Skip to main content
Iranian Journal of Microbiology logoLink to Iranian Journal of Microbiology
. 2013 Dec;5(4):366–373.

Molecular diversity of Mycobacterium tuberculosis strains indifferent provinces of Iran

Mohadese Mozafari 1,*, Parissa Farnia 1, Mona Afraei 1, Zahra Derakhshani-Nezhad 1, Mohammad Reza Masjedi 1, Ali Akbar Velayati 1
PMCID: PMC4385162  PMID: 25848506

Abstract

Background and Objectives

Molecular epidemiology tools are widely used in determining epidemiology of tuberculosis. Spoligotyping is a molecular epidemiology method that is used for characterization and typing of Mycobacterium tuberculosis complex strains. The method is based on polymorphism of the chromosomal DR locus consisting of identical 36-bp DRs alternating with 35-41 unique spacers. The objective of this study was to investigate the prevalence of M. tuberculosis spoligotypes in different provinces of Iran.

Materials and Methods

M. tuberculosis strains were isolated from TB patients of Mycobacteriology Research center (MRC). DNA was extracted from patient’s clinical samples. PCR was performed by using of specific primers for DR region. The amplified DNA was hybridized to the spoligotyping Membrane. Hybridized DNA was detected with ECL detection kit and by exposing ECL Hyperfilm to the membrane. The obtained result was entered to a binary format and was analyzed using SpolDB4 database.

Results

Spoligotyping resulted in 136 different patterns. Out of 1242 M. tuberculosis strains, 1165 strains (93.8%) were classified into 59 clusters and the remaining strains (6.2 %) were singleton.

Conclusions

The results of present study showed that strains of CAS family were more prevalent than other strains in Iran. Other prevalent families were Haarlem, T and Beijing, respectively.

Keywords: Molecular epidemiology, Tuberculosis, Spoligotyping

INTRODUCTION

Tuberculosis (TB) is one of the most urgent health problems in the Middle Eastern countries. Iran, with around 70 million inhabitants, shares geographical borders with four countries with high TB incidence rate, i.e. Pakistan, Afghanistan, Turkmenistan and Iraq. According to the World Health Organization (WHO), the estimated incidence rate of tuberculosis within the country is 21 per 100,000 populations (1). Therefore control and prevention of TB in Iran is the main health concern of national TB program.

Genotyping of M. tuberculosis strains is important for TB control program, because it allows the detection of outbreaks, the tracing of transmission, to monitor species diversity and to identify secondary infections (2, 3).

Large scale genotyping of M. tuberculosis using IS6110 restriction fragment length polymorphism is labor-intensive, time consuming and the results are sometimes difficult to compare among laboratories (2, 4). Based on this knowledge we used an easier and more rapid method in order to differentiate M. tuberculosis strains. Spoligotyping is a PCR based method that permits genotyping of M. tuberculosis complex in a rapid, reliable and cost effective way. The method is based on hybridization of amplified DNA with spacer oligonucleotides. The DR region contains multiple short 36-bp direct repeats (DRs) interspersed with unique spacers, which are 35-41 bp in length (5). The DRs are extremely well conserved among M. tuberculosis complex strains, making spoligotyping a specific method for the genotyping of M. tuberculosis complex members (5). A total of 9 potential super families or clades of M. tuberculosis complex have been identified by spoligotyping method (M. africanum, Beijing, M. bovis, EAI, CAS, T group of families, Haarlem, X and LAM family) (6). In this study, we performed spoligotyping on M. tuberculosis complex strains collected from all over the country, which were isolated between 2010 and 2011, in order to provide preliminary insight into the population structure of M. tuberculosis circulating in the country as well as the distribution of MTB family strains in provinces of Iran.

MATERIALS AND METHODS

M. tuberculosis strains and DNA isolation

A total of 1242 M. tuberculosis strains collected from 24 different provinces of Iran (2010-2011). Clinical specimens were transferred to Mycobacteriology Research Center (MRC). Mycobacterial genomic DNA was extracted from patient’s samples using QIAamp® DNA mini kit (QIAGEN).

Spoligotyping

Spoligotyping was performed as previously described by Kamerbeek et al, (5). The DR region was amplified by PCR using primers DRa (5’-biotin -CCG AGA GGG GAC GGA AAC- 3’) and DRb (5’- GGT TTT GGG TCT GAC GAC-3’), 20-50ng of DNA and 0.5 U of Taq DNA polymerase (Cinnagen, Tehran, Iran). The PCR condition was: 35 cycles of 1 min at 95°C, 1 min at 55°C and 30 sec at 72°C. The first denaturation and final extension steps were held for 10 min. The amplified DNA was hybridized to 43 immobilized oligonucleotides derived from the spacer sequences of MTB H37Rv and M. bovis BCG P3 by reverse line blotting. Hybridized DNA was detected by enhanced chemiluminesence (ECL, Amersham, UK) and by exposing ECL-Hyper film (Amersham) to the membrane for 10 min.

Obtained results were entered in a binary format as excel spreadsheets (Microsoft) and compared with published data (7-10). The strains with spoligotype similar to any pattern of M. tuberculosis strain already found in the database were automatically labeled with an already defined ‘shared type’number. Any spoligotype exhibiting a profile not yet found anywhere in the SpolDB4 database was termed as orphan (not seen) strain.

RESULTS

Spoligotyping

Spoligotyping produced a total of 136 patterns for the 1242 strains. Fifty-nine patterns classified into clusters in the present study (the data are summarized in Table 1 and detailed in Table 2). Fifty nine clusters contained 1165 isolates, which amounted 93.8% of clustering rate (1165/1242).The remainers (n = 77) corresponded to singleton which were not classified into any clusters (Table 3).

Table 1.

Spoligotypes of the 5 most prevalent clades with a Shared Type number in SITVIT databade.

M.tb Strain Shared Type No. of isolates (%) Spoligo pattern (binary) Spoligo pattern (octal)
H4 127 255 (20.5%) nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnonoooonnnnnnn 777777777720771
CAS1_DELHI 26 238 (19.1%) nnnoooonnnnnnnnnnnnnnnoooooooooooonnnnnnnnn 703777740003771
T1 53 140 (11.2%) nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnoooonnnnnnn 777777777760771
CAS1_DELHI 25 126 (10.1%) nnnoooonnnnnnnnnnnnnnnoooooooooooonnoonnnnn 703777740003171
Beijing 1 101 (8.1%) oooooooooooooooooooooooooooooooooonnnnnnnnn 000000000003771

Table 2.

Spoligotype of other Clustered strains.

MTB Strains Shared Type No. of isolates Spoligo pattern (binary) Spoligo pattern (octal)
CAS 22 24 nnnoooonnnnnnnnnnnnoooooooooooooooonnnnnnnn 703777400001771
CAS 357 20 nnnoooonnnnnnnnnnnnnnnoooooooooooooonnnnnnn 703777740000771
MANU 2 54 19 nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnoonnnnnnnnn 777777777763771
H4 656 17 nonnnnnnnnnnnnnnnnonnnnnnnnnooonoooonnnnnnn 577777377420771
H3 294 15 nonnnnnnnnnnnnnnnnnnnnnnnnnnnnonoooonnnnnnn 577777777720771
CAS1_KILI 21 14 nnnoooonnonnnnnnnnnoooooooooooooooonnnnnnnn 703377400001771
H4 262 12 nnnnnnnoonnnnnnnnnnnnnnnnnnnooonoooonnnnnnn 774777777420771
Not seen 10 noonnnnnnnnnnnnnnnnnnnnnnnnnooonoooonnnnnnn 477777777420771
H4 777 8 nnnnnnnnnnnnnnnnnnnnnnnnnnnnooonoooonnnnnnn 777777777420771
Not seen 8 nnnoooonnnnnnooooooooooonnnnnnnnoooonnnnnnn 703740007760771
H3 1908 7 nnnnnnnnnnnnnnnnnnnnnnnnnnooooonoooonnnnnnn 777777776020771
T1 284 7 oooonnnnnnnoonnnnnnnnnnnnnnnnnnnoooonnnnnnn 37637777760771
CAS 142 6 nnnoooonnnnnnnnnnnnnnooooooooooooonnnnnnnnn 703777700003771
CAS 485 6 nnnoooonnnnnnnnnnnnooooooooooooooonnnnnnnnn 703777400003771
CAS1_DELHI 381 6 nnnoooonnnnnnnnnnnnnnnoooooooooooonnooonnnn 703777740003071
LAM9 42 6 nnnnnnnnnnnnnnnnnnnnoooonnnnnnnnoooonnnnnnn 777777607760771
T1 272 6 oooonnnnnnnnnnnnnnnnnnnnnnnnnnnnoooonnnnnnn 37777777760771
T1 628 6 nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnoooonnnnnoo 777777777760760
U 602 6 nnnnnnnnnnnnnnnnnnnnnnnnoooooooooooonnnnnnn 777777770000771
BOVIS 595 5 nnonnnnnonnnnnnnnnnnnnnnnnnnnnnnnnnnnnooooo 676777777777600
LAM3 and S/convergent 4 5 oooooooooooooooooooooooonnnnnnnnoooonnnnnnn 000000007760771
U 1188 5 nnnnnnnnnnnnnnnnnnnnnnnnnnnooooooonnnnnnnnn 777777777003771
Not seen 5 nnnnonnnnnnnnnnnnnnnnnnnnnnnnnnnoonnnnnnnnn 757777777763771
Not seen 5 nnnnnnnnnnnnnnnnnnnnnnnnnnnooooooooonnnnnnn 777777777000771
BOVIS 482 4 nnonnnnnonnnnnnonnnnnnnnnnnnnnnnnnnnnnooooo 676773777777600
CAS 486 4 nnnoooonnnnnnnnnnnnnnnooooooooooooooonnnnnn 703777740000371
T1 1166 4 nnnnnnnnnonnnnnnnnnnnnnnnnnnnnnnoooonnnnnnn 777377777760771
Not seen 4 nonoonnnnnnnnnnnnnnnnnnnnnnnooonoooonnnnnnn 517777777420771
CAS 864 3 nnnoooonnnnnnooooooooooooooooooooooonnnnnoo 703740000000760
CAS 1089 3 noooooonnnnnnnnnnnnnnnoooooooooooonnnnnnnnn 403777740003771
CAS 1093 3 nnnoooonnnnnnnnnnnnnoooooooooooooonnnnnnnnn 703777600003771
CAS 1264 3 nnnoooonnnnnnnnnnnnnnnooooooooooooooooooooo 703777740000000
MANU 2 1634 3 nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnonoonnnnnnnnn 777777777723771
T1 520 3 nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnoooononnnnn 777777777760571
T1 1144 3 nnnnnnnnnnnnnnnnnnnnooooooonnnnnoooonnnnnnn 777777600760771
U(CAS_ANCESTOR?) 27 3 nnnoooonnnnnnnnnnnnnnnoonnnnnnnnnoooonnnnnn 703777747770371
Not seen 3 nnnnnnnnnnnoooonoooooooooooooooooooonnooonn 777604000000611
CAS 599 2 nnnoooonnnnnnnnnnnnooooooooooooooooonnnnnnn 703777400000771
CAS1_DELHI 427 2 nnnoooonnnnnooonnnnnnnoooooooooooonnnnnnnnn 703707740003771
CAS1_DELHI 428 2 nnnoooonnnnnnnnnnnnnnnoooooooooooonnonnnnnn 703777740003371
CAS1_DELHI 1092 2 nnnoooononnnnnnnnnnnnnoooooooooooonnnnnnnnn 702777740003771
CAS1_DELHI 1314 2 nnnoooonnonnnnnnnnnnnnoooooooooooonnoonnnnn 703377740003171
H4 361 2 nonnnnnnnnnnonnnnnnnnnnnnnnnooonoooonnnnnnn 577737777420771
H4 597 2 nonnnonnnnnnnnnnnnnnnnnnnnnnooonoooonnnnnnn 567777777420771
H4 764 2 nnnnnnnnnnnnnonnnnnnnnnnnnnnnnonoooonnnnnnn 777757777720771
H4 1568 2 nnnnnnnoonnnnnnnnnonnnnnnnnnooonoooonnnnnnn 774777377420771
MANU 2 1690 2 nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnoononnnnnnn 777777777762771
T1 1626 2 nnnnnnnnnnnnnnnnnnnnnnnnnnonnnnnoooonnnnnnn 777777776760771
T3 37 2 nnnnnnnnnnnnonnnnnnnnnnnnnnnnnnnoooonnnnnnn 777737777760771
U 374 2 nnnnnnnnnnnnnnnnnnnnnnononooooooooooooooooo 777777752000000
Not seen 2 nnnnnnnnnnnnonnnnnnnnnnnnnnooooooooonnnnnnn 777604000000611
Not seen 2 nonnoooooonnnnnnnnnnnnnnnnnnooonoooonnnnnno 517777777420771
Not seen 2 nonnoooooonnnnnnnnnnnnnnnnnnooonoooonnnnnoo 517777777420771
Not seen 2 nnnnnnnnnnnnonnnnnnnnnnnnnnooooooooonnnnnnn 777737777000771

Table 3.

Spoligotype of non-clustered strains.

MTB Strains Shared Type No. of isolates Spoligo pattern (binary) Spoligo pattern (octal)
BOVIS 694 1 nnonnnnnonnnnooonnnnnnnnnnnnnnnnnnnnnnooooo 676743777777600
CAS 1422 1 nnnoooonnnnnnnnnnnoooooooooooooooooonnnnnnn 703777000000771
CAS 1616 1 ooooooonnnnnnnnnnnnnnnoooooooooooonnnnnnnnn 003777740003771
CAS1_DELHI 289 1 nnnoooonnnnnnnnnnnnnnnoooooooooooonnnonnnnn 703777740003571
CAS1_DELHI 754 1 nonoooonnnnnnnnnnnnnnnoooooooooooonnnnnnnnn 503777740003771
CAS2 288 1 nnnooooooonnnnnnnnnnnnoooooooooooonnnnnnnnn 700377740003771
EAI5 236 1 nnnnnnnnnnnnnnnnnnnnnnnnnnnnoooononnnnnnnnn 777777777413771
EAI5orEAI3 8 1 noooooooooooonnnnnnnnnnnnnnnoooononnnnnnnnn 400037777413771
EAI8_MDG 109 1 noonnnnnnnnnnnnnnnonnnnnnnnnoooononnnnnnnnn 477777377413771
H3 50 1 nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnonoooonnnnnnn 777777777720771
H3 511 1 nnnnnnnnnnnnnnnnnnnnnoooooooooonoooonnnnnnn 777777700020771
H3-T3 36 1 nnnnnnnnnnnnonnnnnnnnnnnnnnnnnonoooonnnnnnn 777737777720771
H4 35 1 nnnnnnnnnnnnonnnnnnnnnnnnnnnooonoooonnnnnnn 777737777420771
LAM11-ZWE 59 1 nnnnnnnnnnnnnnnnnnnnoooonnoooonnoooonnnnnnn 777777606060771
LAM6 64 1 nnnnnnnnnnnnnnnnnnnnoooonnnnonnnoooonnnnnnn 777777607560771
LAM9 492 1 nnnnnnonnnnnnnnnnnnnoooonnnnnnnnoooonnnnnnn 773777607760771
LAM9 770 1 nnnnnnnnnnnonnnnnnnnoooonnnnnnnnoooonnnnnnn 777677607760771
MANU 2 1192 1 nnnnnnnnnnnnnnnnnnnnonnnnnnnnnnnoonnnnnnnnn 777777677763771
T1 7 1 onnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnoooonnnnnnn 377777777760771
T1 65 1 nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnoooonoonnnn 777777777760471
T1 102 1 nnnnnnnnnnnnoooonnnnnnnnnnnnnnnnoooonnnnnnn 777703777760771
T1 131 1 nnnnnnnnnnnnoonnnnnnnnnnnnnnnnnnoooonnnnnnn 777717777760771
T1 154 1 nnnnonnnnnnnnnnnnnnnnnnnnnnnnnnnoooonnnnnnn 757777777760771
T1 205 1 nnnonnnnnnnnnnnnnnnnnnnnnnnnnnnnoooonnnnnnn 737777777760771
T1 243 1 nnnonnnnnnnnnnnnnnnnnnnnnnnnnnnnoooonnnnnnn 737777777760771
T1 291 1 nnnnnnnnnnnnnnnnnnnnonnnnnnnnnnnoooonnnnnnn 777777677760771
T1 535 1 nnnnnnnnnnnnnnnnnnnnnooonnnnnnnnoooonnnnnnn 777777707760771
T1 635 1 oooooooooooooooooooooooonnnnonnnoooonnnnnnn 000000007560771
T1 801 1 nnnnnnnoonnnnnnnnnnnnnnnnnnnnnnnoooonnnnnnn 774777777760771
T1 1073 1 nnnnnnnnnnnoonnnnnnnnnnnnnnnnnnnoooonnnnnnn 777637777760771
T1 245 1 nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnoooonnooooo 777777777760600
T1 411 1 nooooonnnnnnnnnnnnnnnnnnnnnnnnnnoooonnnnnnn 407777777760771
T1 926 1 nnnnnnonnnnnnnnnnnnnnnnnnnnnnnnnoooonnnnnnn 773777777760771
T1 1566 1 nnnnoonnnnnnnnnnnnnnnnnnnnnnnnnnoooonnnnnnn 747777777760771
T1 1735 1 nnnnnnnnnnnnnnnnnnnnnnnnnooonnonoooonnnnnnn 777777774320771
T1_rus2 280 1 nnnnnnoooooooooooonnnnnnnnnnnnnnoooonnnnnnn 770000777760771
T1_RUS2 899 1 nnonnnoooooooooooonnnnnnnnnnnnnnoooonnnnnnn 670000777760771
T1_RUS2 1173 1 nnnnnnoooooooooooonnnnnnnnnnnnnnoooonnnonnn 770000777760731
T2 52 1 nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnoooonnnonnn 777777777760731
T3 1655 1 nnnnnnnnnnnnonoonnnnnnnnnnnnnnnnoooonnnnnnn 777723777760771
U 172 1 nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnooooonnnnnnn 777777777740771
X1 708 1 nnnonnnnnnnnnnnnnonnnnnnnnnnnnnnoooonnnnnnn 737776777760771
X2 302 1 nnnnnnnnnnnnnonnnonnnnnnnnnnnnnnoooonnnnnnn 777756777760771
Not seen 1 nononnnnnooooonnnnnnnnnnnnnnnnnnoooonnnnnnn 537017777760771
Not seen 1 nonnnnnnooooonnnnnnnnnnnnnnnooonoooonnnnnnn 576037777420771
Not seen 1 nnnoooonnnnnnnnnnnnnnnnnnnnonnnnoonnnnnnnnn 703777777363771
Not seen 1 nnnnnnnnnnnnnnnnnnnnnnnnnnnnoooooooooooonnn 777777777400031
Not seen 1 ooooooooooonnnnnnnnnnnnnnnnnooonoooonnnnnnn 000177777420771
Not seen 1 nnnnnnnnnonnnnnnnnnnnnnnnnnnnnnnoonnnnnnnnn 777377777763771
Not seen 1 nnnoooonnnnnnnnnnnnnnnnnnnooononoonnnnnnnnn 703777776123771
Not seen 1 nnnnnnnnnonononnnnnnnnnnnnnnnoonoooonnnnnnn 777257777620771
Not seen 1 nnnnnoonnoonnnnoooooonnnnnnnnnnnooooonnnnnn 763170077760371
Not seen 1 nnnoooonnnnnnnnnnnoooooooooooooooooonnnnnnn 703777000000771
Not seen 1 nnnoooonnonnnnooooooooooooooooooooooonnnnnn 703360000000371
Not seen 1 nonnnnnnnonnnonnnnnnnnnnnnnnooonoooononnnnn 577357777420571
Not seen 1 nnnnnnnnnnnnnoonnnnnnnnnnoonnnnnnnnnnnonnon 777747774777661
Not seen 1 nnnnnnnnnoooononnnnnnnnnnnooooononnnnnnnnnn 777027776027771
Not seen 1 nnnnnnnnnnnoonnnnnnnoooonnnnnnnnoooonnnnnnn 777637607760771
Not seen 1 nnnnnnnnnnnnnnnnnnonnnnnnnnnnnooooonnnnnnnn 777777377701771
Not seen 1 nnnoooonnnnnnnnnnnnnnoooooooooooooonnnnnnnn 703777700001771
Not seen 1 nnnoooonnonnnnnnnnnnnooooooooooooooonnnnnnn 703377700000771
Not seen 1 nnnoooonnnnnnooooooooooooooooooooooonnnnnnn 703740000000771
Not seen 1 nnnnonnnnonnonnnnnnnnnnnnnnnooonoooonnnnnnn 757337777420771
Not seen 1 nnnoooonnnnnnnnnnooonnoooooooooooonnnnnnnnn 703776140003771
Not seen 1 nnnoooonnnnnnooonnnnnnoooooooooooooonnnnnon 703743740000761
Not seen 1 nnnnonnnoonnonnnnnnnnnnnnnnnooonoooonnnnnnn 756337777420771
Not seen 1 nnnnnnnnnonnnonnnonnnonnnnnnnnnnoooonoonnnn 777356737760471
Not seen 1 nnnnnnnnnnnnnnnnnnnnnnnnnnnnooonoonnnnnnnnn 777777777423771
Not seen 1 nnnooooononoooonnnonnnnnnnnnnnnnoooonnnnnnn 701207377760771
Not seen 1 nnnnnnonnonnnoonnnnnnnnnnnonnnnnooonononnnn 773347776761271
Not seen 1 nnnnnnnnnnnnnoooooooooooonnnnnnnoooonnnnnnn 777740003760771
Not seen 1 nonnnnnooonnnnnnnnnnnnnoonnnooonoooonnnnnnn 574377763420771
Not seen 1 oooonnnnnnnoonnnnnnnnnnnnnnnnnnnoooonnnonnn 037637777760731
Not seen 1 oonoooonnnnnnnnnnnnnnnoooooooooooonnnnnnnnn 103777740003771
Not seen 1 noonnnnnnnnnnnnnnnnnnnnnnnnooooonoooooonnnn 477777777010071
Not seen 1 nonnnnnnnnnnnnnnnnnnnnnnnnnnooonoooonnnnnoo 577777777420760
Not seen 1 nnnnnnnnoonnooonnnnnnnoooooooooooonnoonnnnn 776307740003171

Among the 1242 typed isolates, 1165 (93.8%) were classified as shared international types (SITs) according to SITVIT database. The remaining 77 isolates generated 44 new spoligotypes (orphan- not seen) that had not been previously described in the database. Among the 59 clusters, we found 46 minor spoligotypes (including 2 to 9 isolates) and 13 major spoligotypes (> 10 isolates). Isolates ST127 (20.5%; Haarlem family), ST26 (19.1%; CAS family), ST53 (11.2%; T family), ST25 (10.1%; CAS family), and ST1(8.1%; Beijing family) represent almost 70% of the total number of isolates in this study.

The spoligotyping analysis identified the strains in the familes of CAS (n = 471, 37.9%), Haarlem (n = 326, 26.2%), T (n = 195, 15.7%) and Beijing (n = 101, 8.1%). Other spoligotypes belongs to Manu (n = 25, 2%), LAM (n = 13, 1%), U (n = 17, 1.3%), EAI (n = 3, 0.2%), Bovis (n = 10, 0.8%), X (n = 2, 0.16%) and the remianing (n = 77, 6.1%) were orphan.

High spoligotype diversity was documented for CAS, Haarlem and T lineages. Although LAM family was not frequent in this study, a high diversity was also evidenced for this lineage (6 sublineages). Furthermore, 6 M. bovis strains and 4 M. bovis BCG strains were found in this study which classified into 3 clusters.

Geographical distribution of Spoligotypes in Iran

The geographical distribution of M. tuberculosis spoligotypes is shown in Table 4. The most prevalent families were CAS (37.9%) followed by Haarlem (26.2%), T (15.7%), Beijing (8.1%). CAS family strains were predominant in 15 provinces (Khouzestan, Esfahan, Fars, Qazvin, Gilan, Golestan, Hamedan, Hormozgan, Boushehr, Kerman, Kermanshah, Markazi, Tehran, Yazd, Lorestan); strains of Haarlem family were predominant in Qom, Semnan, Kordestan and eastern border provinces, i.e. Khorasan and Sistan -Balouchestan.

Table 4.

geographical distribution of Mycobacterium tuberculosis spoligotypes in Iran.

Khouzestan East and West Azarbaijian/Ardebil Esfahan Fars Qazvin Gilan Golestan Hamedan Hormozgan /Boushehr Kerman Kermanshah Khorasan Kordestan Markazi Mazandaran Qom Semnan Tehran Yazd Sistan- Balouchestan Lorestan Total
BEIJING 5 7 6 5 6 1 5 1 12 3 1 10 1 35 3 101 8.1%
LAM 7 2 1 1 1 1 2 15 1.2%
BOVIS 1 2 1 2 4 10 0.8%
CAS 67 16 17 16 6 18 23 7 19 10 9 34 4 9 4 18 7 107 6 59 15 471 37.9%
EAI 2 1 3 0.2%
HAARLEM 7 10 2 14 2 13 8 5 8 8 2 42 9 3 6 20 8 85 2 65 7 326 26.2%
MANU 2 1 1 1 1 3 14 2 25 2%
T 13 29 12 1 2 8 3 4 2 4 19 3 13 8 5 47 4 16 2 195 15.7%
U 6 1 2 6 2 17 1.3%
X 1 1 2 0.16%
UNKNOWN 9 3 3 5 2 4 3 4 1 3 23 17 77 6.1%
TOTAL 119 65 42 40 10 39 47 21 38 24 16 117 16 15 26 61 21 324 12 165 24 1242

Strains of T family were predominant in Mazan daran, East and West Azerbaijan and Ardebil provinces (North western provinces). Distribution of Beijing strains was higher inTehran, Khorasan and Qom provinces.

DISCUSSION

This study aimed to assess the genetic diversity of M. tuberculosis strains collected from 24 provinces of Iran using the spoligotyping method. Although these strains were not representative of all strains presented in Iran, they provided an insight into the population structure of M. tuberculosis spoligotypes in the country.

Previously, the M. tuberculosis isolates were classified into 3 distinct genetic groups by Sreevatsan et al (11): Group I or ancient MTB genotype (CAS, Beijing, EAI) and Group II and III (Haarlem, T, LAM, U, X) which called Modern MTB genotypes. In a similar study, M. tuberculosis isolates belonged to genetic groups II and III failed to hybridize with spacers 33 to 36, suggesting that these spacers and DRs have become deleted from the genome of all these groups (12). In the present study, the prevalence of ancient TB was 47.9% and the prevalence of modern TB was 45.3%. Another study by Merza et al, reported that the prevalence of ancient and modern TB in Iran was almost equal, whereas in Pakistan and Afghanistan, the majority of strains belonged to ancient MTB genotype. In contrast, modern MTB strains were prevalent in Turkey. Therefore they considered Iran as the connecting geographical location between ancient and modern TB (13).

The CAS family which was the most prevalent lineage in our results is essentially localized in Central and Middle Eastern Asia (14). It belongs to ancient TB and its prevalence is steadily decreasing from south Asia to Western Asia. This genotype might be an ancestor of the Beijing lineage since it clusters close to Beijing when analyzed by a combination of MIRU-VNTR and Spoligotyping (14).

The Haarlem family was first isolated from a patient living in Haarlem, the Netherlands (7). Today its widespread distribution in different geographical regions of the world such as Asia, Europe and Africa, has been documented (15, 16). A study conducted in Iran revealed that this family accounts for more than half of all clustered strains among Iranian MDR-TB (Multi-drug resistant tuberculosis) patients (16). In our study, Haarlem family was prevalent in 5 provinces (Khorasan, Kordestan, Sistan-Balouchestan, Qom and semnan) and the prevalence of T family was higher in north-western provinces (East and West Azarbaijan, Ardebil and Mazandaran).

The Beijing genotype was originally described by Van Soolingen et al (21). This family has spread globally during recent years with the highest prevalence found in Asia and the territory of the former Soviet Union (17-19). The frequency of Beijing genotype was higher in Tehran, Qom and Khorasan provinces due to high migration rate from other provinces or countries with high burden of Beijing genotype to these areas. In this study the prevalence of Beijing genotype was 8.1%; in previous studies the prevalence of this genotype in Tehran, Mashhad and Shiraz was 5.5%, 7.1% and 10%s respectively, (6, 17, 20).

Although our results demonstrated that the most prevalent family in Iran is CAS Lineage, this family is not necessarily prevalent in each provinces of Iran.

The high frequency of Beijing strains in provinces with high migration rate should be considered, due to association of this family with drug resistance.

References

  • 1.World Health Organization (WHO) Global Tuberculosis report 2012. Available online at: http://www.who.int/tb/publications/global_report/en/
  • 2.Brosch R, Gordon SV, Marmiesse M, Brodin P, Buchrieser C, Eiglmeier K, et al. A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc Natl Acad Sci USA. 2002;99:3684–3689. doi: 10.1073/pnas.052548299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Dale JW, Al-Ghusein H, Alhashmi S, Butcher P, Dickens AL, Drobniewski F, et al. Evolutionary relationships among strains of Mycobacterium tuberculosis with few copies of IS6110. J Bacteriol. 2003;185:2555–2562. doi: 10.1128/JB.185.8.2555-2562.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Brosch R, Pym AS, Gordon SV, Cole ST. The evolution ofmycobacterial pathogenicity: clues from comparative genomics. Trends Microbiol. 2001;9:452–458. doi: 10.1016/s0966-842x(01)02131-x. [DOI] [PubMed] [Google Scholar]
  • 5.Kamerbeek J, Schouls L, Kolk A, Van Agterveld M, Van Soolingen D, Kuijper S, et al. Simultaneousdetection and strain differentiation of Mycobacterium tuberculosis fordiagnosis and epidemiology. J Clin Microbiol. 1997;35:907–914. doi: 10.1128/jcm.35.4.907-914.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Velayati AA, Farnia P, Mirsaeidi M, Masjedi MR. The most prevalent Mycobacterium tuberculosis superfamilies among ranian and Afghan TB cases. Scand J Infect Dis. 2006;38:463–468. doi: 10.1080/00365540500504117. [DOI] [PubMed] [Google Scholar]
  • 7.Kremer K, van Soolingen D, Frothingham R, Haas WH, Hermans PW, Martin C, et al. Comparison of methodsbased on different molecular epidemiological markers fortyping of Mycobacterium tuberculosis complex strains:interlaboratory study of discriminatory power and reproducibility. J Clin Microbiol. 1999;37:2607–2618. doi: 10.1128/jcm.37.8.2607-2618.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Sola C, Filliol I, Gutierrez MC, Mokrousov I, Vincent V, Rastogi N. Spoligotype database of Mycobacterium tuberculosis: biogeographic distribution of shared types and epidemiologic and phylogenetic perspectives. Emerg Infect Dis. 2001;7:390–396. doi: 10.3201/eid0703.010304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Filliol I, Driscoll JR, van Soolingen D, Kreiswirth BN, Kremer K, Valetudie G, et al. Snapshot of moving and expanding clones of M. tuberculosis and their global distribution assessed by spoligotyping in an international study. J Clin Microbiol. 2003;41:1963–1970. doi: 10.1128/JCM.41.5.1963-1970.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Filliol I, Driscoll JR, van Soolingen D, Kreiswirth BN, Kremer K, Valetudie G, et al. Global distribution of Mycobacterium tuberculosis spoligotypes. Emerg Infect Dis. 2002;8:1347–1349. doi: 10.3201/eid0811.020125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Sreevatsan S, Pan XI, Stockbauer K, Connell ND, Kreiswirth BN, Whittam TS, et al. Restricted structural gene polymorphism in the Mycobacterium tuberculosis complexindicates evolutionarily recent global dissemination. Proc Natl Acad Sci USA. 1997;94:9869–9874. doi: 10.1073/pnas.94.18.9869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Soini H, Pan X, Amin A, Graviss EA, Siddiqui A, Musser JM. Characterization of Mycobacterium tuberculosis isolates from patients in Houston, Texas, by spoligotyping. J Clin Microbiol. 2000;38:699–679. doi: 10.1128/jcm.38.2.669-676.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Merza MA, Farnia P, Salih AM, Masjedi MR, Velayati AA. The most predominant spoligopatterns of Mycobacterium tuberculosis isolates among Iranian, Afghan-Immigrant, Pakistani and Turkish tuberculosis patients: a comparative analysis. Chemotherapy. 2010;56:284–257. doi: 10.1159/000316846. [DOI] [PubMed] [Google Scholar]
  • 14.Merza MA, Farnia P, Salih AM, Masjedi MR, Velayati AA. First insight into the drug resistance pattern of Mycobacterium tuberculosis in Dohuk, Iraq: using spoligotyping and MIRU-VNTR to characterize multidrug resistant strains. J Infect Pub Health. 2011;4:41–47. doi: 10.1016/j.jiph.2010.11.002. [DOI] [PubMed] [Google Scholar]
  • 15.Mardassi H, Namouchi A, Haltiti R, Zarrouk M, Mhenni B, Karboul A, et al. Tuberculosis due to resistant Haarlem strain, Tunisia. Emerg Infect Dis. 2005;11:957–961. doi: 10.3201/eid1106.041365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Farnia P, Masjedi MR, Mirsaeidi M, Mohammadi F, Ghanavi J, Vincent V, et al. Prevalence of Haarlem I and Beijing types of Mycobacterium tuberculosis strains in Iranian and Afghan MDR-TB patients. J Infect. 2006;53:331–336. doi: 10.1016/j.jinf.2005.12.020. [DOI] [PubMed] [Google Scholar]
  • 17.Rohani M, Farnia P, Naderi Nasab M, Moniri R, Torfeh M, Amiri M. Beijing genotype and other predominant Mycobacterium tuberculosis spoligotypes observed in Mashhad city, Iran. Indian J Med Microbiol. 2009;27:306–10. doi: 10.4103/0255-0857.55441. [DOI] [PubMed] [Google Scholar]
  • 18.Van Soolingen D. Molecular epidemiology of tuberculosis and other mycobacterial infections: main methodologies and achievements. J Intern Med. 2001;249:1–26. doi: 10.1046/j.1365-2796.2001.00772.x. [DOI] [PubMed] [Google Scholar]
  • 19.Viegas SO, Machado A, Groenheit R, Ghebremichael S, Pennhag A, Gudo PS. Molecular diversity of Mycobacterium tuberculosis isolates from patients with pulmonary tuberculosis in Mozambique. BMC Microbiology. 2010;10:195. doi: 10.1186/1471-2180-10-195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Doroudchi M, Kremer K, Basiri EA, Kadivar MR, Van Soolingen D, Ghaderi AA. IS6110-RFLP and spoligotyping of Mycobactrium tuberculosis isolates in Iran. Scand J Infect Dis. 2000;32:663–668. doi: 10.1080/003655400459595. [DOI] [PubMed] [Google Scholar]
  • 21.Van soolingen D, Qian L, de Hass P, Douglas JT, Traore H, Portaels F, et al. Predominance of single genotype of Mycobacterium tuberculosis in countries of East Asia. J Clin Microbiol. 1995;33:3234–3238. doi: 10.1128/jcm.33.12.3234-3238.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Iranian Journal of Microbiology are provided here courtesy of Tehran University of Medical Sciences

RESOURCES