C) with C—H = 0.93 and 0.98 Å and Uiso(H) = 1.2Ueq(C). The hydrogen atom of the hydroxy group was located in a difference map and refined isotropically with an O—H distance restraint of 0.85 (2) Å. The DELU and SADI commands in SHELXL (Sheldrick, 2008) were used in the refinment the disorder.

Figures

Fig. 1.

Fig. 1.

The molecule structure of the title compound. Displacement are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radius. The minor component of disorder is not shown.

Fig. 2.

Fig. 2.

Part of the crystal structure of the title compound with hydrogen bonds shown as dashed lines and C—H···π intectations as green unbroken lines. The minor component of disorder is not shown.

Crystal data

C15H12O3 F(000) = 504
Mr = 240.25 Dx = 1.34 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1712 reflections
a = 5.3068 (3) Å θ = 2.5–23.2°
b = 26.7110 (18) Å µ = 0.09 mm1
c = 9.4679 (6) Å T = 295 K
β = 117.431 (3)° Prism, colorless
V = 1191.18 (13) Å3 0.16 × 0.11 × 0.08 mm
Z = 4

Data collection

Bruker APEXII diffractometer 2356 independent reflections
Radiation source: Enraf Nonius FR590 1517 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.031
CCD rotation images, thick slices scans θmax = 26.1°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) h = −5→6
Tmin = 0.615, Tmax = 0.745 k = −32→31
6701 measured reflections l = −11→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0475P)2 + 0.5327P] where P = (Fo2 + 2Fc2)/3
2356 reflections (Δ/σ)max < 0.001
216 parameters Δρmax = 0.14 e Å3
30 restraints Δρmin = −0.16 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.4498 (4) 0.85751 (6) 0.56442 (18) 0.0538 (5)
O2 0.8643 (5) 0.98972 (7) 0.6185 (2) 0.0768 (6)
O3 0.7507 (5) 0.93216 (8) 0.3576 (2) 0.0811 (7)
C1 0.5095 (5) 0.88656 (9) 0.6949 (3) 0.0487 (6)
C2 0.4263 (6) 0.86841 (11) 0.8046 (3) 0.0654 (8)
H2A 0.3327 0.8379 0.7875 0.079*
C3 0.4833 (7) 0.89589 (12) 0.9380 (3) 0.0782 (9)
H3A 0.428 0.8837 1.0116 0.094*
C4 0.6224 (8) 0.94163 (13) 0.9653 (3) 0.0826 (10)
H4A 0.6623 0.9598 1.057 0.099*
C5 0.7001 (7) 0.95974 (11) 0.8560 (3) 0.0694 (8)
H5A 0.7888 0.9908 0.8725 0.083*
C6 0.6481 (5) 0.93229 (9) 0.7201 (3) 0.0504 (6)
C7 0.7425 (6) 0.95026 (10) 0.6059 (3) 0.0590 (7)
C8 0.7356 (10) 0.91069 (15) 0.4871 (5) 0.0480 (15) 0.573 (7)
H8A 0.8973 0.888 0.5412 0.058* 0.573 (7)
C9 0.4642 (10) 0.88120 (18) 0.4324 (4) 0.0440 (14) 0.573 (7)
H9A 0.3063 0.905 0.386 0.053* 0.573 (7)
C8A 0.6023 (12) 0.9234 (2) 0.4446 (5) 0.048 (2) 0.427 (7)
H8AA 0.4052 0.9346 0.3836 0.058* 0.427 (7)
C9A 0.6092 (14) 0.8684 (2) 0.4818 (8) 0.0491 (18) 0.427 (7)
H9AA 0.8071 0.859 0.5506 0.059* 0.427 (7)
C10 0.4143 (17) 0.8417 (2) 0.3093 (6) 0.0438 (19) 0.573 (7)
C11 0.1560 (16) 0.8427 (3) 0.1717 (8) 0.066 (2) 0.573 (7)
H11A 0.0207 0.8667 0.1596 0.08* 0.573 (7)
C12 0.0997 (14) 0.8077 (3) 0.0521 (6) 0.082 (3) 0.573 (7)
H12A −0.0731 0.8083 −0.0399 0.099* 0.573 (7)
C13 0.3018 (18) 0.7718 (3) 0.0702 (8) 0.075 (4) 0.573 (7)
H13A 0.2642 0.7484 −0.0098 0.09* 0.573 (7)
C14 0.5602 (16) 0.7708 (3) 0.2078 (9) 0.0589 (19) 0.573 (7)
H14A 0.6954 0.7468 0.2199 0.071* 0.573 (7)
C15 0.6165 (13) 0.8058 (3) 0.3273 (7) 0.0531 (19) 0.573 (7)
H15A 0.7893 0.8052 0.4194 0.064* 0.573 (7)
C10A 0.499 (2) 0.8360 (4) 0.3363 (9) 0.054 (3) 0.427 (7)
C11A 0.212 (2) 0.8324 (3) 0.2302 (10) 0.053 (2) 0.427 (7)
H11B 0.0805 0.8519 0.2447 0.063* 0.427 (7)
C12A 0.1204 (18) 0.7995 (4) 0.1023 (10) 0.063 (3) 0.427 (7)
H12B −0.0718 0.797 0.0313 0.076* 0.427 (7)
C13A 0.317 (3) 0.7703 (3) 0.0806 (11) 0.063 (5) 0.427 (7)
H13B 0.2555 0.7482 −0.005 0.076* 0.427 (7)
C14A 0.604 (2) 0.7739 (5) 0.1867 (13) 0.081 (4) 0.427 (7)
H14B 0.735 0.7544 0.1721 0.097* 0.427 (7)
C15A 0.6950 (16) 0.8068 (5) 0.3145 (11) 0.066 (3) 0.427 (7)
H15B 0.8872 0.8093 0.3855 0.079* 0.427 (7)
H3O 0.843 (9) 0.9610 (11) 0.382 (5) 0.160 (18)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0702 (11) 0.0484 (10) 0.0507 (10) −0.0118 (8) 0.0346 (9) −0.0009 (7)
O2 0.0990 (16) 0.0637 (12) 0.0829 (14) −0.0364 (11) 0.0548 (13) −0.0229 (10)
O3 0.1237 (19) 0.0708 (14) 0.0775 (13) −0.0378 (13) 0.0709 (14) −0.0188 (11)
C1 0.0544 (14) 0.0501 (14) 0.0424 (12) 0.0046 (12) 0.0229 (11) 0.0071 (11)
C2 0.085 (2) 0.0643 (17) 0.0572 (16) 0.0026 (15) 0.0411 (16) 0.0131 (13)
C3 0.110 (3) 0.082 (2) 0.0583 (18) 0.0144 (19) 0.0524 (18) 0.0184 (16)
C4 0.124 (3) 0.080 (2) 0.0492 (16) 0.016 (2) 0.0449 (19) 0.0012 (15)
C5 0.092 (2) 0.0647 (18) 0.0500 (15) −0.0016 (15) 0.0312 (15) −0.0051 (13)
C6 0.0578 (15) 0.0511 (15) 0.0414 (12) 0.0033 (12) 0.0220 (12) 0.0015 (11)
C7 0.0714 (17) 0.0544 (16) 0.0567 (16) −0.0152 (14) 0.0340 (14) −0.0079 (12)
C8 0.046 (3) 0.052 (3) 0.049 (3) −0.006 (2) 0.024 (2) 0.003 (2)
C9 0.049 (3) 0.045 (3) 0.046 (3) −0.008 (2) 0.029 (2) −0.003 (2)
C8A 0.067 (5) 0.040 (4) 0.044 (4) 0.003 (3) 0.030 (4) 0.005 (3)
C9A 0.040 (4) 0.053 (4) 0.053 (4) −0.001 (3) 0.021 (3) −0.001 (3)
C10 0.046 (5) 0.046 (4) 0.053 (4) −0.013 (3) 0.034 (4) −0.005 (3)
C11 0.050 (3) 0.058 (5) 0.073 (5) 0.002 (3) 0.013 (4) −0.007 (4)
C12 0.067 (5) 0.085 (6) 0.075 (5) 0.000 (4) 0.016 (4) −0.021 (4)
C13 0.062 (6) 0.088 (9) 0.080 (8) −0.031 (5) 0.038 (6) −0.027 (6)
C14 0.068 (4) 0.044 (4) 0.073 (4) 0.017 (3) 0.040 (4) 0.002 (3)
C15 0.051 (4) 0.061 (4) 0.044 (3) 0.001 (4) 0.018 (3) 0.000 (3)
C10A 0.053 (7) 0.051 (6) 0.061 (5) −0.012 (4) 0.029 (4) −0.005 (4)
C11A 0.052 (6) 0.045 (5) 0.067 (7) 0.014 (4) 0.032 (6) 0.002 (4)
C12A 0.052 (5) 0.063 (5) 0.058 (5) −0.013 (4) 0.011 (4) −0.014 (5)
C13A 0.101 (11) 0.022 (6) 0.064 (9) 0.011 (6) 0.036 (8) −0.008 (5)
C14A 0.090 (7) 0.078 (8) 0.084 (8) −0.001 (6) 0.050 (6) −0.012 (6)
C15A 0.059 (5) 0.078 (6) 0.076 (5) −0.002 (5) 0.045 (5) −0.004 (4)

Geometric parameters (Å, º)

O1—C1 1.367 (3) C8A—H8AA 0.98
O1—C9A 1.422 (4) C9A—C10A 1.498 (4)
O1—C9 1.434 (4) C9A—H9AA 0.98
O2—C7 1.213 (3) C10—C11 1.39
O3—C8 1.389 (4) C10—C15 1.39
O3—C8A 1.396 (4) C11—C12 1.39
O3—H3O 0.885 (19) C11—H11A 0.93
C1—C6 1.388 (3) C12—C13 1.39
C1—C2 1.390 (3) C12—H12A 0.93
C2—C3 1.369 (4) C13—C14 1.39
C2—H2A 0.93 C13—H13A 0.93
C3—C4 1.389 (4) C14—C15 1.39
C3—H3A 0.93 C14—H14A 0.93
C4—C5 1.367 (4) C15—H15A 0.93
C4—H4A 0.93 C10A—C11A 1.39
C5—C6 1.394 (3) C10A—C15A 1.39
C5—H5A 0.93 C11A—C12A 1.39
C6—C7 1.466 (3) C11A—H11B 0.93
C7—C8 1.532 (4) C12A—C13A 1.39
C7—C8A 1.534 (5) C12A—H12B 0.93
C8—C9 1.509 (4) C13A—C14A 1.39
C8—H8A 0.98 C13A—H13B 0.93
C9—C10 1.502 (4) C14A—C15A 1.39
C9—H9A 0.98 C14A—H14B 0.93
C8A—C9A 1.507 (5) C15A—H15B 0.93
C1—O1—C9A 115.6 (3) O3—C8A—H8AA 109.9
C1—O1—C9 117.0 (2) C9A—C8A—H8AA 109.9
C9A—O1—C9 31.3 (2) C7—C8A—H8AA 109.9
C8—O3—C8A 29.9 (3) O1—C9A—C10A 107.9 (5)
C8—O3—H3O 113 (3) O1—C9A—C8A 111.8 (4)
C8A—O3—H3O 113 (3) C10A—C9A—C8A 113.0 (6)
O1—C1—C6 122.6 (2) O1—C9A—H9AA 108
O1—C1—C2 117.1 (2) C10A—C9A—H9AA 108
C6—C1—C2 120.3 (2) C8A—C9A—H9AA 108
C3—C2—C1 119.4 (3) C11—C10—C15 120
C3—C2—H2A 120.3 C11—C10—C9 117.4 (5)
C1—C2—H2A 120.3 C15—C10—C9 122.6 (5)
C2—C3—C4 121.0 (3) C12—C11—C10 120
C2—C3—H3A 119.5 C12—C11—H11A 120
C4—C3—H3A 119.5 C10—C11—H11A 120
C5—C4—C3 119.4 (3) C11—C12—C13 120
C5—C4—H4A 120.3 C11—C12—H12A 120
C3—C4—H4A 120.3 C13—C12—H12A 120
C4—C5—C6 120.8 (3) C14—C13—C12 120
C4—C5—H5A 119.6 C14—C13—H13A 120
C6—C5—H5A 119.6 C12—C13—H13A 120
C1—C6—C5 119.0 (2) C13—C14—C15 120
C1—C6—C7 119.7 (2) C13—C14—H14A 120
C5—C6—C7 121.3 (2) C15—C14—H14A 120
O2—C7—C6 124.0 (2) C14—C15—C10 120
O2—C7—C8 120.2 (2) C14—C15—H15A 120
C6—C7—C8 114.5 (2) C10—C15—H15A 120
O2—C7—C8A 119.7 (3) C11A—C10A—C15A 120
C6—C7—C8A 114.0 (3) C11A—C10A—C9A 122.6 (8)
C8—C7—C8A 27.1 (2) C15A—C10A—C9A 117.3 (8)
O3—C8—C9 110.3 (3) C12A—C11A—C10A 120
O3—C8—C7 111.8 (3) C12A—C11A—H11B 120
C9—C8—C7 107.9 (3) C10A—C11A—H11B 120
O3—C8—H8A 108.9 C11A—C12A—C13A 120
C9—C8—H8A 108.9 C11A—C12A—H12B 120
C7—C8—H8A 108.9 C13A—C12A—H12B 120
O1—C9—C10 107.8 (4) C12A—C13A—C14A 120
O1—C9—C8 110.9 (3) C12A—C13A—H13B 120
C10—C9—C8 115.6 (5) C14A—C13A—H13B 120
O1—C9—H9A 107.4 C15A—C14A—C13A 120
C10—C9—H9A 107.4 C15A—C14A—H14B 120
C8—C9—H9A 107.4 C13A—C14A—H14B 120
O3—C8A—C9A 109.9 (4) C14A—C15A—C10A 120
O3—C8A—C7 111.2 (3) C14A—C15A—H15B 120
C9A—C8A—C7 105.9 (4) C10A—C15A—H15B 120
C9A—O1—C1—C6 18.5 (4) O2—C7—C8A—O3 32.0 (6)
C9—O1—C1—C6 −16.6 (4) C6—C7—C8A—O3 −164.2 (3)
C9A—O1—C1—C2 −161.2 (4) C8—C7—C8A—O3 −67.0 (5)
C9—O1—C1—C2 163.7 (3) O2—C7—C8A—C9A 151.4 (4)
O1—C1—C2—C3 179.4 (2) C6—C7—C8A—C9A −44.8 (5)
C6—C1—C2—C3 −0.3 (4) C8—C7—C8A—C9A 52.5 (5)
C1—C2—C3—C4 0.1 (5) C1—O1—C9A—C10A −175.4 (5)
C2—C3—C4—C5 0.9 (5) C9—O1—C9A—C10A −75.0 (9)
C3—C4—C5—C6 −1.7 (5) C1—O1—C9A—C8A −50.5 (6)
O1—C1—C6—C5 179.8 (2) C9—O1—C9A—C8A 49.9 (5)
C2—C1—C6—C5 −0.5 (4) O3—C8A—C9A—O1 −177.4 (4)
O1—C1—C6—C7 −1.6 (4) C7—C8A—C9A—O1 62.3 (6)
C2—C1—C6—C7 178.1 (2) O3—C8A—C9A—C10A −55.4 (7)
C4—C5—C6—C1 1.5 (4) C7—C8A—C9A—C10A −175.7 (5)
C4—C5—C6—C7 −177.1 (3) O1—C9—C10—C11 107.8 (5)
C1—C6—C7—O2 179.8 (3) C8—C9—C10—C11 −127.5 (4)
C5—C6—C7—O2 −1.6 (4) O1—C9—C10—C15 −73.4 (6)
C1—C6—C7—C8 −13.0 (4) C8—C9—C10—C15 51.3 (6)
C5—C6—C7—C8 165.6 (3) C15—C10—C11—C12 0
C1—C6—C7—C8A 16.8 (4) C9—C10—C11—C12 178.8 (6)
C5—C6—C7—C8A −164.6 (3) C10—C11—C12—C13 0
C8A—O3—C8—C9 51.2 (5) C11—C12—C13—C14 0
C8A—O3—C8—C7 −68.9 (4) C12—C13—C14—C15 0
O2—C7—C8—O3 −28.7 (5) C13—C14—C15—C10 0
C6—C7—C8—O3 163.6 (3) C11—C10—C15—C14 0
C8A—C7—C8—O3 68.3 (4) C9—C10—C15—C14 −178.7 (6)
O2—C7—C8—C9 −150.2 (3) O1—C9A—C10A—C11A 50.0 (9)
C6—C7—C8—C9 42.1 (4) C8A—C9A—C10A—C11A −74.2 (8)
C8A—C7—C8—C9 −53.2 (5) O1—C9A—C10A—C15A −126.3 (6)
C1—O1—C9—C10 175.6 (4) C8A—C9A—C10A—C15A 109.5 (6)
C9A—O1—C9—C10 80.1 (8) C15A—C10A—C11A—C12A 0
C1—O1—C9—C8 48.1 (5) C9A—C10A—C11A—C12A −176.2 (9)
C9A—O1—C9—C8 −47.4 (5) C10A—C11A—C12A—C13A 0
O3—C8—C9—O1 178.2 (3) C11A—C12A—C13A—C14A 0
C7—C8—C9—O1 −59.4 (5) C12A—C13A—C14A—C15A 0
O3—C8—C9—C10 55.1 (5) C13A—C14A—C15A—C10A 0
C7—C8—C9—C10 177.6 (4) C11A—C10A—C15A—C14A 0
C8—O3—C8A—C9A −48.9 (5) C9A—C10A—C15A—C14A 176.4 (9)
C8—O3—C8A—C7 68.1 (5)

Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of the C10–C15 and C10A–C15A rings, respectively.

D—H···A D—H H···A D···A D—H···A
O3—H3O···O2i 0.89 (4) 2.04 (4) 2.856 (3) 153 (4)
C3—H3A···Cg1ii 0.93 2.74 3.596 (5) 153
C3—H3A···Cg2ii 0.93 2.92 3.756 (5) 151

Symmetry codes: (i) −x+2, −y+2, −z+1; (ii) x, y, z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: LH5747).

References

  1. Bruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Gaspar, A., Matos, M. J., Garrido, J., Uriarte, E. & Borges, F. (2014). Chem. Rev. 119, 4960–4992. [DOI] [PubMed]
  5. Harborne, J. B. & Williams, C. A. (2000). Phytochemistry, 55, 481–504. [DOI] [PubMed]
  6. Huang, W., Liu, M.-Z., Li, Y., Tan, Y. & Yang, G.-F. (2007). Bioorg. Med. Chem. 15, 5191–5197. [DOI] [PubMed]
  7. Juvale, K., Stefan, K. & Wiese, M. (2013). Eur. J. Med. Chem. 67, 115–126. [DOI] [PubMed]
  8. Phosrithong, N., Samee, W., Nunthanavanit, P. & Ungwitayatorn, J. (2012). Chem. Biol. Drug Des. 79, 981–989. [DOI] [PubMed]
  9. Piaskowska, A., Hodorowicz, M. & Nitek, W. (2013). Acta Cryst. E69, o271. [DOI] [PMC free article] [PubMed]
  10. Saxena, S., Makrandi, J. K. & Grover, S. K. (1985). Synthesis, pp. 110–111.
  11. Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.
  12. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  13. Tanaka, K. & Sugino, T. (2001). Green Chem. 3, 133–134.
  14. Yu, D., Brossi, A., Kilgore, N., Wild, C., Allaway, G. & Lee, K.-H. (2003). Bioorg. Med. Chem. Lett. 13, 1575–1576. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015001346/lh5747sup1.cif

e-71-0o131-sup1.cif (28.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015001346/lh5747Isup2.hkl

e-71-0o131-Isup2.hkl (113.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015001346/lh5747Isup3.cml

. DOI: 10.1107/S2056989015001346/lh5747fig1.tif

The mol­ecule structure of the title compound. Displacement are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radius. The minor component of disorder is not shown.

. DOI: 10.1107/S2056989015001346/lh5747fig2.tif

Part of the crystal structure of the title compound with hydrogen bonds shown as dashed lines and C—H⋯π intectations as green unbroken lines. The minor component of disorder is not shown.

CCDC reference: 1044756

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES