Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jan 28;71(Pt 2):m38–m39. doi: 10.1107/S2056989015001279

Crystal structure of (pyridine-κN)bis(quinolin-2-olato-κ2 N,O)copper(II) monohydrate

Benjamin Hawks a, Jingjing Yan a, Prem Basa a, Shawn Burdette a,*
PMCID: PMC4384625  PMID: 25878845

Abstract

The title complex, [Cu(C9H6NO)2(C5H4N)]·H2O, adopts a slightly distorted square-pyramidal geometry in which the axial pyridine ligand exhibits a long Cu—N bond of 2.305 (3) Å. The pyridine ligand forms dihedral angles of 79.5 (5) and 88.0 (1)° with the planes of the two quinolin-2-olate ligands, while the dihedral angle between the quinoline groups of 9.0 (3)° indicates near planarity. The water mol­ecule connects adjacent copper complexes through O—H⋯O hydrogen bonds to phenolate O atoms, forming a network inter­connecting all the complexes in the crystal lattice.

Keywords: crystal structure, copper(II), quinolin-8-ol, pyridine, hydrogen bonding

Related literature  

For the biological activity of clioquinol, see: Di Vaira et al. (2004). For the use of clioquinol in the treatment of Alzheimer’s disease, see: Bareggi & Cornelli (2012). For crystal structures of copper(II) complexes with 8-hy­droxy­quinoline (8-HQ) derivatives and the metal in a five-coordinate environment, see: Deraeve et al. (2008). For [Cu(8-HQ)2(H2O)2] with six-coordinate Cu(II), see: Okabe & Saishu (2001). For copper(II), zinc(II) and iron(III) crystalline complexes with 8-HQ, see: Palenik (1964); Najafi et al. (2011); Jian et al. (2001). For EPR studies performed on a putative [Cu(8-HQ)2(pyri­dine)] complex, see: Marov et al. (1975, 1978).graphic file with name e-71-00m38-scheme1.jpg

Experimental  

Crystal data  

  • [Cu(C9H6NO)2(C5H5N)]·H2O

  • M r = 448.95

  • Orthorhombic, Inline graphic

  • a = 8.9129 (4) Å

  • b = 13.9987 (7) Å

  • c = 32.2568 (16) Å

  • V = 4024.6 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.12 mm−1

  • T = 296 K

  • 0.21 × 0.11 × 0.08 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002) T min = 0.800, T max = 0.916

  • 15390 measured reflections

  • 3542 independent reflections

  • 2301 reflections with I > 2σ(I)

  • R int = 0.050

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.093

  • S = 1.01

  • 3542 reflections

  • 279 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015001279/jj2192sup1.cif

e-71-00m38-sup1.cif (22.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015001279/jj2192Isup2.hkl

e-71-00m38-Isup2.hkl (170.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015001279/jj2192Isup3.cdx

9 6 2 5 4 2 . DOI: 10.1107/S2056989015001279/jj2192fig1.tif

ORTEP drawing of [Cu(C9H6NO)2(C5H4N]·H2O. Displacement ellipsoids were drawn at the 50% probability level. The hydrogen atoms have been omitted for clarity.

9 6 2 5 4 2 a b . DOI: 10.1107/S2056989015001279/jj2192fig2.tif

A portion of the mol­ecular packing for [Cu(C9H6NO)2(C5H4N]·H2O viewed along the a axis. Dashed lines indicate O—H⋯O hydrogen bonds between water hydrogen atoms and hy­droxy­quinoline oxygen atoms forming continuous chains along the b axis. Displacement ellipsoids were drawn at the 5% probability level. Hydrogen atoms not involved in hydrogen bonds have been omitted for clarity.

CCDC reference: 1044628

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (, ).

Cu1O1 1.940(2)
Cu1O2 1.961(2)
Cu1N2 2.012(3)
Cu1N1 2.011(3)
Cu1N3 2.305(3)
O1Cu1N2 92.81(10)
O2Cu1N2 83.32(9)
O1Cu1N1 84.23(10)
O2Cu1N1 97.30(10)
O1Cu1N3 97.70(9)
O2Cu1N3 91.41(9)
N2Cu1N3 100.91(10)
N1Cu1N3 94.18(10)

Table 2. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
O3H18O2i 0.83(5) 1.95(5) 2.776(4) 173(4)
O3H19O1 0.76(4) 2.13(4) 2.871(4) 168(4)

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was funded by the Department of Chemistry and Biochemistry at Worcester Polytechnic Institute.

supplementary crystallographic information

S1. Comment

Clioquinol is a 8-hy­droxy­quinoline (8-HQ) derivative that has been used for the treatment of Alzheimer's disease (Bareggi & Cornelli, 2012). The coordination chemistry of clioquinol plays a critical role in its biological activity (Di Vaira et al., 2004). Copper(II), zinc(II) and iron(III) readily form crystalline complexes with 8-HQ and its derivatives (Palenik, 1964; Najafi, 2011; Jian et al., 2001). Two bidentate ligands chelate a single metal ion in the square planar [Cu(8—HQ)2] cupric complex (Palenik, 1964) that is structurally analogous to [Cu(clioquinol)2] (Di Vaira et al., 2004). Very few X-ray structures of five-coordinate cooper(II) complexes with 8-HQ derivatives have been reported (Deraeve et al., 2008); however, a 6-coordinate complexe of [Cu(8—HQ)2(H2O)2] has been structurally characterized (Okabe & Saishu, 2001). EPR studies were performed on a putative [Cu(8—HQ)2(pyridine)] complex nearly 40 years ago (Marov et al., 1975; Marov et al., 1978).

The reaction of [Cu(OAc)2]·H2O with 8-hy­droxy­quinoline yields the well known [Cu(C9H6NO)2] moiety where each 8-hy­droxy­quionline group serves as a bidentate chelator coordinated through the oxygen and nitro­gen atoms. When recrystallized from a mixture of pyridine and H2O, the title complex is isolated. Herein, we report the crystal structure of [Cu(C9H6NO)2(C5H4N]·H2O, the first confirmation that the 5-coordinate complex can exist in the solid state. The pyridine ligand forms dihedral angles with the two quinolin-2-olate ligands of 79.5 (5)° and 88.0 (1)°, while the dihedral angle between the quinoline groups of 9.0 (3)° indicates near planarity. The Cu—N bond appears to be weak as the crystals readily decompose as they dry, presumably due to loss of the pyridine ligand.

S2. Experimental

[Cu(OAc)2]·H2O (0.258 g, 1.29 mmol) and 8-hy­droxy­quinoline (0.375 g, 2.58 mol) were separately dissolved in minimal qu­anti­ties of acetic acid (ca. 2.5 mL). Upon mixing the solutions, a light green precipitate (0.486 g) formed immediately. The precipitate was isolated by filtration and dissolved in pyridine. Green blocks of [Cu(C9H6NO)2(C5H4N]·H2O were isolated by slow evaporation in a diffusion chamber containing water and subsequentally used for crystal structure analysis.

S3. Refinement

H18 and H19 were located by a difference map and refined isotropically. All of the remaining H atoms were placed in calculated positions and refined using a riding model with atom–H lengths of 0.93 Å (CH). Isotropic displacement parameters for these atoms were set to 1.2 (CH) times Ueq of the parent atom.

Figures

Fig. 1.

Fig. 1.

ORTEP drawing of [Cu(C9H6NO)2(C5H4N]·H2O. Displacement ellipsoids were drawn at the 50% probability level. The hydrogen atoms have been omitted for clarity.

Fig. 2.

Fig. 2.

A portion of the molecular packing for [Cu(C9H6NO)2(C5H4N]·H2O viewed along the a axis. Dashed lines indicate O—H···O hydrogen bonds between water hydrogen atoms and hydroxyquinoline oxygen atoms forming continuous chains along the b axis. Displacement ellipsoids were drawn at the 5% probability level. Hydrogen atoms not involved in hydrogen bonds have been omitted for clarity.

Crystal data

[Cu(C9H6NO)2(C5H5N)]·H2O F(000) = 1848
Mr = 448.95 Dx = 1.482 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 2855 reflections
a = 8.9129 (4) Å θ = 2.6–25.1°
b = 13.9987 (7) Å µ = 1.12 mm1
c = 32.2568 (16) Å T = 296 K
V = 4024.6 (3) Å3 Block, green
Z = 8 0.21 × 0.11 × 0.08 mm

Data collection

Bruker APEXII CCD diffractometer 3542 independent reflections
Radiation source: fine-focus sealed tube 2301 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.050
Detector resolution: 10.00 pixels mm-1 θmax = 25.0°, θmin = 2.6°
φ and ω scans h = −10→9
Absorption correction: multi-scan (SADABS; Bruker, 2002) k = −14→16
Tmin = 0.800, Tmax = 0.916 l = −27→38
15390 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093 H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0441P)2 + 0.2191P] where P = (Fo2 + 2Fc2)/3
3542 reflections (Δ/σ)max = 0.001
279 parameters Δρmax = 0.24 e Å3
0 restraints Δρmin = −0.27 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.16872 (4) 0.91228 (3) 0.376062 (11) 0.03289 (14)
O1 0.0393 (2) 0.81502 (16) 0.39962 (6) 0.0436 (6)
O2 0.2691 (2) 1.02164 (15) 0.35011 (6) 0.0415 (6)
N1 0.1945 (3) 0.9539 (2) 0.43529 (8) 0.0393 (7)
N2 0.0918 (3) 0.88951 (18) 0.31826 (8) 0.0346 (6)
N3 0.3873 (3) 0.82435 (19) 0.37496 (8) 0.0362 (6)
C1 0.2740 (4) 1.0222 (3) 0.45151 (10) 0.0498 (9)
H1 0.3242 1.0640 0.4339 0.060*
C2 0.2872 (4) 1.0353 (3) 0.49500 (11) 0.0630 (11)
H6 0.3453 1.0847 0.5057 0.076*
C3 0.2132 (4) 0.9742 (3) 0.52092 (11) 0.0573 (10)
H2 0.2213 0.9815 0.5495 0.069*
C4 0.1255 (4) 0.9008 (3) 0.50465 (10) 0.0438 (9)
C5 0.0420 (4) 0.8341 (3) 0.52762 (11) 0.0592 (11)
H5 0.0434 0.8369 0.5564 0.071*
C6 −0.0403 (5) 0.7661 (3) 0.50858 (12) 0.0646 (12)
H4 −0.0964 0.7241 0.5246 0.078*
C7 −0.0436 (4) 0.7570 (3) 0.46570 (11) 0.0524 (10)
H3 −0.1001 0.7086 0.4537 0.063*
C8 0.0358 (4) 0.8188 (2) 0.44086 (9) 0.0383 (8)
C9 0.1197 (4) 0.8923 (2) 0.46062 (10) 0.0360 (8)
C10 0.0008 (4) 0.8235 (2) 0.30402 (10) 0.0429 (9)
H7 −0.0425 0.7807 0.3225 0.051*
C11 −0.0332 (4) 0.8157 (3) 0.26144 (11) 0.0534 (10)
H12 −0.0974 0.7680 0.2521 0.064*
C12 0.0284 (4) 0.8783 (3) 0.23423 (11) 0.0505 (10)
H11 0.0063 0.8733 0.2061 0.061*
C13 0.1255 (4) 0.9507 (2) 0.24823 (9) 0.0385 (8)
C14 0.1537 (3) 0.9534 (2) 0.29164 (9) 0.0340 (8)
C15 0.2494 (4) 1.0239 (2) 0.30931 (9) 0.0335 (8)
C16 0.3130 (4) 1.0896 (2) 0.28342 (11) 0.0495 (9)
H10 0.3749 1.1369 0.2943 0.059*
C17 0.2858 (5) 1.0865 (3) 0.24070 (11) 0.0569 (11)
H9 0.3312 1.1317 0.2237 0.068*
C18 0.1952 (4) 1.0196 (3) 0.22332 (10) 0.0542 (10)
H8 0.1794 1.0196 0.1948 0.065*
C19 0.3876 (4) 0.7353 (2) 0.36165 (10) 0.0418 (9)
H17 0.2954 0.7070 0.3560 0.050*
C20 0.5146 (4) 0.6814 (3) 0.35556 (10) 0.0475 (9)
H16 0.5084 0.6191 0.3457 0.057*
C21 0.6507 (4) 0.7222 (3) 0.36438 (10) 0.0512 (10)
H15 0.7393 0.6881 0.3607 0.061*
C22 0.6536 (4) 0.8152 (3) 0.37883 (10) 0.0515 (9)
H14 0.7441 0.8448 0.3852 0.062*
C23 0.5208 (4) 0.8629 (3) 0.38358 (10) 0.0433 (9)
H13 0.5236 0.9254 0.3933 0.052*
O3 −0.0217 (4) 0.6211 (2) 0.37607 (10) 0.0597 (8)
H19 0.006 (4) 0.671 (3) 0.3806 (12) 0.058 (15)*
H18 0.054 (5) 0.595 (3) 0.3664 (13) 0.083 (17)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0354 (2) 0.0357 (2) 0.0275 (2) −0.00361 (19) 0.00111 (18) −0.00006 (17)
O1 0.0458 (14) 0.0499 (14) 0.0351 (12) −0.0102 (12) 0.0018 (11) 0.0002 (11)
O2 0.0508 (14) 0.0390 (13) 0.0348 (12) −0.0096 (12) 0.0002 (11) 0.0031 (10)
N1 0.0405 (17) 0.0416 (17) 0.0357 (14) −0.0023 (15) 0.0023 (13) −0.0040 (13)
N2 0.0335 (16) 0.0333 (16) 0.0369 (15) 0.0002 (14) −0.0009 (13) −0.0004 (12)
N3 0.0314 (16) 0.0397 (16) 0.0374 (14) 0.0014 (13) 0.0003 (13) −0.0009 (13)
C1 0.055 (2) 0.051 (2) 0.044 (2) −0.006 (2) 0.0066 (19) −0.0045 (18)
C2 0.063 (3) 0.069 (3) 0.058 (2) −0.008 (2) −0.010 (2) −0.022 (2)
C3 0.064 (3) 0.069 (3) 0.039 (2) 0.006 (2) −0.005 (2) −0.009 (2)
C4 0.045 (2) 0.055 (2) 0.0315 (17) 0.0112 (19) 0.0017 (16) −0.0007 (17)
C5 0.068 (3) 0.077 (3) 0.0323 (19) 0.012 (2) 0.006 (2) 0.012 (2)
C6 0.075 (3) 0.069 (3) 0.049 (2) −0.007 (2) 0.016 (2) 0.015 (2)
C7 0.053 (3) 0.054 (3) 0.050 (2) −0.0042 (19) 0.009 (2) 0.0111 (18)
C8 0.035 (2) 0.046 (2) 0.0330 (17) 0.0102 (18) 0.0003 (15) 0.0004 (16)
C9 0.0291 (19) 0.043 (2) 0.0363 (17) 0.0119 (16) 0.0047 (15) 0.0055 (15)
C10 0.039 (2) 0.041 (2) 0.049 (2) −0.0005 (19) −0.0002 (17) 0.0042 (17)
C11 0.050 (2) 0.050 (2) 0.060 (2) −0.001 (2) −0.018 (2) −0.012 (2)
C12 0.056 (3) 0.061 (3) 0.0341 (18) 0.009 (2) −0.0086 (19) −0.0006 (18)
C13 0.041 (2) 0.0435 (19) 0.0304 (16) 0.0115 (18) −0.0014 (16) 0.0001 (16)
C14 0.034 (2) 0.0360 (18) 0.0324 (16) 0.0095 (17) 0.0033 (15) −0.0001 (15)
C15 0.037 (2) 0.0334 (18) 0.0302 (16) 0.0038 (16) 0.0040 (16) −0.0008 (15)
C16 0.057 (2) 0.039 (2) 0.053 (2) −0.0053 (19) 0.0119 (19) 0.0004 (17)
C17 0.071 (3) 0.054 (2) 0.046 (2) 0.003 (2) 0.015 (2) 0.0144 (19)
C18 0.063 (3) 0.063 (3) 0.0360 (19) 0.012 (2) 0.0049 (19) 0.0081 (19)
C19 0.033 (2) 0.050 (2) 0.0422 (19) −0.0021 (19) −0.0001 (15) −0.0027 (17)
C20 0.045 (2) 0.044 (2) 0.053 (2) 0.005 (2) 0.0072 (19) −0.0028 (17)
C21 0.039 (2) 0.063 (3) 0.051 (2) 0.012 (2) 0.0079 (18) 0.0066 (19)
C22 0.034 (2) 0.073 (3) 0.048 (2) −0.003 (2) −0.0066 (18) 0.005 (2)
C23 0.042 (2) 0.043 (2) 0.045 (2) −0.0025 (19) −0.0031 (17) −0.0039 (16)
O3 0.0487 (19) 0.0478 (19) 0.083 (2) 0.0065 (16) 0.0051 (17) −0.0096 (17)

Geometric parameters (Å, º)

Cu1—O1 1.940 (2) C8—C9 1.422 (4)
Cu1—O2 1.961 (2) C10—C11 1.411 (4)
Cu1—N2 2.012 (3) C10—H7 0.9300
Cu1—N1 2.011 (3) C11—C12 1.356 (5)
Cu1—N3 2.305 (3) C11—H12 0.9300
O1—C8 1.332 (3) C12—C13 1.408 (5)
O2—C15 1.328 (3) C12—H11 0.9300
N1—C1 1.299 (4) C13—C18 1.401 (5)
N1—C9 1.363 (4) C13—C14 1.423 (4)
N2—C10 1.312 (4) C14—C15 1.424 (4)
N2—C14 1.357 (4) C15—C16 1.366 (4)
N3—C19 1.318 (4) C16—C17 1.400 (5)
N3—C23 1.336 (4) C16—H10 0.9300
C1—C2 1.420 (4) C17—C18 1.357 (5)
C1—H1 0.9300 C17—H9 0.9300
C2—C3 1.366 (5) C18—H8 0.9300
C2—H6 0.9300 C19—C20 1.375 (4)
C3—C4 1.393 (5) C19—H17 0.9300
C3—H2 0.9300 C20—C21 1.371 (4)
C4—C5 1.405 (5) C20—H16 0.9300
C4—C9 1.426 (4) C21—C22 1.383 (5)
C5—C6 1.349 (5) C21—H15 0.9300
C5—H5 0.9300 C22—C23 1.367 (4)
C6—C7 1.389 (5) C22—H14 0.9300
C6—H4 0.9300 C23—H13 0.9300
C7—C8 1.375 (4) O3—H19 0.76 (4)
C7—H3 0.9300 O3—H18 0.83 (5)
O1—Cu1—O2 170.64 (9) N1—C9—C4 121.8 (3)
O1—Cu1—N2 92.81 (10) C8—C9—C4 121.7 (3)
O2—Cu1—N2 83.32 (9) N2—C10—C11 121.8 (3)
O1—Cu1—N1 84.23 (10) N2—C10—H7 119.1
O2—Cu1—N1 97.30 (10) C11—C10—H7 119.1
N2—Cu1—N1 164.89 (11) C12—C11—C10 119.6 (3)
O1—Cu1—N3 97.70 (9) C12—C11—H12 120.2
O2—Cu1—N3 91.41 (9) C10—C11—H12 120.2
N2—Cu1—N3 100.91 (10) C11—C12—C13 120.4 (3)
N1—Cu1—N3 94.18 (10) C11—C12—H11 119.8
C8—O1—Cu1 112.2 (2) C13—C12—H11 119.8
C15—O2—Cu1 112.42 (19) C18—C13—C12 125.8 (3)
C1—N1—C9 119.4 (3) C18—C13—C14 117.9 (3)
C1—N1—Cu1 131.2 (2) C12—C13—C14 116.3 (3)
C9—N1—Cu1 109.3 (2) N2—C14—C15 116.6 (3)
C10—N2—C14 119.6 (3) N2—C14—C13 122.2 (3)
C10—N2—Cu1 130.3 (2) C15—C14—C13 121.2 (3)
C14—N2—Cu1 110.1 (2) O2—C15—C16 124.6 (3)
C19—N3—C23 116.6 (3) O2—C15—C14 117.3 (3)
C19—N3—Cu1 120.8 (2) C16—C15—C14 118.1 (3)
C23—N3—Cu1 122.3 (2) C15—C16—C17 120.6 (3)
N1—C1—C2 122.6 (4) C15—C16—H10 119.7
N1—C1—H1 118.7 C17—C16—H10 119.7
C2—C1—H1 118.7 C18—C17—C16 122.1 (3)
C3—C2—C1 118.9 (4) C18—C17—H9 119.0
C3—C2—H6 120.6 C16—C17—H9 119.0
C1—C2—H6 120.6 C17—C18—C13 120.1 (3)
C2—C3—C4 120.1 (3) C17—C18—H8 119.9
C2—C3—H2 119.9 C13—C18—H8 119.9
C4—C3—H2 119.9 N3—C19—C20 124.5 (3)
C3—C4—C5 126.0 (3) N3—C19—H17 117.7
C3—C4—C9 117.2 (3) C20—C19—H17 117.7
C5—C4—C9 116.8 (3) C21—C20—C19 118.1 (3)
C6—C5—C4 121.1 (3) C21—C20—H16 121.0
C6—C5—H5 119.5 C19—C20—H16 121.0
C4—C5—H5 119.5 C20—C21—C22 118.6 (3)
C5—C6—C7 122.0 (4) C20—C21—H15 120.7
C5—C6—H4 119.0 C22—C21—H15 120.7
C7—C6—H4 119.0 C23—C22—C21 118.8 (3)
C8—C7—C6 120.8 (4) C23—C22—H14 120.6
C8—C7—H3 119.6 C21—C22—H14 120.6
C6—C7—H3 119.6 N3—C23—C22 123.4 (3)
O1—C8—C7 124.7 (3) N3—C23—H13 118.3
O1—C8—C9 117.7 (3) C22—C23—H13 118.3
C7—C8—C9 117.7 (3) H19—O3—H18 102 (4)
N1—C9—C8 116.5 (3)
N2—Cu1—O1—C8 −168.2 (2) Cu1—N1—C9—C8 −3.6 (3)
N1—Cu1—O1—C8 −3.1 (2) C1—N1—C9—C4 0.3 (5)
N3—Cu1—O1—C8 90.4 (2) Cu1—N1—C9—C4 176.2 (2)
N2—Cu1—O2—C15 −4.6 (2) O1—C8—C9—N1 1.2 (4)
N1—Cu1—O2—C15 −169.4 (2) C7—C8—C9—N1 −178.5 (3)
N3—Cu1—O2—C15 96.2 (2) O1—C8—C9—C4 −178.6 (3)
O1—Cu1—N1—C1 178.9 (3) C7—C8—C9—C4 1.7 (5)
O2—Cu1—N1—C1 −10.4 (3) C3—C4—C9—N1 −1.0 (5)
N2—Cu1—N1—C1 −101.8 (5) C5—C4—C9—N1 179.0 (3)
N3—Cu1—N1—C1 81.6 (3) C3—C4—C9—C8 178.8 (3)
O1—Cu1—N1—C9 3.6 (2) C5—C4—C9—C8 −1.2 (5)
O2—Cu1—N1—C9 174.3 (2) C14—N2—C10—C11 1.1 (5)
N2—Cu1—N1—C9 82.9 (5) Cu1—N2—C10—C11 −176.0 (2)
N3—Cu1—N1—C9 −93.7 (2) N2—C10—C11—C12 −0.5 (5)
O1—Cu1—N2—C10 −7.0 (3) C10—C11—C12—C13 −0.1 (5)
O2—Cu1—N2—C10 −178.4 (3) C11—C12—C13—C18 −179.6 (3)
N1—Cu1—N2—C10 −85.2 (5) C11—C12—C13—C14 0.1 (5)
N3—Cu1—N2—C10 91.4 (3) C10—N2—C14—C15 179.1 (3)
O1—Cu1—N2—C14 175.7 (2) Cu1—N2—C14—C15 −3.3 (3)
O2—Cu1—N2—C14 4.3 (2) C10—N2—C14—C13 −1.1 (4)
N1—Cu1—N2—C14 97.5 (5) Cu1—N2—C14—C13 176.5 (2)
N3—Cu1—N2—C14 −85.9 (2) C18—C13—C14—N2 −179.8 (3)
O1—Cu1—N3—C19 44.9 (2) C12—C13—C14—N2 0.5 (5)
O2—Cu1—N3—C19 −133.0 (2) C18—C13—C14—C15 0.1 (5)
N2—Cu1—N3—C19 −49.5 (3) C12—C13—C14—C15 −179.6 (3)
N1—Cu1—N3—C19 129.6 (2) Cu1—O2—C15—C16 −176.7 (3)
O1—Cu1—N3—C23 −142.0 (2) Cu1—O2—C15—C14 4.2 (3)
O2—Cu1—N3—C23 40.1 (2) N2—C14—C15—O2 −0.5 (4)
N2—Cu1—N3—C23 123.6 (2) C13—C14—C15—O2 179.7 (3)
N1—Cu1—N3—C23 −57.3 (2) N2—C14—C15—C16 −179.7 (3)
C9—N1—C1—C2 0.3 (5) C13—C14—C15—C16 0.5 (5)
Cu1—N1—C1—C2 −174.5 (3) O2—C15—C16—C17 −179.9 (3)
N1—C1—C2—C3 −0.3 (6) C14—C15—C16—C17 −0.8 (5)
C1—C2—C3—C4 −0.5 (6) C15—C16—C17—C18 0.6 (6)
C2—C3—C4—C5 −178.9 (4) C16—C17—C18—C13 0.0 (6)
C2—C3—C4—C9 1.1 (5) C12—C13—C18—C17 179.4 (3)
C3—C4—C5—C6 179.5 (4) C14—C13—C18—C17 −0.3 (5)
C9—C4—C5—C6 −0.5 (5) C23—N3—C19—C20 −1.1 (5)
C4—C5—C6—C7 1.7 (6) Cu1—N3—C19—C20 172.4 (2)
C5—C6—C7—C8 −1.1 (6) N3—C19—C20—C21 0.9 (5)
Cu1—O1—C8—C7 −178.3 (3) C19—C20—C21—C22 −0.1 (5)
Cu1—O1—C8—C9 2.0 (3) C20—C21—C22—C23 −0.3 (5)
C6—C7—C8—O1 179.8 (3) C19—N3—C23—C22 0.7 (5)
C6—C7—C8—C9 −0.5 (5) Cu1—N3—C23—C22 −172.7 (2)
C1—N1—C9—C8 −179.5 (3) C21—C22—C23—N3 0.0 (5)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O3—H18···O2i 0.83 (5) 1.95 (5) 2.776 (4) 173 (4)
O3—H19···O1 0.76 (4) 2.13 (4) 2.871 (4) 168 (4)

Symmetry code: (i) −x+1/2, y−1/2, z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: JJ2192).

References

  1. Bareggi, S. R. & Cornelli, U. (2012). CNS Neurosci. Ther. 18, 41–46. [DOI] [PMC free article] [PubMed]
  2. Bruker (2002). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Deraeve, C., Boldron, C., Maraval, A., Mazarguil, H., Gornitzka, H., Vendier, L., Pitié, M. & Meunier, B. (2008). Chem. Eur. J. 14, 682–696. [DOI] [PubMed]
  4. Di Vaira, M., Bazzicalupi, C., Orioli, P., Messori, L., Bruni, B. & Zatta, P. (2004). Inorg. Chem. 43, 3795–3797. [DOI] [PubMed]
  5. Jian, F.-F., Wang, Y., Lu, L.-D., Yang, X.-J., Wang, X., Chantrapromma, S., Fun, H.-K. & Razak, I. A. (2001). Acta Cryst. C57, 714–716. [DOI] [PubMed]
  6. Marov, I. N., Petrukhin, O. M., Zhukov, V. V. & Kalinichenko, N. B. (1978). Russ. J. Inorg. Chem. 23, 2702–2711.
  7. Marov, I. N., Zhukov, V. V., Kalinichenko, N. B. & Petrukhin, O. M. (1975). Russ. J. Coord. Chem. 1, 1046–1053.
  8. Najafi, E., Amini, M. M. & Ng, S. W. (2011). Acta Cryst. E67, m1283. [DOI] [PMC free article] [PubMed]
  9. Okabe, N. & Saishu, H. (2001). Acta Cryst. E57, m251–m252.
  10. Palenik, G. J. (1964). Acta Cryst. 17, 687–695.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  13. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015001279/jj2192sup1.cif

e-71-00m38-sup1.cif (22.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015001279/jj2192Isup2.hkl

e-71-00m38-Isup2.hkl (170.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015001279/jj2192Isup3.cdx

9 6 2 5 4 2 . DOI: 10.1107/S2056989015001279/jj2192fig1.tif

ORTEP drawing of [Cu(C9H6NO)2(C5H4N]·H2O. Displacement ellipsoids were drawn at the 50% probability level. The hydrogen atoms have been omitted for clarity.

9 6 2 5 4 2 a b . DOI: 10.1107/S2056989015001279/jj2192fig2.tif

A portion of the mol­ecular packing for [Cu(C9H6NO)2(C5H4N]·H2O viewed along the a axis. Dashed lines indicate O—H⋯O hydrogen bonds between water hydrogen atoms and hy­droxy­quinoline oxygen atoms forming continuous chains along the b axis. Displacement ellipsoids were drawn at the 5% probability level. Hydrogen atoms not involved in hydrogen bonds have been omitted for clarity.

CCDC reference: 1044628

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES