Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jan 3;71(Pt 2):117–120. doi: 10.1107/S2056989014027704

Crystal structure and thermal behaviour of pyridinium styphnate

Selvarasu Muthulakshmi a, Doraisamyraja Kalaivani a,*
PMCID: PMC4384612  PMID: 25878796

In the crystal of the title mol­ecular salt, the pyridinium cation and the 3-hy­droxy-2,4,6-tri­nitro­phenolate anion are linked through bifurcated N—H⋯(O,O) hydrogen bonds forming an Inline graphic(6) ring motif. Impact, friction sensitivity tests and TGA/DTA studies on this compound imply that it is an insensitive high-energy-density material.

Keywords: crystal structure, pyridinium, styphnate, TGA/DTA studies, hydrogen bonding

Abstract

In the crystal structure of the title mol­ecular salt, C5H6N+·C6H2N3O8 (systematic name: pyridinium 3-hy­droxy-2,4,6-tri­nitro­phenolate), the pyridin­ium cation and the 3-hy­droxy-2,4,6-tri­nitro­phenolate anion are linked through bifurcated N—H⋯(O,O) hydrogen bonds, forming an R 1 2(6) ring motif. The nitro group para with respect to phenolate ion forms an intra­molecular hydrogen bond with the adjacent phenolic –OH group, which results in an S(6) ring motif. The nitro group flanked by the phenolate ion and the phenolic –OH group deviates noticeably from the benzene ring, subtending a dihedral angle of 89.2 (4)°. The other two nitro groups deviate only slightly from the plane of the benzene ring, making dihedral angles of 2.8 (4) and 3.4 (3)°. In the crystal, the 3-hy­droxy-2,4,6-tri­nitro­phenolate anions are linked through O—H⋯O hydrogen bonds, forming chains along [100]. These anionic chains, to which the cations are attached, are linked via C—H⋯O hydrogen bonds, forming a three-dimensional structure. Impact friction sensitivity tests and TGA/DTA studies on the title mol­ecular salt imply that it is an insensitive high-energy-density material.

Chemical context  

A number of crystalline styphnate salts with inorganic metal cations have been reported in recent years (Cui et al., 2008a ,b ; Hu et al., 2005; Liu et al., 2009; Orbovic & Codoceo, 2008; Zhang et al., 2011a ,b ; Zheng et al., 2006a ,b ; Zhu & Xiao, 2009). In spite of the fact that styphnates with protonated organic amine cations crystallize with difficulty (Vogel, 1978), they have received attention because of their high thermal stability (Abashev et al., 2001a ,b ; Deblitz et al., 2012; Kalaivani & Malarvizhi, 2010; Kalaivani et al., 2011; Kazheva et al., 2002; Liu et al., 2008; Refat et al., 2013; Tang et al., 2012; Zhang et al., 2012; Wu et al., 2013a ,b ,c ). Amorphous pyridinium styphnate has found applications in the preparation of chloro­picryl chloride (Feuer & Harban, 1954). We report herein on the crystal structure of the title mol­ecular salt.graphic file with name e-71-00117-scheme1.jpg

Structural commentary  

The mol­ecular structure of the title mol­ecular salt is depicted in Fig. 1. The asymmetric unit is comprised of one phenolate anion and a pyridinium cation. The loss of a single proton of the styphnate anion is confirmed by the increase in the bond lengths of the C—C bonds adjacent to the phenolate ion (C1—C2 and C2—C3), which are 1.439 (4) and 1.420 (4) Å, respectively. There is an increase of the value of the bond angles C2—C1—C6 and C2—C3—C4 in the benzene ring to 122.4 (3) and 126.3 (3)°, respectively, and a decrease of the C4—C5—C6 bond angle to 120.5 (2)° compared to the values observed for free styphic acid (Pierce-Butler, 1982). The nitro group (N3/O5/O6) flanked by the phenolate ion and the phenolic –OH group deviates noticeably from the benzene ring plane, subtending a dihedral angle of 89.2 (4)°. The other two nitro groups, O1/N1/O2 and O3/N2/O4, lie close to the plane of the attached benzene ring, making dihedral angles of 2.8 (4) and 3.4 (3) °, respectively. The nitro group (N2/O3/O4) para with respect to the phenolate O atom, O7, forms an intra­molecular hydrogen bond with the adjacent phenolic –OH group (O8—H8), which results in an S(6) ring motif (Fig. 1 and Table 1).

Figure 1.

Figure 1

A view of the mol­ecular structure of the title mol­ecular salt, showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonds are shown as dashed lines (see Table 1 for details).

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N4H4AO1 0.90(2) 2.22(4) 2.946(4) 137(4)
N4H4AO7 0.90(2) 1.88(4) 2.625(3) 138(5)
O8H8AN2 0.82 2.48 2.905(3) 113
O8H8AO4 0.82 1.87 2.563(3) 141
O8H8AO6i 0.82 2.63 3.110(4) 119
C8H8O6ii 0.93 2.58 3.352(5) 141
C8H8O8iii 0.93 2.63 3.405(4) 141
C10H10O2iv 0.93 2.43 3.139(4) 133

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Supra­molecular features  

In the crystal, the cation and anion are linked via bifurcated N—H⋯(O,O) hydrogen bonds forming an Inline graphic(6) ring motif (Table 1 and Figs. 1 and 2). Inversion-related anions are connected through pairs of C—H⋯O hydrogen bonds, forming dimers enclosing an Inline graphic(10) ring motif. The phenolate oxygen, O7, is also bifurcated and forms hydrogen bonds with the protonated nitro­gen atom, N4, of the pyridinium moiety and the C—H H atom adjacent to the protonated nitro­gen atom, forming an Inline graphic(5) ring motif. The combination of these various N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds leads to the formation of a three-dimensional structure (Table 1 and Figs. 2 and 3).

Figure 2.

Figure 2

A view along the a axis of the crystal packing of the title mol­ecular salt. Hydrogen bonds are shown as dashed lines (see Table 1 for details).

Figure 3.

Figure 3

A view along the b axis of the crystal packing of the title mol­ecular salt. Hydrogen bonds are shown as dashed lines (see Table 1 for details).

Database survey  

A search of the Cambridge Structural Database (Version 5.35, May 214; Groom & Allen, 2014) for 3-hy­droxy-2,4,6-tri­nitro­phenolates gave 14 hits. Six concern metal-complex cations, and the remaining eight concern organic cations. Amongst the latter are two compounds, referred to above in §1 for their high thermal stability, viz. 2-meth­oxy­anilinium 3-hy­droxy-2,4,6-tri­nitro­phenolate (Kalaivani et al., 2011) and morpho­linium 3-hy­droxy-2,4,6-tri­nitro­phenolate (Kalaivani & Malarvizhi, 2010).

Thermal behaviour and friction sensitivity  

As styphnic acid derivatives are energetic salts, the thermal behaviour of the title mol­ecular salt has also been examined. The exothermic decomposition has been observed at four different heating rates (5 K/min, 10 K/min, 20 K/min and 40 K/min). The title mol­ecular salt decomposes (70–80%) in two stages. For each stage, the energy of activation was determined employing Kissinger (1957) [stage I: 27.2 kcal/mol; stage II: 50.5 kcal/mol] and Ozawa (1965) methods [stage I: 28.5 kcal/mol; stage II: 51.8 kcal/mol]. The title mol­ecular salt was observed to be insensitive towards the impact of a 2 kg mass hammer up to the height limit (160 cm) of the instrument, even at the maximum energy level of 31.392 J (Meyer & Kohler, 1993a ). The friction sensitivity was determined under defined conditions according to the BAM method (Meyer & Kohler, 1993b ). The title mol­ecular salt was insensitive at the maximum force of 360 Newton. The title mol­ecular salt is an insensitive high-energy-density material, confirmed through the impact, friction-sensitivity test, and the energy of activation from TGA/DTA curves.

Synthesis and crystallization  

Styphnic acid (2.45 g, 0.01 mol) dissolved in 25 mL of absolute alcohol was mixed with pyridine (0.79 g, 0.01 mol) and stirred continuously for 6 hrs and then kept aside for 2 h. The yellow-coloured amorphous solid obtained was filtered, washed with 30 ml of dry ether and recrystallized from ethyl­ene glycol. Yellow crystals formed in an ethyl­ene glycol solution after slow evaporation at 298 K over a period of 2 weeks (m.p: 455 K; yield: 80%).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The NH H atom was located from a difference Fourier map and freely refined. The OH and C-bound H atoms were included in calculated positions and treated as riding atoms: O—H = 0.82, C—H = 0.93 Å, with U iso(H) = 1.5U eq(O) for the hydroxyl H atom and = 1.2U eq(C) for the other H atoms.

Table 2. Experimental details.

Crystal data
Chemical formula C5H6N+C6H2N3O8
M r 324.21
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c () 5.9506(2), 8.1608(3), 27.0175(10)
() 90.379(5)
V (3) 1311.99(8)
Z 4
Radiation type Mo K
(mm1) 0.14
Crystal size (mm) 0.35 0.35 0.30
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004)
T min, T max 0.951, 0.959
No. of measured, independent and observed [I > 2(I)] reflections 14733, 2296, 1771
R int 0.047
(sin /)max (1) 0.595
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.059, 0.198, 1.14
No. of reflections 2296
No. of parameters 212
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
max, min (e 3) 0.32, 0.34

Computer programs: APEX2, SAINT and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989014027704/su5046sup1.cif

e-71-00117-sup1.cif (17.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014027704/su5046Isup2.hkl

e-71-00117-Isup2.hkl (112.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989014027704/su5046Isup3.cml

CCDC reference: 1006492

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the UGC for financial support and the SAIF, IIT Madras, for the data collection.

supplementary crystallographic information

Crystal data

C5H6N+·C6H2N3O8 F(000) = 664
Mr = 324.21 Dx = 1.641 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 5354 reflections
a = 5.9506 (2) Å θ = 2.6–26.1°
b = 8.1608 (3) Å µ = 0.14 mm1
c = 27.0175 (10) Å T = 296 K
β = 90.379 (5)° Block, yellow
V = 1311.99 (8) Å3 0.35 × 0.35 × 0.30 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer 2296 independent reflections
Radiation source: fine-focus sealed tube 1771 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.047
ω and φ scan θmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −5→7
Tmin = 0.951, Tmax = 0.959 k = −9→9
14733 measured reflections l = −32→32

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.198 H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.1017P)2 + 0.9268P] where P = (Fo2 + 2Fc2)/3
2296 reflections (Δ/σ)max < 0.001
212 parameters Δρmax = 0.32 e Å3
1 restraint Δρmin = −0.34 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.5386 (5) 0.1613 (3) 0.08054 (10) 0.0338 (6)
C2 0.6344 (5) 0.1587 (3) 0.12957 (10) 0.0335 (6)
C3 0.5003 (5) 0.0711 (3) 0.16385 (10) 0.0330 (6)
C4 0.3031 (4) −0.0084 (3) 0.15364 (10) 0.0331 (6)
C5 0.2257 (4) −0.0036 (3) 0.10427 (10) 0.0342 (7)
C6 0.3424 (5) 0.0820 (4) 0.06890 (10) 0.0372 (7)
H6 0.2873 0.0862 0.0366 0.045*
C7 1.2035 (5) 0.4297 (4) 0.17352 (12) 0.0451 (8)
H7 1.1200 0.3709 0.1964 0.054*
C8 1.3941 (6) 0.5094 (4) 0.18837 (12) 0.0485 (8)
H8 1.4407 0.5063 0.2213 0.058*
C9 1.5148 (6) 0.5936 (4) 0.15407 (12) 0.0476 (8)
H9 1.6461 0.6474 0.1635 0.057*
C10 1.4438 (6) 0.5993 (4) 0.10590 (12) 0.0488 (8)
H10 1.5250 0.6577 0.0825 0.059*
C11 1.2528 (6) 0.5186 (4) 0.09267 (12) 0.0471 (8)
H11 1.2027 0.5209 0.0600 0.057*
N1 0.6481 (5) 0.2501 (3) 0.04118 (9) 0.0477 (7)
N2 0.0254 (4) −0.0877 (3) 0.09001 (10) 0.0445 (7)
N3 0.5834 (4) 0.0636 (3) 0.21455 (9) 0.0436 (7)
N4 1.1371 (4) 0.4356 (3) 0.12684 (10) 0.0419 (6)
O1 0.8179 (5) 0.3281 (4) 0.04960 (9) 0.0730 (9)
O2 0.5667 (5) 0.2440 (5) 0.00022 (10) 0.0953 (12)
O3 −0.0431 (5) −0.0774 (4) 0.04783 (9) 0.0732 (8)
O4 −0.0736 (4) −0.1705 (3) 0.12168 (9) 0.0589 (7)
O5 0.5195 (6) 0.1641 (3) 0.24370 (9) 0.0800 (10)
O6 0.7049 (5) −0.0493 (5) 0.22574 (10) 0.0913 (11)
O7 0.8146 (3) 0.2234 (3) 0.14326 (8) 0.0493 (6)
O8 0.1994 (4) −0.0845 (3) 0.19071 (8) 0.0478 (6)
H8A 0.0816 −0.1247 0.1805 0.072*
H4A 1.006 (6) 0.388 (7) 0.1186 (18) 0.118 (19)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0332 (15) 0.0309 (14) 0.0374 (15) −0.0026 (12) 0.0065 (12) −0.0001 (11)
C2 0.0283 (14) 0.0298 (13) 0.0424 (15) 0.0001 (11) 0.0028 (12) −0.0035 (11)
C3 0.0324 (15) 0.0339 (14) 0.0327 (14) −0.0014 (12) −0.0003 (11) −0.0011 (11)
C4 0.0317 (15) 0.0281 (13) 0.0397 (15) −0.0009 (11) 0.0066 (12) −0.0007 (11)
C5 0.0261 (14) 0.0323 (14) 0.0441 (16) −0.0023 (11) −0.0006 (12) −0.0039 (12)
C6 0.0367 (16) 0.0374 (15) 0.0374 (15) 0.0010 (12) −0.0014 (12) −0.0043 (12)
C7 0.0468 (19) 0.0385 (16) 0.0503 (18) −0.0043 (14) 0.0104 (14) 0.0022 (13)
C8 0.053 (2) 0.0475 (18) 0.0455 (17) −0.0064 (16) −0.0028 (15) 0.0011 (14)
C9 0.0424 (18) 0.0414 (17) 0.059 (2) −0.0093 (14) −0.0024 (15) −0.0018 (15)
C10 0.0491 (19) 0.0419 (17) 0.055 (2) −0.0082 (15) 0.0100 (15) 0.0081 (14)
C11 0.053 (2) 0.0450 (17) 0.0432 (17) −0.0018 (15) −0.0018 (15) 0.0019 (14)
N1 0.0497 (16) 0.0525 (16) 0.0408 (15) −0.0080 (13) 0.0037 (12) 0.0065 (12)
N2 0.0343 (14) 0.0446 (14) 0.0544 (16) −0.0056 (12) 0.0010 (12) −0.0080 (12)
N3 0.0395 (15) 0.0515 (16) 0.0398 (14) −0.0069 (12) 0.0005 (11) 0.0036 (12)
N4 0.0349 (14) 0.0362 (13) 0.0547 (16) −0.0041 (11) 0.0008 (12) −0.0050 (11)
O1 0.0702 (18) 0.091 (2) 0.0575 (15) −0.0443 (16) 0.0055 (13) 0.0103 (14)
O2 0.092 (2) 0.147 (3) 0.0465 (15) −0.054 (2) −0.0129 (15) 0.0350 (17)
O3 0.0594 (17) 0.102 (2) 0.0584 (16) −0.0280 (15) −0.0190 (13) −0.0023 (15)
O4 0.0472 (14) 0.0603 (15) 0.0692 (16) −0.0234 (12) 0.0075 (12) −0.0048 (12)
O5 0.133 (3) 0.0616 (16) 0.0453 (14) 0.0037 (17) −0.0071 (15) −0.0118 (13)
O6 0.089 (2) 0.124 (3) 0.0600 (17) 0.052 (2) −0.0210 (15) 0.0014 (17)
O7 0.0364 (12) 0.0594 (14) 0.0521 (13) −0.0177 (10) −0.0026 (10) 0.0031 (10)
O8 0.0440 (13) 0.0533 (13) 0.0464 (12) −0.0163 (10) 0.0059 (10) 0.0059 (10)

Geometric parameters (Å, º)

C1—C6 1.369 (4) C8—H8 0.9300
C1—C2 1.439 (4) C9—C10 1.366 (4)
C1—N1 1.445 (4) C9—H9 0.9300
C2—O7 1.249 (3) C10—C11 1.359 (5)
C2—C3 1.420 (4) C10—H10 0.9300
C3—C4 1.367 (4) C11—N4 1.339 (4)
C3—N3 1.454 (4) C11—H11 0.9300
C4—O8 1.333 (3) N1—O2 1.206 (4)
C4—C5 1.409 (4) N1—O1 1.215 (4)
C5—C6 1.376 (4) N2—O3 1.211 (3)
C5—N2 1.426 (4) N2—O4 1.242 (3)
C6—H6 0.9300 N3—O5 1.200 (4)
C7—N4 1.320 (4) N3—O6 1.208 (4)
C7—C8 1.366 (5) N4—H4A 0.90 (2)
C7—H7 0.9300 O8—H8A 0.8200
C8—C9 1.362 (5)
C6—C1—C2 122.4 (3) C7—C8—H8 120.6
C6—C1—N1 117.1 (3) C8—C9—C10 120.3 (3)
C2—C1—N1 120.5 (2) C8—C9—H9 119.9
O7—C2—C3 120.3 (3) C10—C9—H9 119.9
O7—C2—C1 126.9 (3) C11—C10—C9 119.1 (3)
C3—C2—C1 112.8 (2) C11—C10—H10 120.4
C4—C3—C2 126.3 (3) C9—C10—H10 120.4
C4—C3—N3 117.1 (2) N4—C11—C10 119.8 (3)
C2—C3—N3 116.5 (2) N4—C11—H11 120.1
O8—C4—C3 118.1 (2) C10—C11—H11 120.1
O8—C4—C5 125.0 (2) O2—N1—O1 121.5 (3)
C3—C4—C5 116.9 (2) O2—N1—C1 118.3 (3)
C6—C5—C4 120.5 (2) O1—N1—C1 120.2 (3)
C6—C5—N2 118.8 (3) O3—N2—O4 121.9 (3)
C4—C5—N2 120.7 (3) O3—N2—C5 119.8 (3)
C1—C6—C5 120.9 (3) O4—N2—C5 118.4 (3)
C1—C6—H6 119.5 O5—N3—O6 123.2 (3)
C5—C6—H6 119.5 O5—N3—C3 118.8 (3)
N4—C7—C8 120.4 (3) O6—N3—C3 117.8 (3)
N4—C7—H7 119.8 C7—N4—C11 121.7 (3)
C8—C7—H7 119.8 C7—N4—H4A 118 (3)
C9—C8—C7 118.7 (3) C11—N4—H4A 120 (3)
C9—C8—H8 120.6 C4—O8—H8A 109.5
C6—C1—C2—O7 178.0 (3) N2—C5—C6—C1 −178.3 (3)
N1—C1—C2—O7 −2.3 (4) N4—C7—C8—C9 −0.6 (5)
C6—C1—C2—C3 −2.0 (4) C7—C8—C9—C10 0.8 (5)
N1—C1—C2—C3 177.7 (2) C8—C9—C10—C11 −0.7 (5)
O7—C2—C3—C4 −178.4 (3) C9—C10—C11—N4 0.3 (5)
C1—C2—C3—C4 1.6 (4) C6—C1—N1—O2 −3.0 (5)
O7—C2—C3—N3 0.6 (4) C2—C1—N1—O2 177.3 (3)
C1—C2—C3—N3 −179.4 (2) C6—C1—N1—O1 177.1 (3)
C2—C3—C4—O8 −179.9 (3) C2—C1—N1—O1 −2.6 (4)
N3—C3—C4—O8 1.1 (4) C6—C5—N2—O3 −2.8 (4)
C2—C3—C4—C5 0.3 (4) C4—C5—N2—O3 177.3 (3)
N3—C3—C4—C5 −178.7 (2) C6—C5—N2—O4 177.0 (3)
O8—C4—C5—C6 178.3 (3) C4—C5—N2—O4 −2.9 (4)
C3—C4—C5—C6 −1.9 (4) C4—C3—N3—O5 −87.2 (4)
O8—C4—C5—N2 −1.8 (4) C2—C3—N3—O5 93.7 (3)
C3—C4—C5—N2 178.0 (2) C4—C3—N3—O6 89.1 (4)
C2—C1—C6—C5 0.6 (4) C2—C3—N3—O6 −90.0 (4)
N1—C1—C6—C5 −179.2 (3) C8—C7—N4—C11 0.2 (5)
C4—C5—C6—C1 1.5 (4) C10—C11—N4—C7 0.0 (5)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N4—H4A···O1 0.90 (2) 2.22 (4) 2.946 (4) 137 (4)
N4—H4A···O7 0.90 (2) 1.88 (4) 2.625 (3) 138 (5)
O8—H8A···N2 0.82 2.48 2.905 (3) 113
O8—H8A···O4 0.82 1.87 2.563 (3) 141
O8—H8A···O6i 0.82 2.63 3.110 (4) 119
C8—H8···O6ii 0.93 2.58 3.352 (5) 141
C8—H8···O8iii 0.93 2.63 3.405 (4) 141
C10—H10···O2iv 0.93 2.43 3.139 (4) 133

Symmetry codes: (i) x−1, y, z; (ii) −x+5/2, y+1/2, −z+1/2; (iii) −x+3/2, y+1/2, −z+1/2; (iv) −x+2, −y+1, −z.

References

  1. Abashev, G. G., Gritsenko, V. V., Kazheva, O. N., Tenishev, A. G., Canadell, E. & Dyachenk, O. A. (2001b). Z. Kristallogr. 216, 623–628.
  2. Abashev, G. G., Kazheva, O. N., Dyachenk, O. A., Gritsenko, V. V., Tenishev, A. G., Nishimura, K. & Saito, G. (2001a). Mendeleev Commun. 4, 125–127.
  3. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
  4. Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Cui, Y., Zhang, T. L., Zhang, J. G. & Yang, L. (2008a). Chin. J. Chem. 26, 2021–2028.
  6. Cui, Y., Zhang, T. L., Zhang, J. G., Yang, L., Hu, X. C. & Zhang, J. (2008b). J. Mol. Struct. 889, 177–185.
  7. Deblitz, R., Hrib, C. G., Plenikowski, G. & Edelmann, F. T. (2012). Crystals, 2, 34–42.
  8. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  9. Feuer, H. & Harban, A. A. (1954). US Patent 2679538 A.
  10. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  11. Hu, R., Chen, S., Gao, S., Zhao, F., Luo, Y., Gao, H., Shi, Q., Zhao, H., Yao, P. & Li, J. (2005). J. Hazard. Mater. 117, 346–350. [DOI] [PubMed]
  12. Kalaivani, D. & Malarvizhi, R. (2010). Acta Cryst. E66, o2698. [DOI] [PMC free article] [PubMed]
  13. Kalaivani, D., Malarvizhi, R., Thanigaimani, K. & Muthiah, P. T. (2011). Acta Cryst. E67, o686. [DOI] [PMC free article] [PubMed]
  14. Kazheva, O. N., Canadell, E., Shilov, G. V., Abashev, G. G., Tenishev, A. G. & Dyachenk, O. A. (2002). Phys. E Low Dimens. Syst. Nanostruct. 13, 1268–1270.
  15. Kissinger, H. E. (1957). Anal. Chem. 29, 1702–1706.
  16. Liu, Z. H., Ao, G. J., Zhang, T. L., Yang, L., Zhang, J. G. & Zhang, Y. (2008). Wuji Huaxue Xuebao, 24, 1155–1159.
  17. Liu, J. W., Zhang, J. G., Zhang, T. L., Zheng, H., Yang, L. & Yu, K. B. (2009). Struct. Chem. 20, 387–392.
  18. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  19. Meyer, R. & Kohler, J. (1993a). Editors. Explosives, 4th ed., revised and extended, p. 149. New York: VCH Publishers.
  20. Meyer, R. & Kohler, J. (1993b). Editors. Explosives, 4th ed., revised and extended, p. 197. New York: VCH Publishers.
  21. Orbovic, N. & Codoceo, C. L. (2008). Prop. Explos. Pyrotech. 33, 459–466.
  22. Ozawa, T. (1965). Bull. Chem. Soc. Jpn, 38, 1881–1886.
  23. Pierce-Butler, M. A. (1982). Acta Cryst. B38, 3097–3100.
  24. Refat, M. S., Saad, H. A., EI-Sayed, M. Y., Adam, A. M. A., Yeşilel, O. Z. & Taş, M. (2013). J. Chem. 2013, article ID 107515, 8 pages. 10.1155/2013/107515.
  25. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  26. Tang, Z., Yang, L., Qiao, X. J., Wu, B. D., Zhang, T. L., Zhou, Z. N. & Yu, K. B. (2012). Chem. Res. Chin. Univ. 28, 4-8.
  27. Vogel, A. I. (1978). Textbook of Practical Organic Chemistry, 4th ed., p. 1093. London: Longman.
  28. Wu, J. T., Zhang, J. G., Sun, M., Yin, X. & Zhang, T. L. (2013b). New Trends Res. Energ. Mater. pp. 433–440.
  29. Wu, J. T., Zhang, J. G., Sun, M., Yin, X. & Zhang, T. L. (2013c). Cent. Eur. J. Energ. Mater. 10, 481–493.
  30. Wu, J. T., Zhang, J. G., Yin, X., Sun, M. & Zhang, T. L. (2013a). Z. Anorg. Allg. Chem. 639, 2354–2358.
  31. Zhang, J. G., Liang, Y. H., Feng, J. L., Wang, K., Zhang, T. L., Zhou, Z. N. & Yang, L. (2012). Z. Anorg. Allg. Chem. 638, 1212–1218.
  32. Zhang, J. G., Wang, K., Li, Z. M., Zheng, H., Zhang, T. L. & Yang, L. (2011a). Main Group Chem. 10, 205–213.
  33. Zhang, J., Wei, L., Cui, Y., Zhang, T., Zhou, Z. & Yong, L. (2011b). Z. Anorg. Allg. Chem. 637, 1527–1532.
  34. Zheng, H., Zhang, T. L., Zhang, J. G., Qiao, X. L., Yang, L. & Yu, K. B. (2006a). Wuji Huaxue Xuebao 22, 346–350.
  35. Zheng, H., Zhang, T. L., Zhang, J. G., Qiao, X. L., Yang, L. & Yu, K. B. (2006b). Chin. J. Chem. 24, 845–848.
  36. Zhu, W. & Xiao, H. (2009). J. Phys. Chem. B, 113, 10315–10321. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989014027704/su5046sup1.cif

e-71-00117-sup1.cif (17.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014027704/su5046Isup2.hkl

e-71-00117-Isup2.hkl (112.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989014027704/su5046Isup3.cml

CCDC reference: 1006492

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES