Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2010 Jun 3;26(3):188–196. doi: 10.1007/s12264-010-0150-x

Effects of pentobarbital anesthesia on nociceptive processing in the medial and lateral pain pathways in rats

戊巴比妥钠麻醉对大鼠痛觉加工内外侧通路信息处理的影响

Ning Wang 1,, Yang Zhang 2, Jin-Yan Wang 1, Ge Gao 1, Fei Luo 1
PMCID: PMC4386992  NIHMSID: NIHMS675667  PMID: 20502496

Abstract

Objective

To investigate the effects of pentobarbital anesthesia on nociceptive processing in the medial and lateral pain pathways.

Methods

Laser stimulation was employed to evoke nociceptive responses in rats under awake or anesthetic conditions. Pain-related neuronal activities were simultaneously recorded from the primary somatosensory cortex (SI), ventral posterolateral thalamus (VPL), anterior cingulate cortex (ACC), and medial dorsal thalamus (MD) with 4 eight-wire microelectrode arrays.

Results

Compared with the awake state, pentobarbital anesthesia significantly suppressed the neural activities induced by noxious laser stimulation. Meanwhile, the pain-evoked changes in the neuronal correlations between cortex and thalamus were suppressed in both medial and lateral pain pathways. In addition, the spontaneous firing rates in all the 4 areas were altered (including inhibition and excitation) under the condition of anesthesia.

Conclusion

The nociceptive processing in the brain can be dramatically changed by anesthesia, which indicates that there are considerable differences in the brain activities between awake and anesthetized states. It is better to employ awake animals for recording neural activity when investigating the sensory coding mechanisms, especially pain coding, in order to obtain data that precisely reflect the physiological state.

Keywords: anesthesia, laser, multiple single-unit recording

Footnotes

These authors contributed equally to this work.

References

  • [1].Albe-Fessard D., Berkley K.J., Kruger L., Ralston H.J., Willis W.D., Jr Diencephalic mechanisms of pain sensation. Brain Res. 1985;356:217–296. doi: 10.1016/0165-0173(85)90013-x. [DOI] [PubMed] [Google Scholar]
  • [2].Hudson A.J. Pain perception and response: central nervous system mechanisms. Can J Neurol Sci. 2000;27:2–16. doi: 10.1017/s0317167100051908. [DOI] [PubMed] [Google Scholar]
  • [3].Schnitzler A., Ploner M. Neurophysiology and functional neuroanatomy of pain perception. J Clin Neurophysiol. 2000;17:592–603. doi: 10.1097/00004691-200011000-00005. [DOI] [PubMed] [Google Scholar]
  • [4].Treede R.D., Kenshalo D.R., Gracely R.H., Jones A.K. The cortical representation of pain. Pain. 1999;79:105–111. doi: 10.1016/S0304-3959(98)00184-5. [DOI] [PubMed] [Google Scholar]
  • [5].Shigenaga Y., Inoki R. Effects of morphine and barbiturate on the SI and SII potentials evoked by tooth pulp stimulation of rats. Eur J Pharmacol. 1976;36:347–353. doi: 10.1016/0014-2999(76)90088-1. [DOI] [PubMed] [Google Scholar]
  • [6].Chapin J.K., Waterhouse B.D., Woodward D.J. Differences in cutaneous sensory response properties of single somatosensory cortical neurons in awake and halothane anesthetized rats. Brain Res Bull. 1981;6:63–70. doi: 10.1016/S0361-9230(81)80069-X. [DOI] [PubMed] [Google Scholar]
  • [7].Lu H., Xu T.L. The general anesthetic pentobarbital slows desensitization and deactivation of the glycine receptor in the rat spinal dorsal horn neurons. J Biol Chem. 2002;277:41369–41378. doi: 10.1074/jbc.M206768200. [DOI] [PubMed] [Google Scholar]
  • [8].Jackson M.F., Joo D.T., Al-Mahrouki A.A., Orser B.A., MacDonald J.F. Desensitization of alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA) receptors facilitates use-dependent inhibition by pentobarbital. Mol Pharmacol. 2003;64:395–406. doi: 10.1124/mol.64.2.395. [DOI] [PubMed] [Google Scholar]
  • [9].Wan X., Mathers D.A., Puil E. Pentobarbital modulates intrinsic and GABA-receptor conductances in thalamocortical inhibition. Neuroscience. 2003;121:947–958. doi: 10.1016/j.neuroscience.2003.07.002. [DOI] [PubMed] [Google Scholar]
  • [10].Shih Y.Y., Chang C., Chen J.C., Jaw F.S. BOLD fMRI mapping of brain responses to nociceptive stimuli in rats under ketamine anesthesia. Med Eng Phys. 2008;30:953–958. doi: 10.1016/j.medengphy.2007.12.004. [DOI] [PubMed] [Google Scholar]
  • [11].Shaw F.Z., Chen R.F., Yen C.T. Dynamic changes of touch- and laser heat-evoked field potentials of primary somatosensory cortex in awake and pentobarbital-anesthetized rats. Brain Res. 2001;911:105–115. doi: 10.1016/S0006-8993(01)02686-5. [DOI] [PubMed] [Google Scholar]
  • [12].Paxinos G., Watson C. The Rat Brain in Stereotaxic Coordinates. New York: Academic Press; 1998. [Google Scholar]
  • [13].Qiao Z.M., Wang J.Y., Han J.S., Luo F. Dynamic processing of nociception in cortical network in conscious rats: A laser-evoked field potential study. Cell Mol Neurobiol. 2007;28:671–687. doi: 10.1007/s10571-007-9216-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [14].Kisley M.A., Gerstein G.L. Trial-to-trial variability and state-dependent modulation of auditory-evoked responses in cortex. J Neurosci. 1999;19:10451–10460. doi: 10.1523/JNEUROSCI.19-23-10451.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [15].Curd-Sneed C.D., Stewart J.J. Oral absorption of sodium pentobarbital and effects on gastrointestinal function. Pharmacol Toxicol. 1989;64:23–27. doi: 10.1111/j.1600-0773.1989.tb00594.x. [DOI] [PubMed] [Google Scholar]
  • [16].Powell D.W., Hirschowitz B.I. Sodium pentobarbital depression of histamine- or insulin-stimulated gastric secretion. Am J Physiol. 1967;212:1001–1006. doi: 10.1152/ajplegacy.1967.212.5.1001. [DOI] [PubMed] [Google Scholar]
  • [17].Cauller L.J., Kulics A.T. A comparison of awake and sleeping cortical states by analysis of the somatosensory-evoked response of postcentral area 1 in rhesus monkey. Exp Brain Res. 1988;72:584–592. doi: 10.1007/BF00250603. [DOI] [PubMed] [Google Scholar]
  • [18].Peterson N.N., Schroeder C.E., Arezzo J.C. Neural generators of early cortical somatosensory evoked potentials in the awake monkey. Electroencephalogr Clin Neurophysiol. 1995;96:248–260. doi: 10.1016/0168-5597(95)00006-E. [DOI] [PubMed] [Google Scholar]
  • [19].Majewska M.D. Neurosteroids: endogenous bimodal modulators of the GABAA receptor. Mechanism of action and physiological significance. Prog Neurobiol. 1992;38:379–395. doi: 10.1016/0301-0082(92)90025-a. [DOI] [PubMed] [Google Scholar]
  • [20].Alitto H.J., Usrey W.M. Corticothalamic feedback and sensory processing. Curr Opin Neurobiol. 2003;13:440–445. doi: 10.1016/S0959-4388(03)00096-5. [DOI] [PubMed] [Google Scholar]
  • [21].Ran I., Mathers D.A., Puil E. Pentobarbital induces thalamic oscillations in brain slices, modulated by GABA and glycine receptors. Neuropharmacology. 2004;47:985–993. doi: 10.1016/j.neuropharm.2004.08.001. [DOI] [PubMed] [Google Scholar]
  • [22].Montagne-Clavel J., Oliveras J.L. Does barbiturate anesthesia modify the neuronal properties of the somatosensory thalamus? A single-unit study related to nociception in the awake-pentobarbital- treated rat. Neurosci Lett. 1995;196:68–72. doi: 10.1016/0304-3940(95)11847-P. [DOI] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES