Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jan 21;71(Pt 2):192–194. doi: 10.1107/S2056989015000572

Crystal structure of 2-benzyl­amino-4-p-tolyl-6,7-di­hydro-5H-cyclo­penta­[b]pyridine-3-carbo­nitrile

R A Nagalakshmi a, J Suresh a, S Maharani b, R Ranjith Kumar b, P L Nilantha Lakshman c,*
PMCID: PMC4384633  PMID: 25878816

In the crystal of the title compound, mol­ecules are linked by pairs of N—H⋯Nnitrile hydrogen bonds, forming inversion dimers with an Inline graphic(12) ring motif. The dimers are linked by C—H⋯π and π–π inter­actions [centroid–centroid distance = 3.7211 (12) Å], forming a three-dimensional framework.

Keywords: crystal structure, cyclo­penta­[b]pyridine, 2-amino-3-cyano­pyridine, pyridine-3-carbo­nitrile, hydrogen bonding, C—H⋯π inter­actions, π–π inter­actions

Abstract

The title compound, C23H21N3, comprises a 2-amino-3-cyano­pyridine ring fused with a cyclo­pentane ring. The later adopts an envelope conformation with the central methyl­ene C atom as the flap. The benzyl and and p-tolyl rings are inclined to one another by 56.18 (15)°, and to the pyridine ring by 81.87 (14) and 47.60 (11)°, respectively. In the crystal, mol­ecules are linked by pairs of N—H⋯Nnitrile hydrogen bonds, forming inversion dimers with an R 2 2(12) ring motif. The dimers are linked by C—H⋯π and π–π inter­actions [centroid–centroid distance = 3.7211 (12) Å], forming a three-dimensional framework.

Chemical context  

The pyridine nucleus is prevalent in numerous natural products and is extremely important in the chemistry of biological systems (Bringmann et al., 2004). Many naturally occurring and synthetic compounds containing the pyridine scaffold possess inter­esting pharmacological properties (Temple et al., 1992). Among them, 2-amino-3-cyano­pyridines have been identified as IKK-β inhibitors (Murata et al., 2003). The above observations prompted us to synthesize the title compound, which contains a pyridine 3-carbo­nitrile group, and we report herein on its crystal structure. graphic file with name e-71-00192-scheme1.jpg

Structural commentary  

The mol­ecular structure of the title compound is shown Fig. 1. As expected, the pyridine ring (N1/C2–C6) is almost planar (r.m.s. deviation = 0.009 Å). The cyclo­pentane ring fused with the pyridine ring adopts an envelope conformation with atom C8 as the flap, deviating by 0.3505 (1)Å from the mean plane defined by atoms (C5/C6/C7/C9). In the CH2–NH2 chain, the C—N bond lengths [C2—N3 = 1.349 (3) and N3—C21 = 1.437 (3) Å] are comparable with those reported for a similar structure (Nagalakshmi et al., 2014). The endocyclic angle at C5 is contracted to 118.73 (19)° while that at C6 is expanded to 126.2 (2)°, due to the fusion of the five- and six-membered rings. Steric hindrance rotates the benzyl ring (C22–C27) out of the plane of the central pyridine ring by 81.87 (14)°. This twist may be due to the non-bonded inter­actions between one of the ortho-H atoms of the benzene ring and atom H21B of the CH2–NH2 chain. The benzyl and and p-tolyl (C41–C46) rings are inclined to one another by 56.18 (15)°, while the p-tolyl ring is inclined to the pyridine ring by 47.60 (11)°.

Figure 1.

Figure 1

The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

Supra­molecular features  

In the crystal, mol­ecules are linked via pairs of N—H⋯Nnitrile inter­actions, forming inversion dimers which enclose Inline graphic(12) ring motifs. The dimers are connected through weak C—H⋯π inter­actions involving the CN group as acceptor (Table 1 and Fig. 2). They are further connected by slipped parallel π–π stacking inter­actions involving the pyridine rings of inversion-related mol­ecules [Cg1⋯Cg1i = 3.7211 (12), normal distance = 3.5991 (8), slippage = 0.945 Å; Cg1 is the centroid of the N1/C2–C6 ring; symmetry code: (i) −x + 1, −y, −z], resulting in the formation of a three-dimensional framework.

Table 1. Hydrogen-bond geometry (, ).

Cg1 is the centroid of the N1/C2C6 pyridine ring.

DHA DH HA D A DHA
N3H3N2i 0.86 2.25 2.982(3) 144
C47H47A Cg1ii 0.96 2.84 3.681(4) 147

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 2.

Figure 2

A view along the c axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1 for details) and H atoms not involved in hydrogen bonding have been omitted for clarity.

Database survey  

Similar structures reported in the literature include 2-[2-(4-chloro­phen­yl)-2-oxoeth­oxy]-6,7-di­hydro-5H-cyclo­penta­[b]pyridine-3-carbo­nitrile (Mazina et al., 2005) and 2-benzylamino-4-(4-meth­oxy­phen­yl)-6,7,8,9-tetra­hydro-5H-cyclohepta[b]pyridine-3-carbo­nitrile (Nagalakshmi et al., 2014). In the first compound, the fused cyclo­pentane ring has an envelope conformation with the central methyl­ene C atom as the flap, similar to the situation in the title compound.

Synthesis and crystallization  

A mixture of cyclo­penta­none (1 mmol) 1, 4-methyl­benzaldehyde (1 mmol), malono­nitrile (1 mmol) and benzyl­amine were taken in ethanol (10 mL) to which p-toluene­sulfonic acid (p-TSA) (1 mmol) was added. The reaction mixture was heated under reflux for 2–3 h. The reaction progress was monitored by thin layer chromatography. After completion of the reaction, the mixture was poured into crushed ice and extracted with ethyl acetate. The excess solvent was removed under vacuum and the residue was subjected to column chromatography using a petroleum ether/ethyl acetate mixture (97:3 v/v) as eluent to obtain the pure product. The product was recrystallized from ethyl acetate, affording colourless crystals of the title compound (yield: 70%, m.p.: 434 K).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The NH and C-bound H atoms were placed in calculated positions and allowed to ride on their carrier atoms: N—H = 0.86 Å, C—H = 0.93–0.97 Å, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(N,C) for other H atoms.

Table 2. Experimental details.

Crystal data
Chemical formula C23H21N3
M r 339.43
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c () 8.6826(4), 17.7282(9), 12.0400(6)
() 94.253(2)
V (3) 1848.18(16)
Z 4
Radiation type Mo K
(mm1) 0.07
Crystal size (mm) 0.21 0.19 0.18
 
Data collection
Diffractometer Bruker Kappa APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2004)
T min, T max 0.967, 0.974
No. of measured, independent and observed [I > 2(I)] reflections 29178, 3452, 2262
R int 0.034
(sin /)max (1) 0.606
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.058, 0.192, 1.08
No. of reflections 3452
No. of parameters 237
No. of restraints 1
H-atom treatment H-atom parameters constrained
max, min (e 3) 0.29, 0.21

Computer programs: APEX2 and SAINT (Bruker, 2004), SHELXS2013 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015000572/su5061sup1.cif

e-71-00192-sup1.cif (1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015000572/su5061Isup2.hkl

e-71-00192-Isup2.hkl (189.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015000572/su5061Isup3.cml

CCDC reference: 1042906

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

JS and RAN thank the management of The Madura College (Autonomous), Madurai, for their encouragement and support. RRK thanks the University Grants Commission, New Delhi, for funds through a Major Research Project F. No. 42–242/2013 (SR).

supplementary crystallographic information

Crystal data

C23H21N3 F(000) = 720
Mr = 339.43 Dx = 1.220 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 8.6826 (4) Å Cell parameters from 2000 reflections
b = 17.7282 (9) Å θ = 2–31°
c = 12.0400 (6) Å µ = 0.07 mm1
β = 94.253 (2)° T = 293 K
V = 1848.18 (16) Å3 Block, colourless
Z = 4 0.21 × 0.19 × 0.18 mm

Data collection

Bruker Kappa APEXII diffractometer 2262 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.034
ω and φ scans θmax = 25.5°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −10→9
Tmin = 0.967, Tmax = 0.974 k = −21→21
29178 measured reflections l = −14→14
3452 independent reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.058 w = 1/[σ2(Fo2) + (0.1007P)2 + 0.5115P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.192 (Δ/σ)max < 0.001
S = 1.08 Δρmax = 0.29 e Å3
3452 reflections Δρmin = −0.21 e Å3
237 parameters Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraint Extinction coefficient: 0.017 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C2 0.3577 (2) −0.01812 (12) 0.13085 (17) 0.0430 (5)
C3 0.3439 (2) 0.05541 (12) 0.08637 (17) 0.0442 (5)
C4 0.4663 (2) 0.10693 (12) 0.09975 (17) 0.0440 (5)
C5 0.5989 (2) 0.08141 (13) 0.15993 (17) 0.0485 (6)
C6 0.6012 (2) 0.00880 (13) 0.20121 (18) 0.0484 (6)
C7 0.7526 (3) −0.00857 (16) 0.2642 (2) 0.0644 (7)
H7A 0.7425 −0.0086 0.3439 0.077*
H7B 0.7922 −0.0571 0.2424 0.077*
C8 0.8547 (3) 0.05436 (17) 0.2313 (2) 0.0738 (8)
H8A 0.9171 0.0380 0.1722 0.089*
H8B 0.9231 0.0700 0.2945 0.089*
C9 0.7499 (3) 0.11988 (16) 0.1912 (2) 0.0676 (7)
H9A 0.7397 0.1565 0.2501 0.081*
H9B 0.7892 0.1450 0.1275 0.081*
C21 0.2359 (3) −0.14216 (13) 0.1612 (2) 0.0534 (6)
H21A 0.3410 −0.1584 0.1812 0.064*
H21B 0.1921 −0.1762 0.1042 0.064*
C22 0.1449 (3) −0.14823 (13) 0.2613 (2) 0.0549 (6)
C23 0.0421 (3) −0.20537 (17) 0.2721 (3) 0.0822 (9)
H23 0.0233 −0.2399 0.2145 0.099*
C24 −0.0354 (4) −0.2124 (2) 0.3698 (4) 0.1126 (14)
H24 −0.1048 −0.2517 0.3776 0.135*
C25 −0.0081 (5) −0.1610 (3) 0.4533 (4) 0.1160 (14)
H25 −0.0573 −0.1661 0.5189 0.139*
C26 0.0889 (4) −0.1031 (3) 0.4417 (3) 0.1090 (12)
H26 0.1041 −0.0673 0.4979 0.131*
C27 0.1653 (3) −0.0970 (2) 0.3468 (3) 0.0825 (9)
H27 0.2330 −0.0569 0.3399 0.099*
C31 0.1989 (3) 0.07613 (12) 0.03276 (19) 0.0491 (5)
C41 0.4499 (2) 0.18393 (12) 0.05337 (18) 0.0463 (5)
C42 0.4905 (3) 0.24647 (14) 0.1181 (2) 0.0582 (6)
H42 0.5339 0.2396 0.1904 0.070*
C43 0.4680 (3) 0.31822 (14) 0.0777 (2) 0.0665 (7)
H43 0.4938 0.3591 0.1237 0.080*
C44 0.4076 (3) 0.33109 (14) −0.0303 (2) 0.0607 (7)
C45 0.3693 (3) 0.26900 (14) −0.0952 (2) 0.0579 (6)
H45 0.3290 0.2760 −0.1682 0.069*
C46 0.3891 (3) 0.19646 (13) −0.05444 (19) 0.0507 (6)
H46 0.3613 0.1556 −0.1001 0.061*
C47 0.3824 (4) 0.40937 (16) −0.0747 (3) 0.0918 (10)
H47A 0.3738 0.4080 −0.1546 0.138*
H47B 0.4681 0.4407 −0.0493 0.138*
H47C 0.2890 0.4296 −0.0485 0.138*
N1 0.4863 (2) −0.04087 (10) 0.19013 (15) 0.0480 (5)
N2 0.0782 (2) 0.08761 (13) −0.0074 (2) 0.0701 (6)
N3 0.2394 (2) −0.06733 (10) 0.11551 (16) 0.0546 (5)
H3 0.1593 −0.0527 0.0750 0.066*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C2 0.0386 (11) 0.0454 (12) 0.0450 (12) −0.0015 (9) 0.0021 (9) −0.0008 (9)
C3 0.0394 (10) 0.0474 (12) 0.0457 (11) −0.0040 (9) 0.0021 (8) −0.0005 (9)
C4 0.0408 (11) 0.0484 (12) 0.0429 (11) −0.0043 (9) 0.0029 (9) −0.0027 (9)
C5 0.0390 (12) 0.0574 (14) 0.0487 (12) −0.0073 (10) 0.0004 (9) −0.0039 (10)
C6 0.0396 (11) 0.0586 (14) 0.0466 (12) 0.0012 (10) 0.0000 (9) −0.0032 (10)
C7 0.0475 (13) 0.0766 (17) 0.0669 (16) 0.0002 (12) −0.0104 (11) 0.0000 (13)
C8 0.0439 (14) 0.099 (2) 0.0761 (18) −0.0074 (14) −0.0084 (12) 0.0033 (15)
C9 0.0488 (14) 0.0777 (18) 0.0745 (17) −0.0163 (13) −0.0067 (12) −0.0030 (13)
C21 0.0517 (13) 0.0445 (13) 0.0634 (14) −0.0034 (10) 0.0008 (11) 0.0024 (10)
C22 0.0408 (12) 0.0492 (13) 0.0740 (15) 0.0024 (10) −0.0011 (11) 0.0106 (12)
C23 0.0639 (17) 0.0627 (18) 0.121 (3) −0.0079 (14) 0.0139 (17) 0.0197 (17)
C24 0.075 (2) 0.098 (3) 0.169 (4) −0.008 (2) 0.039 (3) 0.050 (3)
C25 0.088 (3) 0.158 (4) 0.106 (3) 0.013 (3) 0.031 (2) 0.036 (3)
C26 0.090 (2) 0.155 (4) 0.086 (2) −0.005 (3) 0.0237 (19) −0.010 (2)
C27 0.0696 (18) 0.099 (2) 0.080 (2) −0.0108 (16) 0.0145 (15) −0.0080 (17)
C31 0.0422 (11) 0.0453 (12) 0.0592 (13) −0.0070 (9) −0.0006 (9) 0.0041 (10)
C41 0.0402 (11) 0.0480 (13) 0.0514 (12) −0.0070 (10) 0.0076 (9) −0.0033 (10)
C42 0.0614 (15) 0.0544 (15) 0.0585 (14) −0.0130 (12) 0.0016 (11) −0.0057 (11)
C43 0.0762 (17) 0.0521 (15) 0.0720 (17) −0.0152 (13) 0.0109 (14) −0.0111 (12)
C44 0.0662 (16) 0.0472 (14) 0.0708 (16) −0.0058 (12) 0.0201 (13) 0.0017 (11)
C45 0.0647 (15) 0.0572 (15) 0.0528 (13) 0.0004 (12) 0.0119 (11) 0.0033 (11)
C46 0.0516 (13) 0.0492 (13) 0.0517 (13) −0.0041 (10) 0.0064 (10) −0.0045 (10)
C47 0.128 (3) 0.0530 (17) 0.098 (2) −0.0051 (17) 0.030 (2) 0.0105 (15)
N1 0.0421 (10) 0.0507 (11) 0.0507 (10) 0.0011 (8) −0.0007 (8) 0.0014 (8)
N2 0.0472 (12) 0.0668 (15) 0.0941 (17) −0.0074 (10) −0.0100 (11) 0.0156 (12)
N3 0.0435 (10) 0.0502 (11) 0.0685 (12) −0.0082 (9) −0.0078 (9) 0.0129 (9)

Geometric parameters (Å, º)

C2—N1 1.342 (3) C23—C24 1.404 (5)
C2—N3 1.349 (3) C23—H23 0.9300
C2—C3 1.411 (3) C24—C25 1.365 (6)
C3—C4 1.401 (3) C24—H24 0.9300
C3—C31 1.420 (3) C25—C26 1.341 (6)
C4—C5 1.390 (3) C25—H25 0.9300
C4—C41 1.478 (3) C26—C27 1.368 (4)
C5—C6 1.380 (3) C26—H26 0.9300
C5—C9 1.501 (3) C27—H27 0.9300
C6—N1 1.330 (3) C31—N2 1.140 (3)
C6—C7 1.499 (3) C41—C46 1.382 (3)
C7—C8 1.496 (4) C41—C42 1.386 (3)
C7—H7A 0.9700 C42—C43 1.371 (4)
C7—H7B 0.9700 C42—H42 0.9300
C8—C9 1.531 (4) C43—C44 1.384 (4)
C8—H8A 0.9700 C43—H43 0.9300
C8—H8B 0.9700 C44—C45 1.376 (3)
C9—H9A 0.9700 C44—C47 1.497 (4)
C9—H9B 0.9700 C45—C46 1.382 (3)
C21—N3 1.437 (3) C45—H45 0.9300
C21—C22 1.494 (3) C46—H46 0.9300
C21—H21A 0.9700 C47—H47A 0.9600
C21—H21B 0.9700 C47—H47B 0.9600
C22—C23 1.363 (4) C47—H47C 0.9600
C22—C27 1.374 (4) N3—H3 0.8600
N1—C2—N3 118.24 (19) C22—C23—H23 119.9
N1—C2—C3 121.54 (18) C24—C23—H23 119.9
N3—C2—C3 120.22 (18) C25—C24—C23 119.3 (3)
C4—C3—C2 121.10 (19) C25—C24—H24 120.3
C4—C3—C31 121.52 (19) C23—C24—H24 120.3
C2—C3—C31 117.30 (18) C26—C25—C24 120.7 (4)
C5—C4—C3 116.08 (19) C26—C25—H25 119.7
C5—C4—C41 123.40 (19) C24—C25—H25 119.7
C3—C4—C41 120.50 (18) C25—C26—C27 119.7 (4)
C6—C5—C4 118.73 (19) C25—C26—H26 120.2
C6—C5—C9 110.2 (2) C27—C26—H26 120.2
C4—C5—C9 131.1 (2) C26—C27—C22 122.0 (3)
N1—C6—C5 126.2 (2) C26—C27—H27 119.0
N1—C6—C7 122.5 (2) C22—C27—H27 119.0
C5—C6—C7 111.3 (2) N2—C31—C3 174.7 (2)
C8—C7—C6 103.1 (2) C46—C41—C42 117.6 (2)
C8—C7—H7A 111.1 C46—C41—C4 121.51 (19)
C6—C7—H7A 111.1 C42—C41—C4 120.9 (2)
C8—C7—H7B 111.1 C43—C42—C41 121.3 (2)
C6—C7—H7B 111.1 C43—C42—H42 119.4
H7A—C7—H7B 109.1 C41—C42—H42 119.4
C7—C8—C9 107.4 (2) C42—C43—C44 121.4 (2)
C7—C8—H8A 110.2 C42—C43—H43 119.3
C9—C8—H8A 110.2 C44—C43—H43 119.3
C7—C8—H8B 110.2 C45—C44—C43 117.4 (2)
C9—C8—H8B 110.2 C45—C44—C47 121.1 (3)
H8A—C8—H8B 108.5 C43—C44—C47 121.5 (2)
C5—C9—C8 102.8 (2) C44—C45—C46 121.6 (2)
C5—C9—H9A 111.2 C44—C45—H45 119.2
C8—C9—H9A 111.2 C46—C45—H45 119.2
C5—C9—H9B 111.2 C41—C46—C45 120.8 (2)
C8—C9—H9B 111.2 C41—C46—H46 119.6
H9A—C9—H9B 109.1 C45—C46—H46 119.6
N3—C21—C22 113.74 (19) C44—C47—H47A 109.5
N3—C21—H21A 108.8 C44—C47—H47B 109.5
C22—C21—H21A 108.8 H47A—C47—H47B 109.5
N3—C21—H21B 108.8 C44—C47—H47C 109.5
C22—C21—H21B 108.8 H47A—C47—H47C 109.5
H21A—C21—H21B 107.7 H47B—C47—H47C 109.5
C23—C22—C27 117.9 (3) C6—N1—C2 116.30 (19)
C23—C22—C21 121.4 (3) C2—N3—C21 125.59 (19)
C27—C22—C21 120.7 (2) C2—N3—H3 117.2
C22—C23—C24 120.3 (3) C21—N3—H3 117.2
N1—C2—C3—C4 1.9 (3) C23—C24—C25—C26 1.6 (6)
N3—C2—C3—C4 −178.91 (19) C24—C25—C26—C27 −2.2 (6)
N1—C2—C3—C31 −174.95 (19) C25—C26—C27—C22 0.6 (6)
N3—C2—C3—C31 4.2 (3) C23—C22—C27—C26 1.6 (4)
C2—C3—C4—C5 −0.8 (3) C21—C22—C27—C26 −176.9 (3)
C31—C3—C4—C5 175.9 (2) C5—C4—C41—C46 134.4 (2)
C2—C3—C4—C41 −179.58 (18) C3—C4—C41—C46 −46.9 (3)
C31—C3—C4—C41 −2.9 (3) C5—C4—C41—C42 −47.7 (3)
C3—C4—C5—C6 0.1 (3) C3—C4—C41—C42 131.0 (2)
C41—C4—C5—C6 178.90 (19) C46—C41—C42—C43 1.5 (3)
C3—C4—C5—C9 −179.6 (2) C4—C41—C42—C43 −176.5 (2)
C41—C4—C5—C9 −0.9 (4) C41—C42—C43—C44 −1.7 (4)
C4—C5—C6—N1 −0.6 (3) C42—C43—C44—C45 0.8 (4)
C9—C5—C6—N1 179.2 (2) C42—C43—C44—C47 179.8 (3)
C4—C5—C6—C7 −179.6 (2) C43—C44—C45—C46 0.4 (4)
C9—C5—C6—C7 0.2 (3) C47—C44—C45—C46 −178.7 (2)
N1—C6—C7—C8 166.9 (2) C42—C41—C46—C45 −0.4 (3)
C5—C6—C7—C8 −14.1 (3) C4—C41—C46—C45 177.59 (19)
C6—C7—C8—C9 22.1 (3) C44—C45—C46—C41 −0.6 (4)
C6—C5—C9—C8 13.4 (3) C5—C6—N1—C2 1.6 (3)
C4—C5—C9—C8 −166.8 (2) C7—C6—N1—C2 −179.4 (2)
C7—C8—C9—C5 −22.0 (3) N3—C2—N1—C6 178.59 (19)
N3—C21—C22—C23 134.3 (2) C3—C2—N1—C6 −2.2 (3)
N3—C21—C22—C27 −47.2 (3) N1—C2—N3—C21 2.6 (3)
C27—C22—C23—C24 −2.2 (4) C3—C2—N3—C21 −176.6 (2)
C21—C22—C23—C24 176.3 (3) C22—C21—N3—C2 101.2 (3)
C22—C23—C24—C25 0.7 (5)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the N1/C2–C6 pyridine ring.

D—H···A D—H H···A D···A D—H···A
N3—H3···N2i 0.86 2.25 2.982 (3) 144
C47—H47A···Cg1ii 0.96 2.84 3.681 (4) 147

Symmetry codes: (i) −x, −y, −z; (ii) x, −y−1/2, z−3/2.

References

  1. Bringmann, G., Reichert, Y. & Kane, V. V. (2004). Tetrahedron, 60, 3539–3574.
  2. Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Mazina, O. S., Rybakov, V. B., Troyanov, S. I., Babaev, E. V. & Aslanov, L. A. (2005). Kristallografiya, 50, 68–78.
  4. Murata, T., Shimada, M., Sakakibara, S., Yoshino, T., Kadono, H., Masuda, T., Shimazaki, M., Shintani, T., Fuchikami, K., Sakai, K., Inbe, H., Takeshita, K., Niki, T., Umeda, M., Bacon, K. B., Ziegelbauer, K. B. & Lowinger, T. B. (2003). Bioorg. Med. Chem. Lett. 13, 913–918. [DOI] [PubMed]
  5. Nagalakshmi, R. A., Suresh, J., Maharani, S., Kumar, R. R. & Lakshman, P. L. N. (2014). Acta Cryst. E70, 441–443. [DOI] [PMC free article] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Temple, C., Rener, G. A. Jr, Waud, W. R. & Noker, P. E. E. (1992). J. Med. Chem. 35, 3686–3690. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015000572/su5061sup1.cif

e-71-00192-sup1.cif (1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015000572/su5061Isup2.hkl

e-71-00192-Isup2.hkl (189.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015000572/su5061Isup3.cml

CCDC reference: 1042906

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES