Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jan 17;71(Pt 2):m28–m29. doi: 10.1107/S2056989015000584

Crystal structure of bis­(thio­cyanato-κS)bis­(thio­urea-κS)mercury(II)

A Baskaran a, K Rajarajan a,*, M NizamMohideen b,*, P Sagayaraj c
PMCID: PMC4384628  PMID: 25878839

Abstract

In the title complex, [Hg(NCS)2(CH4N2S)2], the HgII atom is four-coordinated having an irregular four-coordinate geometry composed of four thione S atoms of two thio­cyanate groups and two thio­urea groups. The S—Hg—S angles are 172.02 (9)° for the trans-thio­cyanate S atoms and 90.14 (5)° for the cis-thio­urea S atoms. The mol­ecular structure is stabilized by an intra­molecular N—H⋯S hydrogen bond, which forms an S(6) ring motif. In the crystal, mol­ecules are linked by a number of N—H⋯N and N—H⋯S hydrogen bonds, forming a three-dimensional framework. The first report of the crystal structure of this compound appeared in 1966 [Korczynski (1966). Rocz. Chem. 40, 547–569] with an extremely high R factor of 17.2%, and no mention of how the data were collected.

Keywords: crystal structure, thio­urea, thio­cyanate, mercury(II), mol­ecular complex, hydrogen bonding

Related literature  

For literature on thio­urea- and thio­cyanate-based metal–organic crystalline materials and their derivatives, see: Ramesh et al. (2012); Shihabuddeen Syed et al. (2013). For the concept of hard and soft acids and bases, see: Ozutsumi et al. (1989); Bell et al. (2001). For the crystal structures of similar compounds, see: Nawaz et al. (2010); Safari et al. (2009); Shihabuddeen Syed et al. (2013). For the first report of the crystal structure of the title compound, see: Korczynski (1966).graphic file with name e-71-00m28-scheme1.jpg

Experimental  

Crystal data  

  • [Hg(NCS)2(CH4N2S)2]

  • M r = 468.99

  • Orthorhombic, Inline graphic

  • a = 8.5359 (5) Å

  • b = 9.0337 (5) Å

  • c = 15.7575 (10) Å

  • V = 1215.07 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 13.33 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.15 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004) T min = 0.176, T max = 0.240

  • 19798 measured reflections

  • 2397 independent reflections

  • 2158 reflections with I > 2σ(I)

  • R int = 0.058

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.029

  • wR(F 2) = 0.075

  • S = 1.15

  • 2397 reflections

  • 137 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 1.44 e Å−3

  • Δρmin = −1.03 e Å−3

  • Absolute structure: Flack (1983), 1149 Freidel pairs.

  • Absolute structure parameter: 0.034 (12)

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015000584/su5058sup1.cif

e-71-00m28-sup1.cif (19KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015000584/su5058Isup2.hkl

e-71-00m28-Isup2.hkl (115.4KB, hkl)

. DOI: 10.1107/S2056989015000584/su5058fig1.tif

A view of the mol­ecular structure of the title complex, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The intra­molecular N—H⋯S hydrogen bond is shown as a double dashed line (see Table 1 for details).

a . DOI: 10.1107/S2056989015000584/su5058fig2.tif

The crystal packing of the title complex, viewed along the a axis. Hydrogen bonds are shown as dashed lines (see Table 1 for details).

CCDC reference: 1043131

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N3H3BS1 0.86 2.55 3.404(7) 174
N3H3AN2i 0.86 2.37 3.103(10) 143
N4H4AN2i 0.86 2.17 2.952(10) 151
N4H4BN1ii 0.86 2.56 3.085(11) 121
N5H5AN1iii 0.86 2.26 3.025(10) 149
N5H5AS4iv 0.86 2.80 3.384(7) 126
N5H5BN2v 0.86 2.21 3.025(10) 158
N6H6AN1iii 0.86 2.25 3.019(10) 149
N6H6BS2vi 0.86 2.56 3.419(8) 172

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Acknowledgments

The authors are grateful to the SAIF, IIT, Madras, India, for the data collection. KR thanks the University Grants Commission, Government of India, for financial support granted under a Major Research Project [F. No. 41–1008/2012 (SR)].

supplementary crystallographic information

S1. Synthesis and crystallization

A mixture of thio­urea, ammonium thio­cyanate and mercury (II) chloride were dissolved in aqueous solution in the molar ratio 2:2:1 and thoroughly mixed for 1 h to obtain a homogeneous mixture. The solution was allowed to evaporate slowly at ambient temperature. Colourless block-like crystals were obtained in a week.

S2. Refinement

All the H atoms were positioned geometrically with N—H = 0.86 Å and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(N).

S3. Comment

This work is part of a research project concerning the investigation of thiourea (N2H4CS) and thiocyanate (SCN) based metal organic crystalline materials and their derivatives (Ramesh et al., 2012; Shihabuddeen Syed et al., 2013). Transition metal thiourea and thiocyanate coordination complexes are candidate materials for device applications including their nonlinear optical properties. As ligands, both thiourea and thiocyanate are interesting due to their potential formation of metal coordination complexes as they exhibit multifunctional coordination modes due to the presence of 'S' and 'N' donor atoms. With reference to the hard and soft acids and bases) concept (Ozutsumi et al., 1989; Bell et al., 2001), the soft cations show a pronounced affinity for coordination with the softer ligands, while hard cations prefer coordination with harder ligands. Several crystallographic reports about mercury(II) complexes usually consist of discrete monomeric molecules with tetrahedral (somewhat distorted) coordination environments around mercury(II) (Nawaz et al., 2010). Herein, we report on the synthesis and crystal structure of the title complex.

The title monomeric complex is composed of two thiocyanate and two thiourea ligands coordinated to the Hg atom via the softer thione S atom (Fig. 1). The four-coordinate mercury atom adopts a severely distorted tetrahedral geometry. The S—Hg—S angles are S3-Hg1-S4 = 172.02 (9) ° for the trans thiocyanate S atoms and S1-Hg1-S2 = 90.14 (5) ° for the trans thiourea S atoms. The bond distances Hg1-S3 and Hg1-S4 are 2.390 (3) and 2.381 (3) Å, respectively, while bond distances Hg1—S1 and Hg1—S2 are 3.064818) and 3.0836 (18) Å, respectively. Bond distances and angles are in agreement with those reported for related compounds (Shihabuddeen Syed et al., 2013; Safari et al., 2009; Nawaz et al., 2010). The SCN moiety is planar [to within 0.007 (1) Å with the C-N and C-S bond lengths corresponding to the values intermediate between single and double bonds. The S2-C2-N2 and S1-C1-N1 units are nearly linear with bond angles of 178.5 (7) and 179.4 (8)°, respectively. The compound is closely related with (thiocyanato-kS)tris(thiourea-kS)mercury(II) chloride (Shihabuddeen Syed et al., 2013). The molecular structure is stabilized by intramolecular an N-H···S hydrogen bond, which forms an S(6) ring motif (Fig. 1 and Table 1).

In the crystal, molecules are connected via N-H···N hydrogen bonds, involving the thiourea NH2 H atoms and the thiocyanate N atom (Fig. 2 and Table 1). This gives rise to the formation of a three-dimensional framework which is reinforced by N-H···S hydrogen bonds (Fig. 2 and Table 1).

The first report of the crystal structure of the title compound appeared in 1966 (Korczynski, 1966) with an extremely high R factor of 17.2 %, and no mention of how the data were collected.

Figures

Fig. 1.

Fig. 1.

A view of the molecular structure of the title complex, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular N—H···S hydrogen bond is shown as a double dashed line (see Table 1 for details).

Fig. 2.

Fig. 2.

The crystal packing of the title complex, viewed along the a axis. Hydrogen bonds are shown as dashed lines (see Table 1 for details).

Crystal data

[Hg(NCS)2(CH4N2S)2] F(000) = 872
Mr = 468.99 Dx = 2.564 Mg m3
Orthorhombic, Pbc21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2b Cell parameters from 2397 reflections
a = 8.5359 (5) Å θ = 2.4–31.2°
b = 9.0337 (5) Å µ = 13.33 mm1
c = 15.7575 (10) Å T = 293 K
V = 1215.07 (12) Å3 Block, colourless
Z = 4 0.20 × 0.20 × 0.15 mm

Data collection

Bruker Kappa APEXII CCD diffractometer 2397 independent reflections
Radiation source: fine-focus sealed tube 2158 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.058
ω and φ scans θmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) h = −10→10
Tmin = 0.176, Tmax = 0.240 k = −11→11
19798 measured reflections l = −19→19

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.029 w = 1/[σ2(Fo2) + (0.0237P)2 + 4.6956P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.075 (Δ/σ)max = 0.001
S = 1.15 Δρmax = 1.44 e Å3
2397 reflections Δρmin = −1.02 e Å3
137 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraint Extinction coefficient: 0.0082 (3)
Primary atom site location: structure-invariant direct methods Absolute structure: Flack (1983), 1149 Freidel pairs.
Secondary atom site location: difference Fourier map Absolute structure parameter: 0.034 (12)

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Hg1 0.25569 (4) 0.89378 (3) 0.72851 (8) 0.0374 (1)
S1 0.4564 (2) 1.1691 (2) 0.69569 (13) 0.0336 (6)
S2 −0.0283 (2) 1.0924 (2) 0.76929 (13) 0.0334 (6)
S3 0.2017 (3) 0.8900 (3) 0.57967 (14) 0.0329 (7)
S4 0.3068 (3) 0.8610 (3) 0.87589 (15) 0.0353 (7)
N1 0.6053 (9) 1.0000 (9) 0.5700 (5) 0.041 (3)
N2 0.0984 (9) 1.2628 (8) 0.9017 (5) 0.037 (3)
N3 0.6051 (8) 0.9346 (7) 0.8444 (5) 0.034 (2)
N4 0.5630 (8) 0.7508 (9) 0.9391 (4) 0.039 (2)
N5 −0.0507 (8) 1.0248 (7) 0.5262 (4) 0.031 (2)
N6 −0.0982 (7) 0.8404 (8) 0.6204 (5) 0.032 (2)
C1 0.5444 (9) 1.0700 (9) 0.6213 (5) 0.026 (2)
C2 0.0478 (9) 1.1927 (9) 0.8463 (5) 0.025 (2)
C3 0.5073 (8) 0.8485 (9) 0.8853 (5) 0.026 (2)
C4 0.0009 (9) 0.9200 (8) 0.5772 (4) 0.022 (2)
H3A 0.70430 0.92670 0.85300 0.0410*
H3B 0.57020 0.99910 0.80900 0.0410*
H4A 0.66240 0.74400 0.94710 0.0460*
H4B 0.50010 0.69370 0.96640 0.0460*
H5A −0.14960 1.04050 0.52150 0.0370*
H5B 0.01460 1.07740 0.49760 0.0370*
H6A −0.19710 0.85630 0.61570 0.0380*
H6B −0.06470 0.77190 0.65370 0.0380*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Hg1 0.0319 (2) 0.0600 (2) 0.0205 (2) −0.0029 (1) −0.0073 (2) 0.0032 (3)
S1 0.0359 (11) 0.0344 (10) 0.0304 (10) −0.0005 (9) −0.0003 (8) −0.0009 (9)
S2 0.0319 (11) 0.0370 (10) 0.0314 (11) 0.0017 (9) 0.0016 (9) −0.0026 (9)
S3 0.0231 (10) 0.0548 (14) 0.0209 (11) 0.0038 (9) −0.0006 (9) −0.0002 (9)
S4 0.0243 (11) 0.0616 (14) 0.0200 (11) 0.0005 (10) 0.0013 (9) −0.0005 (10)
N1 0.035 (4) 0.051 (5) 0.038 (4) 0.000 (4) 0.003 (4) −0.005 (4)
N2 0.039 (4) 0.035 (4) 0.037 (5) 0.002 (3) −0.002 (3) 0.002 (3)
N3 0.026 (4) 0.033 (4) 0.044 (4) −0.001 (3) −0.005 (3) 0.011 (3)
N4 0.041 (4) 0.044 (4) 0.031 (4) 0.010 (3) −0.005 (3) 0.009 (3)
N5 0.031 (4) 0.031 (4) 0.030 (4) 0.000 (3) −0.003 (3) 0.006 (3)
N6 0.026 (3) 0.036 (4) 0.033 (4) −0.001 (3) −0.007 (3) 0.007 (3)
C1 0.024 (4) 0.032 (4) 0.022 (4) −0.004 (3) −0.004 (3) 0.008 (3)
C2 0.025 (4) 0.036 (4) 0.015 (4) 0.003 (3) 0.005 (3) 0.011 (3)
C3 0.028 (4) 0.031 (4) 0.019 (4) 0.008 (3) −0.002 (3) −0.010 (3)
C4 0.028 (4) 0.026 (4) 0.012 (4) 0.001 (3) −0.005 (3) −0.001 (3)

Geometric parameters (Å, º)

Hg1—S1 3.0641 (18) N4—C3 1.313 (11)
Hg1—S2 3.0836 (18) N5—C4 1.318 (9)
Hg1—S3 2.390 (3) N6—C4 1.302 (10)
Hg1—S4 2.381 (3) N3—H3A 0.8600
S1—C1 1.655 (8) N3—H3B 0.8600
S2—C2 1.648 (8) N4—H4A 0.8600
S3—C4 1.736 (8) N4—H4B 0.8600
S4—C3 1.722 (7) N5—H5A 0.8600
N1—C1 1.151 (11) N5—H5B 0.8600
N2—C2 1.162 (11) N6—H6A 0.8600
N3—C3 1.310 (10) N6—H6B 0.8600
S1—Hg1—S2 90.14 (5) C3—N3—H3A 120.00
S1—Hg1—S3 87.35 (8) C3—N3—H3B 120.00
S1—Hg1—S4 99.39 (8) H3A—N3—H3B 120.00
S2—Hg1—S3 93.51 (8) S3—C4—N5 117.1 (6)
S2—Hg1—S4 90.75 (8) S3—C4—N6 122.9 (6)
S3—Hg1—S4 172.02 (9) N5—C4—N6 119.9 (7)
Hg1—S1—C1 86.2 (3) C3—N4—H4A 120.00
Hg1—S2—C2 99.4 (3) C3—N4—H4B 120.00
Hg1—S3—C4 102.1 (2) H4A—N4—H4B 120.00
Hg1—S4—C3 105.9 (3) C4—N5—H5A 120.00
S1—C1—N1 179.4 (8) C4—N5—H5B 120.00
S2—C2—N2 178.4 (8) H5A—N5—H5B 120.00
S4—C3—N3 123.5 (6) C4—N6—H6A 120.00
S4—C3—N4 117.4 (6) C4—N6—H6B 120.00
N3—C3—N4 119.1 (7) H6A—N6—H6B 120.00
S2—Hg1—S1—C1 −145.2 (3) S2—Hg1—S3—C4 −26.2 (3)
S3—Hg1—S1—C1 −51.7 (3) S1—Hg1—S4—C3 −55.8 (3)
S4—Hg1—S1—C1 124.0 (3) S2—Hg1—S4—C3 −146.1 (3)
S1—Hg1—S2—C2 −56.6 (3) Hg1—S3—C4—N6 −53.0 (7)
S3—Hg1—S2—C2 −144.0 (3) Hg1—S3—C4—N5 129.8 (5)
S4—Hg1—S2—C2 42.8 (3) Hg1—S4—C3—N4 −139.9 (6)
S1—Hg1—S3—C4 −116.2 (3) Hg1—S4—C3—N3 42.8 (8)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N3—H3B···S1 0.86 2.55 3.404 (7) 174
N3—H3A···N2i 0.86 2.37 3.103 (10) 143
N4—H4A···N2i 0.86 2.17 2.952 (10) 151
N4—H4B···N1ii 0.86 2.56 3.085 (11) 121
N5—H5A···N1iii 0.86 2.26 3.025 (10) 149
N5—H5A···S4iv 0.86 2.80 3.384 (7) 126
N5—H5B···N2v 0.86 2.21 3.025 (10) 158
N6—H6A···N1iii 0.86 2.25 3.019 (10) 149
N6—H6B···S2vi 0.86 2.56 3.419 (8) 172

Symmetry codes: (i) −x+1, y−1/2, z; (ii) x, −y+3/2, z+1/2; (iii) x−1, y, z; (iv) −x, −y+2, z−1/2; (v) x, −y+5/2, z−1/2; (vi) −x, y−1/2, z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU5058).

References

  1. Bell, N. A., Branston, T. N., Clegg, W., Parker, L., Raper, E. S., Sammon, C. & Constable, C. P. (2001). Inorg. Chim. Acta, 319, 130–136.
  2. Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Korczynski, A. (1966). Rocz. Chem. 40, 547–569.
  6. Nawaz, S., Sadaf, H., Fettouhi, M., Fazal, A. & Ahmad, S. (2010). Acta Cryst. E66, m952. [DOI] [PMC free article] [PubMed]
  7. Ozutsumi, K., Takamuku, T., Ishiguro, S. & Ohtaki, H. (1989). Bull. Chem. Soc. Jpn, 62, 1875–1879.
  8. Ramesh, V., Rajarajan, K., Kumar, K. S., Subashini, A. & NizamMohideen, M. (2012). Acta Cryst. E68, m335–m336. [DOI] [PMC free article] [PubMed]
  9. Safari, N., Amani, V., Abedi, A., Notash, B. & Ng, S. W. (2009). Acta Cryst. E65, m372. [DOI] [PMC free article] [PubMed]
  10. Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  13. Shihabuddeen Syed, A., Rajarajan, K. & NizamMohideen, M. (2013). Acta Cryst. E69, i33. [DOI] [PMC free article] [PubMed]
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015000584/su5058sup1.cif

e-71-00m28-sup1.cif (19KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015000584/su5058Isup2.hkl

e-71-00m28-Isup2.hkl (115.4KB, hkl)

. DOI: 10.1107/S2056989015000584/su5058fig1.tif

A view of the mol­ecular structure of the title complex, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The intra­molecular N—H⋯S hydrogen bond is shown as a double dashed line (see Table 1 for details).

a . DOI: 10.1107/S2056989015000584/su5058fig2.tif

The crystal packing of the title complex, viewed along the a axis. Hydrogen bonds are shown as dashed lines (see Table 1 for details).

CCDC reference: 1043131

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES