Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1994 May 24;91(11):4718–4722. doi: 10.1073/pnas.91.11.4718

Functional unit size of the charybdotoxin receptor in smooth muscle.

M Garcia-Calvo 1, H G Knaus 1, M L Garcia 1, G J Kaczorowski 1, E S Kempner 1
PMCID: PMC43859  PMID: 7515178

Abstract

Target inactivation analysis was used to determine the functional size of the charybdotoxin (ChTX) receptor in aortic and tracheal sarcolemmal membrane vesicles. This receptor has previously been shown to be an integral component of the high-conductance Ca2+-activated K+ (Maxi-K) channel in these smooth muscles. Exposure of either bovine aortic or bovine tracheal sarcolemma to high-energy irradiation results in disappearance of 125I-labeled ChTX binding activity as a monoexponential function of radiation dose; from these functions molecular masses of 88 +/- 10 kDa and 89 +/- 6 kDa, respectively, can be calculated. Similar results were obtained from radiation inactivation studies with the detergent-solubilized ChTX receptor from aortic sarcolemmal membranes. The effect of radiation on 125I-labeled ChTX binding is to decrease the number of functional ChTX receptors without affecting the affinity of receptors for the toxin, indicating that radiation is destroying, rather than altering, the binding site. The validity of the radiation inactivation technique in these membrane preparations is supported by data obtained in parallel experiments in which target sizes of the alpha 1 subunit of the L-type Ca2+ channel and 5'-nucleotidase were measured. The molecular masses determined for these entities are in excellent agreement with those expected from previous studies. The present data are discussed in terms of the recently determined subunit composition of the smooth muscle Maxi-K channel. In light of the target size, a single alpha beta subunit heterodimer complex could serve as the ChTX receptor.

Full text

PDF
4718

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adelman J. P., Shen K. Z., Kavanaugh M. P., Warren R. A., Wu Y. N., Lagrutta A., Bond C. T., North R. A. Calcium-activated potassium channels expressed from cloned complementary DNAs. Neuron. 1992 Aug;9(2):209–216. doi: 10.1016/0896-6273(92)90160-f. [DOI] [PubMed] [Google Scholar]
  2. Atkinson N. S., Robertson G. A., Ganetzky B. A component of calcium-activated potassium channels encoded by the Drosophila slo locus. Science. 1991 Aug 2;253(5019):551–555. doi: 10.1126/science.1857984. [DOI] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  4. Butler A., Tsunoda S., McCobb D. P., Wei A., Salkoff L. mSlo, a complex mouse gene encoding "maxi" calcium-activated potassium channels. Science. 1993 Jul 9;261(5118):221–224. doi: 10.1126/science.7687074. [DOI] [PubMed] [Google Scholar]
  5. Christie M. J., North R. A., Osborne P. B., Douglass J., Adelman J. P. Heteropolymeric potassium channels expressed in Xenopus oocytes from cloned subunits. Neuron. 1990 Mar;4(3):405–411. doi: 10.1016/0896-6273(90)90052-h. [DOI] [PubMed] [Google Scholar]
  6. Deutsch C., Price M., Lee S., King V. F., Garcia M. L. Characterization of high affinity binding sites for charybdotoxin in human T lymphocytes. Evidence for association with the voltage-gated K+ channel. J Biol Chem. 1991 Feb 25;266(6):3668–3674. [PubMed] [Google Scholar]
  7. Garcia-Calvo M., Knaus H. G., McManus O. B., Giangiacomo K. M., Kaczorowski G. J., Garcia M. L. Purification and reconstitution of the high-conductance, calcium-activated potassium channel from tracheal smooth muscle. J Biol Chem. 1994 Jan 7;269(1):676–682. [PubMed] [Google Scholar]
  8. Garcia-Calvo M., Leonard R. J., Novick J., Stevens S. P., Schmalhofer W., Kaczorowski G. J., Garcia M. L. Purification, characterization, and biosynthesis of margatoxin, a component of Centruroides margaritatus venom that selectively inhibits voltage-dependent potassium channels. J Biol Chem. 1993 Sep 5;268(25):18866–18874. [PubMed] [Google Scholar]
  9. Garcia-Calvo M., Vázquez J., Smith M., Kaczorowski G. J., Garcia M. L. Characterization of the solubilized charybdotoxin receptor from bovine aortic smooth muscle. Biochemistry. 1991 Nov 19;30(46):11157–11164. doi: 10.1021/bi00110a020. [DOI] [PubMed] [Google Scholar]
  10. Garcia M. L., Galvez A., Garcia-Calvo M., King V. F., Vazquez J., Kaczorowski G. J. Use of toxins to study potassium channels. J Bioenerg Biomembr. 1991 Aug;23(4):615–646. doi: 10.1007/BF00785814. [DOI] [PubMed] [Google Scholar]
  11. Giangiacomo K. M., Sugg E. E., Garcia-Calvo M., Leonard R. J., McManus O. B., Kaczorowski G. J., Garcia M. L. Synthetic charybdotoxin-iberiotoxin chimeric peptides define toxin binding sites on calcium-activated and voltage-dependent potassium channels. Biochemistry. 1993 Mar 9;32(9):2363–2370. doi: 10.1021/bi00060a030. [DOI] [PubMed] [Google Scholar]
  12. Goldstein S. A., Miller C. Mechanism of charybdotoxin block of a voltage-gated K+ channel. Biophys J. 1993 Oct;65(4):1613–1619. doi: 10.1016/S0006-3495(93)81200-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Haase H., Striessnig J., Holtzhauer M., Vetter R., Glossmann H. A rapid procedure for the purification of cardiac 1,4-dihydropyridine receptors from porcine heart. Eur J Pharmacol. 1991 May 25;207(1):51–59. doi: 10.1016/s0922-4106(05)80037-9. [DOI] [PubMed] [Google Scholar]
  14. Isacoff E. Y., Jan Y. N., Jan L. Y. Evidence for the formation of heteromultimeric potassium channels in Xenopus oocytes. Nature. 1990 Jun 7;345(6275):530–534. doi: 10.1038/345530a0. [DOI] [PubMed] [Google Scholar]
  15. Kempner E. S., Fleischer S. Radiation inactivation of membrane components and molecular mass determination by target analysis. Methods Enzymol. 1989;172:410–439. doi: 10.1016/s0076-6879(89)72027-9. [DOI] [PubMed] [Google Scholar]
  16. Kempner E. S., Miller J. H., McCreery M. J. Radiation target analysis of glycoproteins. Anal Biochem. 1986 Jul;156(1):140–146. doi: 10.1016/0003-2697(86)90165-x. [DOI] [PubMed] [Google Scholar]
  17. Kempner E. S. Molecular size determination of enzymes by radiation inactivation. Adv Enzymol Relat Areas Mol Biol. 1988;61:107–147. doi: 10.1002/9780470123072.ch3. [DOI] [PubMed] [Google Scholar]
  18. Knaus H. G., Garcia-Calvo M., Kaczorowski G. J., Garcia M. L. Subunit composition of the high conductance calcium-activated potassium channel from smooth muscle, a representative of the mSlo and slowpoke family of potassium channels. J Biol Chem. 1994 Feb 11;269(6):3921–3924. [PubMed] [Google Scholar]
  19. Latorre R., Oberhauser A., Labarca P., Alvarez O. Varieties of calcium-activated potassium channels. Annu Rev Physiol. 1989;51:385–399. doi: 10.1146/annurev.ph.51.030189.002125. [DOI] [PubMed] [Google Scholar]
  20. MacKinnon R. Determination of the subunit stoichiometry of a voltage-activated potassium channel. Nature. 1991 Mar 21;350(6315):232–235. doi: 10.1038/350232a0. [DOI] [PubMed] [Google Scholar]
  21. MacKinnon R., Miller C. Mechanism of charybdotoxin block of the high-conductance, Ca2+-activated K+ channel. J Gen Physiol. 1988 Mar;91(3):335–349. doi: 10.1085/jgp.91.3.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Miller C. Competition for block of a Ca2(+)-activated K+ channel by charybdotoxin and tetraethylammonium. Neuron. 1988 Dec;1(10):1003–1006. doi: 10.1016/0896-6273(88)90157-2. [DOI] [PubMed] [Google Scholar]
  23. Parcej D. N., Scott V. E., Dolly J. O. Oligomeric properties of alpha-dendrotoxin-sensitive potassium ion channels purified from bovine brain. Biochemistry. 1992 Nov 17;31(45):11084–11088. doi: 10.1021/bi00160a018. [DOI] [PubMed] [Google Scholar]
  24. Ruppersberg J. P., Schröter K. H., Sakmann B., Stocker M., Sewing S., Pongs O. Heteromultimeric channels formed by rat brain potassium-channel proteins. Nature. 1990 Jun 7;345(6275):535–537. doi: 10.1038/345535a0. [DOI] [PubMed] [Google Scholar]
  25. Seagar M. J., Labbé-Jullié C., Granier C., Goll A., Glossmann H., Van Rietschoten J., Couraud F. Molecular structure of rat brain apamin receptor: differential photoaffinity labeling of putative K+ channel subunits and target size analysis. Biochemistry. 1986 Jul 15;25(14):4051–4057. doi: 10.1021/bi00362a010. [DOI] [PubMed] [Google Scholar]
  26. Slaughter R. S., Shevell J. L., Felix J. P., Garcia M. L., Kaczorowski G. J. High levels of sodium-calcium exchange in vascular smooth muscle sarcolemmal membrane vesicles. Biochemistry. 1989 May 2;28(9):3995–4002. doi: 10.1021/bi00435a055. [DOI] [PubMed] [Google Scholar]
  27. Sorensen R. G., Blaustein M. P. Rat brain dendrotoxin receptors associated with voltage-gated potassium channels: dendrotoxin binding and receptor solubilization. Mol Pharmacol. 1989 Nov;36(5):689–698. [PubMed] [Google Scholar]
  28. Stühmer W., Ruppersberg J. P., Schröter K. H., Sakmann B., Stocker M., Giese K. P., Perschke A., Baumann A., Pongs O. Molecular basis of functional diversity of voltage-gated potassium channels in mammalian brain. EMBO J. 1989 Nov;8(11):3235–3244. doi: 10.1002/j.1460-2075.1989.tb08483.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Suzuki K., Furukawa Y., Tamura H., Ejiri N., Suematsu H., Taguchi R., Nakamura S., Suzuki Y., Ikezawa H. Purification and cDNA cloning of bovine liver 5'-nucleotidase, a GPI-anchored protein, and its expression in COS cells. J Biochem. 1993 May;113(5):607–613. doi: 10.1093/oxfordjournals.jbchem.a124090. [DOI] [PubMed] [Google Scholar]
  30. Swanson R., Marshall J., Smith J. S., Williams J. B., Boyle M. B., Folander K., Luneau C. J., Antanavage J., Oliva C., Buhrow S. A. Cloning and expression of cDNA and genomic clones encoding three delayed rectifier potassium channels in rat brain. Neuron. 1990 Jun;4(6):929–939. doi: 10.1016/0896-6273(90)90146-7. [DOI] [PubMed] [Google Scholar]
  31. Vandermeers A., Vandermeers-Piret M. C., Rathé J., Kutzner R., Delforge A., Christophe J. A calcium-dependent protein activator of guanosine 3':5'-monophosphate phosphodiesterase in bovine and rat pancreas. Isolation, properties and levels in vivo. Eur J Biochem. 1977 Dec 1;81(2):379–386. doi: 10.1111/j.1432-1033.1977.tb11962.x. [DOI] [PubMed] [Google Scholar]
  32. Vázquez J., Feigenbaum P., Katz G., King V. F., Reuben J. P., Roy-Contancin L., Slaughter R. S., Kaczorowski G. J., Garcia M. L. Characterization of high affinity binding sites for charybdotoxin in sarcolemmal membranes from bovine aortic smooth muscle. Evidence for a direct association with the high conductance calcium-activated potassium channel. J Biol Chem. 1989 Dec 15;264(35):20902–20909. [PubMed] [Google Scholar]
  33. Vázquez J., Feigenbaum P., King V. F., Kaczorowski G. J., Garcia M. L. Characterization of high affinity binding sites for charybdotoxin in synaptic plasma membranes from rat brain. Evidence for a direct association with an inactivating, voltage-dependent, potassium channel. J Biol Chem. 1990 Sep 15;265(26):15564–15571. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES