Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jan 17;71(Pt 2):165–167. doi: 10.1107/S205698901500050X

Crystal structure of chlorido­(5,10,15,20-tetra­phenyl­porphyrinato-κ4 N)manganese(III) 2-amino­pyridine disolvate

Wafa Harhouri a, Salma Dhifaoui a, Shabir Najmudin b, Cecilia Bonifácio c, Habib Nasri a,*
PMCID: PMC4384609  PMID: 25878809

In the title compound, the chlorido­(5,10,15,20-tetra­phenyl­porphyrinato)manganese(III) complex and the hydrogen-bonded dimer of 2-amino­pyridine mol­ecules are linked together by weak N—H⋯Cl hydrogen bonds into chains along the a axis.

Keywords: Crystal structure, manganese porphyrin complex, hydrogen bonding

Abstract

In the title compound, [Mn(C44H28N4)Cl]·2C5H6N2, the MnIII centre is coordinated by four pyrrole N atoms [averaged Mn—N = 2.012 (4) Å] of the tetra­phenyl­porphyrin mol­ecule and one chloride axial ligand [Mn—Cl = 2.4315 (7) Å] in a square-pyramidal geometry. The porphyrin macrocycle exhibits a non-planar conformation with major ruffling and saddling distortions. In the crystal, two independent solvent mol­ecules form dimers through N—H⋯N hydrogen bonding. In these dimers, one amino N atom has a short Mn⋯N contact of 2.642 (1) Å thus completing the Mn environment in the form of a distorted octa­hedron, and another amino atom generates weak N—H⋯Cl hydrogen bonds, which link further all mol­ecules into chains along the a axis.

Chemical context  

In a continuation of our studies of metalloporphyrins, which are usually used as models of hemoproteins and have various applications in many fields such as catalysis (Amiri et al., 2014), photodynamic therapy (Kolarova et al., 2005), conception of sensors (Garg et al., 2013) or the design of photoluminescent species (Harry et al., 2003), we report herein the synthesis and crystal structure of the title compound, [Mn(C44H28N4)Cl]·2C5H6N2, (I).graphic file with name e-71-00165-scheme1.jpg

Structural commentary  

In (I), the central MnIII atom has a square-pyramidal coordination geometry (Fig. 1). The equatorial plane is formed by four nitro­gen atoms of the porphyrin whereas the apical position is occupied by the chlorido ligand. The asymmetric unit of (I) consists of the [MnIII(TPP)Cl] complex (TPP is the 5,10,15,20-tetra­phenyl­porphyrinato ligand) and two 2-amino­pyridine solvent mol­ecules. The average equatorial mangan­ese–N(pyrrole) distance (Mn—Np) is 2.012 (4) Å, while the Mn—Cl bond length is 2.4315 (7) Å. The manganese atom is displaced by 0.1616 (5) Å from the 24-atom porphyrin mean plane. The porphyrin core presents a major ruffling deformation, as seen in the positions of the meso carbons alternatively above and below the mean plane of the 24-atom porphyrin macrocycle, and a saddle distortion involving the displacement of the pyrrole rings alternately above and below the porphyrin macrocycle mean plane (Scheidt & Lee, 1987). This is confirmed by normal structural decomposition (NSD) calculations (Jentzen et al., 1998), with ruffling and saddle percentages of 40% and 36%, respectively.

Figure 1.

Figure 1

The contents of the asymmetric unit of (I), showing the atomic numbering. Displacement ellipsoids are drawn at the 50% probability level. H atoms are omitted for clarity.

Supra­molecular features  

In the crystal structure, two 2-amino­pyridine solvent mol­ecules are paired into dimers via N—H⋯N hydrogen bonds involving the amino groups of these two mol­ecules (Table 1). In these dimers, one amino atom has a short Mn⋯N contact of 2.642 (1) Å and another amino atom generates weak N—H⋯Cl hydrogen bonds, which further link the components into chains along the a-axis direction (Fig. 2).

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N5H5AN8 0.86 2.29 2.993(3) 139
N7H7AN6 0.86 2.19 3.045(3) 173
N7H7BCli 0.86 2.51 3.358(2) 169

Symmetry code: (i) Inline graphic.

Figure 2.

Figure 2

A portion of the crystal packing showing the N—H⋯Cl hydrogen bonds (dotted blue lines) and short Mn⋯N contacts (dashed pink lines).

Database survey  

The majority of the known manganese–porphyrin species with halides are penta-coordinated, e.g. [MnIII(TPP)Cl] (Stute et al., 2013), [MnIII(TPP)Br] and [MnIII(TPP)I] (Turner et al., 1998). Nevertheless, the six-coordinated di­fluoro-mangan­ese(IV) porphyrin species is also known: [MnIV(TMP)F2] (TMP is the 5,10,15,20-tetra­mesitylporphyrinato ligand) (Liu et al., 2012). In the Cambridge Structural Database (CSD, Version 5.35; Groom & Allen, 2014), there are fourteen chlorido porphyrin structures with a penta-coordinate MnIII atom, five of them with the 5,10,15,20-tetra­phenyl­porphyrin (TPP) ligand. For the known [MnIII(Porph)Cl] complexes (Porph = porphyrinato ligand) [CSD refcodes HIFMIS (Cheng & Scheidt, 1996) and SENMUU (Paulat et al., 2006)], the equatorial manganese—N(pyrrole) distances (Mn—Np) are in the range 2.002 (3)–2.019 (1) Å. This is also the case for (I), where the Mn—Np bond length is 2.012 (4) Å. The Mn—Cl distance of 2.4315 (7) Å in (I) is in agreement with those reported for related compounds [CSD refcodes HIFMIS (Cheng & Scheidt, 1996) and YEFYAL (Ishikawa et al., 2012)], with Mn—Cl bond lengths covering the range 2.30–2.66 Å.

Synthesis and crystallization  

To a solution of [MnIII(TPP)Cl] (100 mg, 0.142 mmol) (Cheng & Scheidt, 1996) in chloro­benzene (10 ml) was added an excess of 2-amino­pyridine (50 mg, 0.531 mmol). The reaction mixture was stirred at room temperature for 12 h. Crystals of the title complex were obtained by diffusion of hexa­nes through the chloro­benzene solution.

Refinement details  

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were fixed geometrically and treated as riding, with C—H = 0.93, N—H = 0.86 Å and with U iso(H) = 1.2U eq(C, N).

Table 2. Experimental details.

Crystal data
Chemical formula [Mn(C44H28N4)Cl]2C5H6N2
M r 891.33
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 180
a, b, c () 9.9617(4), 12.1247(6), 18.9100(9)
, , () 92.441(3), 94.699(2), 108.186(2)
V (3) 2157.01(17)
Z 2
Radiation type Mo K
(mm1) 0.42
Crystal size (mm) 0.48 0.38 0.16
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2006)
T min, T max 0.701, 0.746
No. of measured, independent and observed [I > 2(I)] reflections 35821, 8499, 6523
R int 0.041
(sin /)max (1) 0.617
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.041, 0.107, 1.05
No. of reflections 8487
No. of parameters 577
H-atom treatment H-atom parameters constrained
max, min (e 3) 0.49, 0.37

Computer programs: APEX2 and SAINT (Bruker, 2006), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008, 2015), ORTEPIII (Burnett Johnson, 1996), ORTEP-3 for Windows and WinGX (Farrugia, 2012) and Mercury (Macrae et al., 2008).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S205698901500050X/cv5479sup1.cif

e-71-00165-sup1.cif (43.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901500050X/cv5479Isup2.hkl

e-71-00165-Isup2.hkl (406.7KB, hkl)

CCDC reference: 1042885

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge financial support from the Ministry of Higher Education and Scientific Research of Tunisia.

supplementary crystallographic information

Crystal data

[Mn(C44H28N4)Cl]·2C5H6N2 Z = 2
Mr = 891.33 F(000) = 924
Triclinic, P1 Dx = 1.372 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.9617 (4) Å Cell parameters from 8818 reflections
b = 12.1247 (6) Å θ = 2.2–27.8°
c = 18.9100 (9) Å µ = 0.42 mm1
α = 92.441 (3)° T = 180 K
β = 94.699 (2)° Block, brown
γ = 108.186 (2)° 0.48 × 0.38 × 0.16 mm
V = 2157.01 (17) Å3

Data collection

Bruker APEXII CCD diffractometer 8499 independent reflections
Radiation source: fine-focus sealed tube 6523 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.041
φ and ω scans θmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2006) h = −12→12
Tmin = 0.701, Tmax = 0.746 k = −14→14
35821 measured reflections l = −20→23

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0438P)2 + 1.0654P] where P = (Fo2 + 2Fc2)/3
8487 reflections (Δ/σ)max = 0.001
577 parameters Δρmax = 0.49 e Å3
0 restraints Δρmin = −0.37 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Mn 0.71850 (3) 0.20739 (3) 0.748853 (16) 0.02309 (10)
Cl 0.47678 (6) 0.07348 (5) 0.73057 (3) 0.03758 (15)
N1 0.77802 (17) 0.14667 (15) 0.66018 (9) 0.0234 (4)
N2 0.80369 (18) 0.10608 (15) 0.80656 (9) 0.0250 (4)
N3 0.68922 (18) 0.28550 (15) 0.83972 (9) 0.0244 (4)
N4 0.66655 (18) 0.32903 (15) 0.69325 (9) 0.0234 (4)
N5 0.9736 (2) 0.36456 (17) 0.76389 (10) 0.0359 (5)
H5A 0.9784 0.3197 0.7283 0.043*
H5B 0.9219 0.4093 0.7592 0.043*
N6 1.1266 (2) 0.29239 (19) 0.83104 (11) 0.0427 (5)
N7 1.2610 (2) 0.2348 (2) 0.70136 (14) 0.0552 (6)
H7A 1.2301 0.2540 0.7396 0.066*
H7B 1.3217 0.1975 0.7035 0.066*
N8 1.1197 (2) 0.32107 (18) 0.63848 (11) 0.0410 (5)
C1 0.7439 (2) 0.17043 (18) 0.59150 (11) 0.0233 (4)
C2 0.7927 (2) 0.10102 (18) 0.54253 (11) 0.0272 (5)
H2 0.7837 0.1013 0.4932 0.033*
C3 0.8539 (2) 0.03566 (19) 0.58099 (11) 0.0275 (5)
H3 0.8953 −0.0173 0.5632 0.033*
C4 0.8439 (2) 0.06235 (18) 0.65415 (11) 0.0239 (4)
C5 0.8866 (2) 0.00644 (18) 0.71051 (11) 0.0249 (5)
C6 0.8707 (2) 0.03070 (18) 0.78147 (11) 0.0257 (5)
C7 0.9224 (2) −0.0208 (2) 0.84009 (12) 0.0322 (5)
H7 0.9723 −0.0739 0.8374 0.039*
C8 0.8855 (2) 0.0216 (2) 0.89976 (12) 0.0322 (5)
H8 0.9056 0.0035 0.9459 0.039*
C9 0.8098 (2) 0.09952 (19) 0.87930 (11) 0.0260 (5)
C10 0.7539 (2) 0.16021 (19) 0.92676 (11) 0.0270 (5)
C11 0.6954 (2) 0.24586 (19) 0.90708 (11) 0.0261 (5)
C12 0.6382 (2) 0.3106 (2) 0.95446 (12) 0.0311 (5)
H12 0.6278 0.2992 1.0023 0.037*
C13 0.6022 (2) 0.39102 (19) 0.91726 (11) 0.0301 (5)
H13 0.5639 0.4462 0.9348 0.036*
C14 0.6336 (2) 0.37604 (19) 0.84551 (11) 0.0261 (5)
C15 0.6088 (2) 0.44238 (18) 0.79069 (11) 0.0252 (5)
C16 0.6228 (2) 0.41858 (18) 0.71991 (11) 0.0245 (5)
C17 0.5830 (2) 0.47860 (19) 0.66212 (11) 0.0291 (5)
H17 0.5532 0.5439 0.6660 0.035*
C18 0.5967 (2) 0.42307 (19) 0.60135 (12) 0.0283 (5)
H18 0.5755 0.4416 0.5554 0.034*
C19 0.6499 (2) 0.33038 (18) 0.62017 (11) 0.0241 (4)
C20 0.6799 (2) 0.25316 (18) 0.57174 (11) 0.0239 (4)
C21 0.9456 (2) −0.09079 (19) 0.69477 (11) 0.0255 (5)
C22 1.0792 (2) −0.0706 (2) 0.67155 (12) 0.0310 (5)
H22 1.1331 0.0046 0.6632 0.037*
C23 1.1328 (2) −0.1620 (2) 0.66072 (12) 0.0348 (5)
H23 1.2228 −0.1477 0.6456 0.042*
C24 1.0536 (3) −0.2736 (2) 0.67222 (12) 0.0358 (6)
H24 1.0902 −0.3347 0.6654 0.043*
C25 0.9196 (3) −0.2945 (2) 0.69389 (13) 0.0364 (6)
H25 0.8652 −0.3701 0.7010 0.044*
C26 0.8656 (2) −0.2043 (2) 0.70511 (12) 0.0319 (5)
H26 0.7751 −0.2195 0.7197 0.038*
C27 0.7585 (2) 0.1328 (2) 1.00308 (11) 0.0297 (5)
C28 0.6758 (3) 0.0259 (2) 1.02330 (13) 0.0359 (6)
H28 0.6216 −0.0310 0.9888 0.043*
C29 0.6734 (3) 0.0032 (2) 1.09463 (14) 0.0430 (6)
H29 0.6161 −0.0679 1.1077 0.052*
C30 0.7548 (3) 0.0850 (3) 1.14558 (14) 0.0469 (7)
H30 0.7520 0.0698 1.1933 0.056*
C31 0.8410 (3) 0.1896 (3) 1.12667 (13) 0.0432 (7)
H31 0.8985 0.2441 1.1616 0.052*
C32 0.8427 (3) 0.2145 (2) 1.05562 (12) 0.0358 (5)
H32 0.9003 0.2860 1.0432 0.043*
C33 0.5585 (2) 0.54284 (19) 0.81056 (11) 0.0271 (5)
C34 0.6532 (3) 0.6437 (2) 0.84414 (13) 0.0379 (6)
H34 0.7487 0.6501 0.8526 0.045*
C35 0.6072 (3) 0.7357 (2) 0.86545 (14) 0.0448 (6)
H35 0.6719 0.8033 0.8880 0.054*
C36 0.4665 (3) 0.7271 (2) 0.85329 (13) 0.0417 (6)
H36 0.4357 0.7887 0.8676 0.050*
C37 0.3715 (3) 0.6272 (2) 0.81989 (14) 0.0418 (6)
H37 0.2760 0.6211 0.8118 0.050*
C38 0.4171 (2) 0.5354 (2) 0.79812 (13) 0.0347 (5)
H38 0.3521 0.4684 0.7750 0.042*
C39 0.6393 (2) 0.25768 (18) 0.49454 (11) 0.0243 (4)
C40 0.7006 (2) 0.35470 (19) 0.45743 (11) 0.0289 (5)
H40 0.7709 0.4185 0.4807 0.035*
C41 0.6578 (2) 0.3570 (2) 0.38642 (12) 0.0322 (5)
H41 0.6983 0.4227 0.3624 0.039*
C42 0.5555 (2) 0.2625 (2) 0.35099 (12) 0.0348 (5)
H42 0.5275 0.2643 0.3030 0.042*
C43 0.4945 (2) 0.1651 (2) 0.38668 (12) 0.0343 (5)
H43 0.4262 0.1008 0.3627 0.041*
C44 0.5351 (2) 0.16335 (19) 0.45802 (11) 0.0290 (5)
H44 0.4922 0.0982 0.4821 0.035*
C45 1.0496 (2) 0.3647 (2) 0.82897 (13) 0.0367 (6)
C46 1.1971 (3) 0.2868 (3) 0.89372 (17) 0.0570 (8)
H46 1.2503 0.2360 0.8960 0.068*
C47 1.1952 (3) 0.3518 (3) 0.95452 (16) 0.0635 (9)
H47 1.2454 0.3454 0.9970 0.076*
C48 1.1166 (3) 0.4267 (3) 0.95052 (16) 0.0600 (8)
H48 1.1145 0.4732 0.9905 0.072*
C49 1.0412 (3) 0.4330 (2) 0.88792 (14) 0.0474 (7)
H49 0.9857 0.4820 0.8850 0.057*
C50 1.0728 (3) 0.3510 (2) 0.57616 (15) 0.0513 (7)
H50 1.0070 0.3910 0.5762 0.062*
C51 1.1165 (4) 0.3258 (3) 0.51199 (16) 0.0669 (10)
H51 1.0816 0.3484 0.4698 0.080*
C52 1.2135 (4) 0.2663 (3) 0.51215 (19) 0.0770 (12)
H52 1.2454 0.2483 0.4696 0.092*
C53 1.2625 (3) 0.2338 (3) 0.57395 (19) 0.0633 (9)
H53 1.3272 0.1927 0.5743 0.076*
C54 1.2141 (3) 0.2631 (2) 0.63784 (15) 0.0436 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mn 0.02838 (18) 0.02739 (19) 0.01763 (17) 0.01494 (14) 0.00212 (13) 0.00061 (13)
Cl 0.0315 (3) 0.0396 (3) 0.0404 (4) 0.0096 (2) 0.0044 (2) 0.0016 (3)
N1 0.0267 (9) 0.0253 (9) 0.0205 (9) 0.0118 (7) 0.0020 (7) 0.0010 (7)
N2 0.0288 (9) 0.0303 (10) 0.0199 (9) 0.0154 (8) 0.0026 (7) 0.0002 (8)
N3 0.0285 (9) 0.0295 (10) 0.0189 (9) 0.0147 (8) 0.0014 (7) 0.0009 (7)
N4 0.0273 (9) 0.0267 (10) 0.0186 (9) 0.0124 (7) 0.0021 (7) −0.0004 (7)
N5 0.0387 (11) 0.0423 (12) 0.0300 (11) 0.0197 (9) −0.0001 (9) −0.0066 (9)
N6 0.0391 (12) 0.0477 (13) 0.0399 (13) 0.0146 (10) −0.0048 (10) −0.0007 (10)
N7 0.0464 (13) 0.0565 (15) 0.0671 (18) 0.0259 (12) 0.0012 (12) −0.0122 (13)
N8 0.0362 (11) 0.0405 (12) 0.0412 (13) 0.0052 (9) 0.0054 (10) −0.0041 (10)
C1 0.0255 (10) 0.0250 (11) 0.0191 (11) 0.0075 (9) 0.0025 (8) 0.0010 (9)
C2 0.0345 (12) 0.0296 (12) 0.0192 (11) 0.0128 (10) 0.0039 (9) −0.0003 (9)
C3 0.0326 (11) 0.0284 (12) 0.0251 (12) 0.0141 (9) 0.0072 (9) −0.0008 (9)
C4 0.0268 (11) 0.0246 (11) 0.0219 (11) 0.0106 (9) 0.0033 (9) 0.0001 (9)
C5 0.0242 (10) 0.0267 (12) 0.0251 (12) 0.0103 (9) 0.0020 (9) −0.0012 (9)
C6 0.0271 (11) 0.0291 (12) 0.0243 (12) 0.0147 (9) 0.0004 (9) 0.0004 (9)
C7 0.0367 (12) 0.0390 (14) 0.0286 (13) 0.0236 (11) 0.0005 (10) 0.0031 (10)
C8 0.0391 (13) 0.0416 (14) 0.0220 (12) 0.0223 (11) −0.0003 (10) 0.0041 (10)
C9 0.0292 (11) 0.0319 (12) 0.0196 (11) 0.0141 (9) −0.0002 (9) 0.0020 (9)
C10 0.0290 (11) 0.0347 (13) 0.0196 (11) 0.0139 (10) 0.0008 (9) 0.0016 (9)
C11 0.0290 (11) 0.0331 (12) 0.0186 (11) 0.0138 (9) 0.0011 (9) −0.0004 (9)
C12 0.0394 (13) 0.0406 (14) 0.0186 (11) 0.0202 (11) 0.0042 (9) 0.0008 (10)
C13 0.0379 (12) 0.0336 (13) 0.0237 (12) 0.0191 (10) 0.0038 (10) −0.0026 (10)
C14 0.0284 (11) 0.0292 (12) 0.0237 (11) 0.0140 (9) 0.0018 (9) −0.0014 (9)
C15 0.0260 (11) 0.0263 (11) 0.0252 (11) 0.0113 (9) 0.0027 (9) −0.0002 (9)
C16 0.0254 (10) 0.0253 (11) 0.0247 (12) 0.0106 (9) 0.0032 (9) 0.0024 (9)
C17 0.0366 (12) 0.0290 (12) 0.0273 (12) 0.0183 (10) 0.0033 (10) 0.0035 (10)
C18 0.0349 (12) 0.0323 (12) 0.0224 (12) 0.0175 (10) 0.0006 (9) 0.0042 (9)
C19 0.0254 (10) 0.0270 (11) 0.0212 (11) 0.0102 (9) 0.0018 (8) 0.0018 (9)
C20 0.0253 (10) 0.0256 (11) 0.0198 (11) 0.0070 (9) 0.0017 (8) 0.0020 (9)
C21 0.0302 (11) 0.0321 (12) 0.0185 (11) 0.0170 (10) 0.0003 (9) −0.0003 (9)
C22 0.0341 (12) 0.0315 (13) 0.0307 (13) 0.0145 (10) 0.0063 (10) 0.0020 (10)
C23 0.0337 (12) 0.0458 (15) 0.0326 (13) 0.0224 (11) 0.0097 (10) 0.0015 (11)
C24 0.0459 (14) 0.0394 (14) 0.0302 (13) 0.0261 (12) 0.0021 (11) −0.0037 (11)
C25 0.0400 (13) 0.0284 (13) 0.0417 (15) 0.0131 (11) 0.0010 (11) 0.0008 (11)
C26 0.0287 (11) 0.0351 (13) 0.0342 (13) 0.0133 (10) 0.0041 (10) 0.0022 (10)
C27 0.0370 (12) 0.0413 (14) 0.0201 (11) 0.0252 (11) 0.0042 (9) 0.0031 (10)
C28 0.0417 (13) 0.0431 (15) 0.0294 (13) 0.0216 (11) 0.0052 (10) 0.0065 (11)
C29 0.0489 (15) 0.0558 (17) 0.0366 (15) 0.0303 (13) 0.0126 (12) 0.0187 (13)
C30 0.0550 (16) 0.077 (2) 0.0263 (14) 0.0421 (16) 0.0109 (12) 0.0179 (14)
C31 0.0506 (15) 0.0693 (19) 0.0228 (13) 0.0410 (15) −0.0052 (11) −0.0058 (12)
C32 0.0411 (13) 0.0448 (15) 0.0267 (13) 0.0223 (11) −0.0002 (10) 0.0002 (11)
C33 0.0373 (12) 0.0295 (12) 0.0202 (11) 0.0173 (10) 0.0078 (9) 0.0036 (9)
C34 0.0382 (13) 0.0354 (14) 0.0416 (15) 0.0149 (11) 0.0042 (11) −0.0057 (11)
C35 0.0573 (17) 0.0303 (14) 0.0462 (16) 0.0141 (12) 0.0080 (13) −0.0096 (11)
C36 0.0632 (17) 0.0386 (15) 0.0366 (15) 0.0320 (13) 0.0175 (13) 0.0041 (12)
C37 0.0437 (14) 0.0479 (16) 0.0450 (16) 0.0278 (13) 0.0136 (12) 0.0066 (13)
C38 0.0353 (12) 0.0339 (13) 0.0377 (14) 0.0145 (10) 0.0059 (10) 0.0014 (11)
C39 0.0282 (11) 0.0279 (12) 0.0206 (11) 0.0143 (9) 0.0023 (9) 0.0009 (9)
C40 0.0327 (12) 0.0291 (12) 0.0259 (12) 0.0113 (10) 0.0026 (9) 0.0004 (9)
C41 0.0390 (13) 0.0362 (13) 0.0274 (13) 0.0185 (11) 0.0083 (10) 0.0092 (10)
C42 0.0403 (13) 0.0513 (16) 0.0199 (12) 0.0248 (12) 0.0012 (10) 0.0044 (11)
C43 0.0339 (12) 0.0397 (14) 0.0282 (13) 0.0132 (11) −0.0038 (10) −0.0074 (10)
C44 0.0327 (12) 0.0296 (12) 0.0252 (12) 0.0107 (10) 0.0028 (9) 0.0026 (9)
C45 0.0294 (12) 0.0419 (14) 0.0351 (14) 0.0068 (11) 0.0026 (10) −0.0006 (11)
C46 0.0472 (16) 0.062 (2) 0.060 (2) 0.0181 (14) −0.0072 (14) 0.0082 (16)
C47 0.0538 (18) 0.088 (2) 0.0372 (17) 0.0111 (17) −0.0118 (14) 0.0014 (16)
C48 0.0478 (17) 0.078 (2) 0.0399 (17) 0.0036 (16) 0.0007 (13) −0.0175 (15)
C49 0.0413 (15) 0.0527 (17) 0.0417 (16) 0.0079 (13) 0.0027 (12) −0.0129 (13)
C50 0.0511 (16) 0.0459 (17) 0.0456 (17) −0.0001 (13) 0.0015 (13) 0.0027 (13)
C51 0.081 (2) 0.055 (2) 0.0391 (18) −0.0149 (18) 0.0059 (16) −0.0031 (14)
C52 0.085 (3) 0.062 (2) 0.057 (2) −0.0197 (19) 0.037 (2) −0.0230 (18)
C53 0.0516 (17) 0.0527 (19) 0.076 (2) 0.0002 (14) 0.0282 (17) −0.0235 (17)
C54 0.0337 (13) 0.0394 (15) 0.0496 (17) 0.0016 (11) 0.0061 (12) −0.0129 (12)

Geometric parameters (Å, º)

Mn—N2 2.0083 (17) C22—H22 0.9300
Mn—N1 2.0089 (16) C23—C24 1.374 (3)
Mn—N3 2.0127 (17) C23—H23 0.9300
Mn—N4 2.0169 (16) C24—C25 1.379 (3)
Mn—Cl 2.4351 (7) C24—H24 0.9300
N1—C1 1.381 (3) C25—C26 1.376 (3)
N1—C4 1.382 (2) C25—H25 0.9300
N2—C9 1.378 (3) C26—H26 0.9300
N2—C6 1.379 (3) C27—C32 1.390 (3)
N3—C14 1.380 (3) C27—C28 1.391 (3)
N3—C11 1.384 (3) C28—C29 1.389 (3)
N4—C19 1.380 (3) C28—H28 0.9300
N4—C16 1.381 (3) C29—C30 1.363 (4)
N5—C45 1.391 (3) C29—H29 0.9300
N5—H5A 0.8600 C30—C31 1.372 (4)
N5—H5B 0.8600 C30—H30 0.9300
N6—C45 1.333 (3) C31—C32 1.390 (3)
N6—C46 1.343 (3) C31—H31 0.9300
N7—C54 1.350 (3) C32—H32 0.9300
N7—H7A 0.8600 C33—C34 1.380 (3)
N7—H7B 0.8600 C33—C38 1.383 (3)
N8—C54 1.338 (3) C34—C35 1.388 (3)
N8—C50 1.338 (3) C34—H34 0.9300
C1—C20 1.394 (3) C35—C36 1.372 (4)
C1—C2 1.438 (3) C35—H35 0.9300
C2—C3 1.344 (3) C36—C37 1.372 (4)
C2—H2 0.9300 C36—H36 0.9300
C3—C4 1.426 (3) C37—C38 1.386 (3)
C3—H3 0.9300 C37—H37 0.9300
C4—C5 1.394 (3) C38—H38 0.9300
C5—C6 1.394 (3) C39—C44 1.392 (3)
C5—C21 1.502 (3) C39—C40 1.393 (3)
C6—C7 1.432 (3) C40—C41 1.379 (3)
C7—C8 1.345 (3) C40—H40 0.9300
C7—H7 0.9300 C41—C42 1.376 (3)
C8—C9 1.428 (3) C41—H41 0.9300
C8—H8 0.9300 C42—C43 1.381 (3)
C9—C10 1.392 (3) C42—H42 0.9300
C10—C11 1.390 (3) C43—C44 1.379 (3)
C10—C27 1.495 (3) C43—H43 0.9300
C11—C12 1.431 (3) C44—H44 0.9300
C12—C13 1.345 (3) C45—C49 1.384 (3)
C12—H12 0.9300 C46—C47 1.371 (4)
C13—C14 1.434 (3) C46—H46 0.9300
C13—H13 0.9300 C47—C48 1.372 (4)
C14—C15 1.391 (3) C47—H47 0.9300
C15—C16 1.385 (3) C48—C49 1.367 (4)
C15—C33 1.500 (3) C48—H48 0.9300
C16—C17 1.435 (3) C49—H49 0.9300
C17—C18 1.345 (3) C50—C51 1.376 (4)
C17—H17 0.9300 C50—H50 0.9300
C18—C19 1.430 (3) C51—C52 1.374 (5)
C18—H18 0.9300 C51—H51 0.9300
C19—C20 1.397 (3) C52—C53 1.351 (5)
C20—C39 1.490 (3) C52—H52 0.9300
C21—C22 1.387 (3) C53—C54 1.409 (4)
C21—C26 1.390 (3) C53—H53 0.9300
C22—C23 1.386 (3)
N2—Mn—N1 89.86 (7) C24—C23—C22 120.4 (2)
N2—Mn—N3 89.23 (7) C24—C23—H23 119.8
N1—Mn—N3 171.24 (7) C22—C23—H23 119.8
N2—Mn—N4 170.21 (7) C23—C24—C25 119.5 (2)
N1—Mn—N4 89.56 (7) C23—C24—H24 120.2
N3—Mn—N4 89.85 (7) C25—C24—H24 120.2
N2—Mn—Cl 97.32 (5) C26—C25—C24 120.6 (2)
N1—Mn—Cl 94.06 (5) C26—C25—H25 119.7
N3—Mn—Cl 94.70 (5) C24—C25—H25 119.7
N4—Mn—Cl 92.47 (5) C25—C26—C21 120.4 (2)
C1—N1—C4 106.00 (16) C25—C26—H26 119.8
C1—N1—Mn 125.95 (13) C21—C26—H26 119.8
C4—N1—Mn 127.55 (13) C32—C27—C28 118.5 (2)
C9—N2—C6 106.07 (16) C32—C27—C10 120.9 (2)
C9—N2—Mn 127.08 (13) C28—C27—C10 120.6 (2)
C6—N2—Mn 126.83 (14) C29—C28—C27 120.6 (2)
C14—N3—C11 106.01 (16) C29—C28—H28 119.7
C14—N3—Mn 126.43 (14) C27—C28—H28 119.7
C11—N3—Mn 126.57 (14) C30—C29—C28 120.2 (3)
C19—N4—C16 106.07 (16) C30—C29—H29 119.9
C19—N4—Mn 126.53 (13) C28—C29—H29 119.9
C16—N4—Mn 126.92 (13) C29—C30—C31 120.2 (2)
C45—N5—H5A 120.0 C29—C30—H30 119.9
C45—N5—H5B 120.0 C31—C30—H30 119.9
H5A—N5—H5B 120.0 C30—C31—C32 120.3 (3)
C45—N6—C46 117.3 (2) C30—C31—H31 119.8
C54—N7—H7A 120.0 C32—C31—H31 119.8
C54—N7—H7B 120.0 C31—C32—C27 120.2 (2)
H7A—N7—H7B 120.0 C31—C32—H32 119.9
C54—N8—C50 117.7 (2) C27—C32—H32 119.9
N1—C1—C20 126.20 (18) C34—C33—C38 118.8 (2)
N1—C1—C2 109.18 (17) C34—C33—C15 119.9 (2)
C20—C1—C2 124.51 (19) C38—C33—C15 121.3 (2)
C3—C2—C1 107.55 (19) C33—C34—C35 120.6 (2)
C3—C2—H2 126.2 C33—C34—H34 119.7
C1—C2—H2 126.2 C35—C34—H34 119.7
C2—C3—C4 107.50 (18) C36—C35—C34 120.2 (3)
C2—C3—H3 126.3 C36—C35—H35 119.9
C4—C3—H3 126.3 C34—C35—H35 119.9
N1—C4—C5 125.35 (18) C37—C36—C35 119.7 (2)
N1—C4—C3 109.74 (17) C37—C36—H36 120.1
C5—C4—C3 124.80 (19) C35—C36—H36 120.1
C6—C5—C4 123.90 (19) C36—C37—C38 120.3 (2)
C6—C5—C21 116.96 (18) C36—C37—H37 119.8
C4—C5—C21 119.04 (18) C38—C37—H37 119.8
N2—C6—C5 126.34 (19) C33—C38—C37 120.4 (2)
N2—C6—C7 109.38 (18) C33—C38—H38 119.8
C5—C6—C7 124.28 (19) C37—C38—H38 119.8
C8—C7—C6 107.47 (19) C44—C39—C40 118.3 (2)
C8—C7—H7 126.3 C44—C39—C20 119.52 (18)
C6—C7—H7 126.3 C40—C39—C20 122.15 (19)
C7—C8—C9 107.47 (19) C41—C40—C39 120.6 (2)
C7—C8—H8 126.3 C41—C40—H40 119.7
C9—C8—H8 126.3 C39—C40—H40 119.7
N2—C9—C10 126.17 (19) C42—C41—C40 120.3 (2)
N2—C9—C8 109.58 (18) C42—C41—H41 119.8
C10—C9—C8 124.24 (19) C40—C41—H41 119.8
C11—C10—C9 123.46 (19) C41—C42—C43 120.0 (2)
C11—C10—C27 118.20 (18) C41—C42—H42 120.0
C9—C10—C27 118.34 (18) C43—C42—H42 120.0
N3—C11—C10 125.52 (19) C44—C43—C42 119.8 (2)
N3—C11—C12 109.44 (18) C44—C43—H43 120.1
C10—C11—C12 124.97 (19) C42—C43—H43 120.1
C13—C12—C11 107.56 (19) C43—C44—C39 120.9 (2)
C13—C12—H12 126.2 C43—C44—H44 119.5
C11—C12—H12 126.2 C39—C44—H44 119.5
C12—C13—C14 107.46 (19) N6—C45—C49 122.7 (2)
C12—C13—H13 126.3 N6—C45—N5 115.6 (2)
C14—C13—H13 126.3 C49—C45—N5 121.7 (2)
N3—C14—C15 126.07 (18) N6—C46—C47 123.7 (3)
N3—C14—C13 109.49 (18) N6—C46—H46 118.1
C15—C14—C13 124.43 (19) C47—C46—H46 118.1
C16—C15—C14 124.14 (19) C46—C47—C48 117.7 (3)
C16—C15—C33 119.05 (18) C46—C47—H47 121.2
C14—C15—C33 116.77 (18) C48—C47—H47 121.2
N4—C16—C15 125.90 (18) C49—C48—C47 120.2 (3)
N4—C16—C17 109.38 (18) C49—C48—H48 119.9
C15—C16—C17 124.55 (19) C47—C48—H48 119.9
C18—C17—C16 107.37 (19) C48—C49—C45 118.4 (3)
C18—C17—H17 126.3 C48—C49—H49 120.8
C16—C17—H17 126.3 C45—C49—H49 120.8
C17—C18—C19 107.57 (19) N8—C50—C51 123.7 (3)
C17—C18—H18 126.2 N8—C50—H50 118.2
C19—C18—H18 126.2 C51—C50—H50 118.2
N4—C19—C20 125.45 (18) C52—C51—C50 117.9 (3)
N4—C19—C18 109.55 (18) C52—C51—H51 121.0
C20—C19—C18 125.00 (19) C50—C51—H51 121.0
C1—C20—C19 123.73 (19) C53—C52—C51 120.1 (3)
C1—C20—C39 117.83 (18) C53—C52—H52 119.9
C19—C20—C39 118.43 (18) C51—C52—H52 119.9
C22—C21—C26 118.8 (2) C52—C53—C54 119.1 (3)
C22—C21—C5 122.0 (2) C52—C53—H53 120.5
C26—C21—C5 119.19 (18) C54—C53—H53 120.5
C23—C22—C21 120.3 (2) N8—C54—N7 116.7 (2)
C23—C22—H22 119.8 N8—C54—C53 121.5 (3)
C21—C22—H22 119.8 N7—C54—C53 121.8 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N5—H5A···N8 0.86 2.29 2.993 (3) 139
N7—H7A···N6 0.86 2.19 3.045 (3) 173
N7—H7B···Cli 0.86 2.51 3.358 (2) 169

Symmetry code: (i) x+1, y, z.

References

  1. Amiri, N., Le Maux, P., Srour, H., Nasri, H. & Simonneaux, G. (2014). Tetrahedron, 70, 8836–8842.
  2. Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
  4. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  5. Cheng, B. & Scheidt, W. R. (1996). Acta Cryst. C52, 361–363. [DOI] [PubMed]
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Garg, K., Singh, A., Majumder, C., Nayak, S. K., Aswal, D. K., Gupta, S. K. & Chattopadhyay, S. (2013). Org. Electron. 14, 1189–1196.
  8. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  9. Harry, P. D. (2003). Advanced Inorganic Chemistry, edited by K. M. Kadish, K. M. Smith & R. Guilard, Vol. 18, pp. 63–243. New York: Academic Press.
  10. Ishikawa, R., Katoh, K., Breedlove, B. K. & Yamashita, M. (2012). Inorg. Chem. 51, 9123–9131. [DOI] [PubMed]
  11. Jentzen, W., Ma, J.-G. & Shelnutt, J. A. (1998). Biophys. J. 74, 753–763. [DOI] [PMC free article] [PubMed]
  12. Kolarova, H., Macecek, J., Nevrelova, P., Huf, M., Tomecka, M., Bajgar, R., Mosinger, J. & Strnad, M. (2005). Toxicology in Vitro, 19, 971–974. [DOI] [PubMed]
  13. Liu, W., Huang, X., Cheng, M., Nielsen, R., Goddard, W. & Groves, J. (2012). Science, 337, 1322–1325. [DOI] [PubMed]
  14. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  15. Paulat, F., Praneeth, V. K. K., Näther, C. & Lehnert, N. (2006). Inorg. Chem. 45, 2835–2856. [DOI] [PubMed]
  16. Scheidt, W. R. & Lee, Y. (1987). Struct. Bonding, 64, 1–7.
  17. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  18. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  19. Stute, S., Götzke, L., Meyer, D., Merroun, M. L., Rapta, P., Kataeva, O., Seichter, W., Gloe, K., Dunsch, L. & Gloe, K. (2013). Inorg. Chem. 52, 1515–1524. [DOI] [PubMed]
  20. Turner, P., Gunter, M. J., Skelton, B. W. & White, A. H. (1998). Aust. J. Chem. 51, 853–864.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S205698901500050X/cv5479sup1.cif

e-71-00165-sup1.cif (43.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901500050X/cv5479Isup2.hkl

e-71-00165-Isup2.hkl (406.7KB, hkl)

CCDC reference: 1042885

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES