Skip to main content
Autoimmunity Highlights logoLink to Autoimmunity Highlights
. 2010 Nov 4;1(2):73–81. doi: 10.1007/s13317-010-0011-7

The soluble CTLA-4 receptor and its role in autoimmune diseases: an update

Daniele Saverino 1, Rita Simone 1, Marcello Bagnasco 2,, Giampaola Pesce 2
PMCID: PMC4389044  PMID: 26000110

Abstract

CTLA-4, initially described as a membranebound molecule, is a costimulatory receptor transducing a potent inhibitory signal. Increasing evidence shows the CTLA-4 gene to be an important susceptibility locus for autoimmune endocrinopathies and other autoimmune disorders. A soluble form of cytotoxic T-lymphocyte-associated antigen-4 (sCTLA-4) has been established and shown to possess CD80/CD86 binding activity and in vitro immunoregulatory functions. sCTLA-4 is generated by alternatively spliced mRNA. Whereas low levels of sCTLA-4 are detected in normal human serum, increased serum levels are observed in several autoimmune diseases (e.g. Graves’ disease, myasthenia gravis, systemic lupus erythematosus, type 1 diabetes, systemic sclerosis, coeliac disease, autoimmune pancreatitis and primary biliary cirrhosis). The biological significance of increased sCTLA-4 serum levels is not fully clarified yet. On the one hand, it can be envisaged that sCTLA-4 specifically inhibits early T-cell activation by blocking the interaction of CD80/CD86 with the costimulatory receptor CD28. On the other hand, higher levels of sCTLA-4 could compete for the binding of the membrane form of CTLA-4 with CD80/CD86 in the later phases of T-lymphocyte activation, causing a reduction in inhibitory signalling. This double-edged nature of sCTLA-4 to block the binding of CD28 to CD80/CD86 may result in different outcomes during the clinical course of an autoimmune disease.

Keywords: CTLA-4, Immunoregulation, Autoimmune disease, T-cell activation

References

  • 1.Lenschow D.J., Walunas T.L., Blueston J.A. CD28/B7 system of T cell costimulation. Annu Rev Immunol. 1996;14:233–258. doi: 10.1146/annurev.immunol.14.1.233. [DOI] [PubMed] [Google Scholar]
  • 2.Bocko D., Kosmaczewska A., Ciszak L., et al. CD28 costimulatory molecule — expression, structure and function. Arch Immunol Ther Exp. 2002;50:169–177. [PubMed] [Google Scholar]
  • 3.Shapiro V.S., Truitt K.E., Imboden J.B., et al. CD28 mediates transcriptional upregulation of the interleukin-2 (IL-2) promoter through a composite element containing the CD28RE and NF-IL-2B AP-1 sites. Mol Cell Biol. 1997;17:4051–4058. doi: 10.1128/MCB.17.7.4051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Walunas T.L., Lenschow D.J., Bakker C.Y., et al. CTLA-4 can function as a negative regulator of T cell activation. Immunity. 1994;1:405–413. doi: 10.1016/1074-7613(94)90071-X. [DOI] [PubMed] [Google Scholar]
  • 5.Krummel M.F., Allison J.P. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med. 1995;182:459–465. doi: 10.1084/jem.182.2.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Saverino D., Tenca C., Zarcone D., et al. CTLA-4 (CD152) inhibits the specific lysis mediated by human cytolytic T lymphocytes in a clonally distributed fashion. J Immunol. 1999;162:651–658. [PubMed] [Google Scholar]
  • 7.Merlo A., Tenca C., Fais F., et al. Inhibitory receptors CD85j, LAIR-1, and CD152 down-regulate immunoglobulin and cytokine production by human B lymphocytes. Clin Diagn Lab. 2005;12:705–712. doi: 10.1128/CDLI.12.6.705-712.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Laurent S, Carrega P, Saverino D et al CTLA-4 is expressed by human monocyte-derived dendritic cells and regulates their functions. Hum Immunol. DOI: http://dx.doi.org/10.1016/j.humi-mm.2010.07.007 [DOI] [PubMed]
  • 9.Saverino D., Merlo A., Bruno S., et al. Dual effect of CD85/leukocyte Ig-like receptor-1/Ig-like transcript 2 and CD152 (CTLA-4) on cytokine production by antigen-stimulated human T cells. J Immunol. 2002;168:207–215. doi: 10.4049/jimmunol.168.1.207. [DOI] [PubMed] [Google Scholar]
  • 10.Oaks M.K., Hallett K.M., Penwell R.T., et al. A native soluble form of CTLA-4. Cell Immunol. 2000;201:144–153. doi: 10.1006/cimm.2000.1649. [DOI] [PubMed] [Google Scholar]
  • 11.Simone R., Saverino D. The soluble CTLA-4 receptor and its emerging role in autoimmune diseases. Curr Immunol Rev. 2009;5:54–68. doi: 10.2174/157339509787314413. [DOI] [Google Scholar]
  • 12.Wong C.K., Lun S.W.M., Ko F.W., et al. Increased expression of plasma and cell surface co-stimulatory molecules CTLA-4, CD28 and CD86 in adult patients with allergic asthma. Clin Exp Immunol. 2005;141:122–129. doi: 10.1111/j.1365-2249.2005.02815.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Saverino D., Riccio A.M., Rogkakou A., et al. Serum CTLA-4 in Hymenoptera venom allergy end its modulation by specific immunotherapy. J Allergy Clin Immunol. 2009;123:258–260. doi: 10.1016/j.jaci.2008.09.023. [DOI] [PubMed] [Google Scholar]
  • 14.Sakthivel P., Wermeling F., Elmgren A., et al. Circulating soluble CTLA-4 is related to inflammatory markers in the 70 year old population. Scand J Clin Lab Invest. 2010;70:237–243. doi: 10.3109/00365511003695608. [DOI] [PubMed] [Google Scholar]
  • 15.Tunbridge W.M., Evered D.C., Hall R., et al. The spectrum of thyroid disease in a community: the Whickham survey. Clin Endocrinol. 1997;7:481–493. doi: 10.1111/j.1365-2265.1977.tb01340.x. [DOI] [PubMed] [Google Scholar]
  • 16.Ueda H., Howson J.M., Esposito L., et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature. 2003;423:506–511. doi: 10.1038/nature01621. [DOI] [PubMed] [Google Scholar]
  • 17.Awata T., Kurihara S., Iitaka M., et al. Association of CTLA-4 gene A-G polymorphism (IDDM12 locus) with acute-onset and insulin-depleted IDDM as well as autoimmune thyroid disease (Graves’ disease and Hashimoto’s thyroiditis) in the Japanese population. Diabetes. 1998;47:128–129. doi: 10.2337/diab.47.1.128. [DOI] [PubMed] [Google Scholar]
  • 18.Kouki T., Sawai Y., Gardine C.A., et al. CTLA-4 gene polymorphism at position 49 in exon 1 reduces the inhibitory function of CTLA-4 and contributes to the pathogenesis of Graves’ disease. J Immunol. 2000;165:6606–6611. doi: 10.4049/jimmunol.165.11.6606. [DOI] [PubMed] [Google Scholar]
  • 19.Mochizuki M., Amemiya S., Kobayashi K., et al. Association of the CTLA-4 gene 49 A/G polymorphism with type 1 diabetes and autoimmune thyroid disease in Japanese children. Diabetes Care. 2003;26:843–847. doi: 10.2337/diacare.26.3.843. [DOI] [PubMed] [Google Scholar]
  • 20.Oaks M.K., Hallett K.M. A soluble form of CTLA-4 in patients with autoimmune thyroid disease. J Immunol. 2000;164:5015–5018. doi: 10.4049/jimmunol.164.10.5015. [DOI] [PubMed] [Google Scholar]
  • 21.Lafage-Pochitaloff M., Costello R., Couez D., et al. Human CD28 and CTLA-4 Ig superfamily genes are located on chromosome 2 at bands q33–q34. Immunogenetics. 1990;31:198–201. doi: 10.1007/BF00211556. [DOI] [PubMed] [Google Scholar]
  • 22.Harper K., Balzano C., Rouvier E., et al. CTLA-4 and CD28 activated lymphocyte molecules are closely related in both mouse and human as to sequence, message expression, gene structure, and chromosomal localization. J Immunol. 1991;147:1037–1044. [PubMed] [Google Scholar]
  • 23.Linsley P.S., Greene J.L., Brady W.H., et al. Human B.7-1(CD80) and B.7-2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity. 1994;1:793–801. doi: 10.1016/S1074-7613(94)80021-9. [DOI] [PubMed] [Google Scholar]
  • 24.Nisticò L., Buzzetti R., Pritchard L.E., et al. The CTLA-4 gene region of chromosome 2q33 is linked to, and associated with, type 1 diabetes. Hum Mol Genet. 1996;5:1075–1080. doi: 10.1093/hmg/5.7.1075. [DOI] [PubMed] [Google Scholar]
  • 25.Deichmann K., Heinzmann A., Brüggenolte, et al. An Mse I RFLP in the human CTLA4 promotor. Biochem Biophys Res Commun. 1996;225:817–818. doi: 10.1006/bbrc.1996.1256. [DOI] [PubMed] [Google Scholar]
  • 26.Davies T.F. The pathogenesis of Graves’ disease. In: Braverman L.E., Utiger R.D., editors. The thyroid. 7th edn. Philadelphia: Lippincott-Raven; 1996. pp. 525–536. [Google Scholar]
  • 27.Tomer Y., Huber A. The etiology of autoimmune thyroid disease: a story of genes and environment. J Autoimmun. 2009;32:231–239. doi: 10.1016/j.jaut.2009.02.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Weetman A.P., McGregor A.M. Autoimmune thyroid disease: further developments in our understanding. Endocr Rev. 1994;15:788–830. doi: 10.1210/edrv-15-6-788. [DOI] [PubMed] [Google Scholar]
  • 29.Yanagawa T., Hidaka Y., Guimaraes V., et al. CTLA-4 gene polymorphism associated with Graves’ disease in a Caucasian population. J Clin Endocrinol Metab. 1995;80:41–45. doi: 10.1210/jcem.80.1.7829637. [DOI] [PubMed] [Google Scholar]
  • 30.Zhao S.X., Pan C.M., Cao H.M., et al. Association of the CTLA4 gene with Graves’ disease in the Chinese Han population. PLoS One. 2010;5:e9821. doi: 10.1371/journal.pone.0009821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Gu L.Q., Zhu W., Zhao S.X., et al. Clinical associations of the genetic variants of CTLA-4, Tg, TSHR, PTPN22, PTPN12 and FCRL3 in patients with Graves’ disease. Clin Endocrinol. 2010;72:248–255. doi: 10.1111/j.1365-2265.2009.03617.x. [DOI] [PubMed] [Google Scholar]
  • 32.Yin X., Latif R., Bahn R., et al. Influence of the TSH receptor gene on susceptibility to Graves’ disease and Graves’ ophthalmopathy. Thyroid. 2008;18:1201–1206. doi: 10.1089/thy.2008.0098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Daroszewski J., Pawlak E., Karabon L., et al. Soluble CTLA-4 receptor an immunological marker of Graves’ disease and severity of ophthalmopathy is associated with CTLA-4 Jo31 and CT60 gene polymorphisms. Eur J Endocrinol. 2009;161:787–793. doi: 10.1530/EJE-09-0600. [DOI] [PubMed] [Google Scholar]
  • 34.Dallos T., Avbelj M., Barák L., et al. CTLA-4 gene polymorphisms predispose to autoimmune endocrinopathies but not to celiac disease. Neuro Endocrinol Lett. 2008;9:334–340. [PubMed] [Google Scholar]
  • 35.Douroudis K., Prans E., Kisand K., et al. Cytotoxic Tlymphocyte antigen 4 gene polymorphisms are associated with latent autoimmune diabetes in adults. Clin Chim Acta. 2009;403:226–228. doi: 10.1016/j.cca.2009.03.036. [DOI] [PubMed] [Google Scholar]
  • 36.Saleh H.M., Rohowsky N., Leski M. The CTLA4 -819 C/T and +49 A/G dimorphisms are associated with Type 1 diabetes in Egyptian children. Indian J Hum Genet. 2008;14:92–98. doi: 10.4103/0971-6866.45001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Kristiansen O.P., Larsen Z.M., Pociot F. CTLA-4 in autoimmune diseases — a general susceptibility gene to autoimmunity? Genes Immun. 2000;1:170–184. doi: 10.1038/sj.gene.6363655. [DOI] [PubMed] [Google Scholar]
  • 38.Fritze D., Herrman C., Naeim F., et al. HL-A antigens in myasthenia gravis. Lancet. 1974;1:240–242. doi: 10.1016/S0140-6736(74)92548-3. [DOI] [PubMed] [Google Scholar]
  • 39.Fernández-Mestre M., Sánchez K., Balbás O., et al. Influence of CTLA-4 gene polymorphism in autoimmune and infectious diseases. Hum Immunol. 2009;70:532–535. doi: 10.1016/j.humimm.2009.03.016. [DOI] [PubMed] [Google Scholar]
  • 40.Wray B.N., Stankovich J., Whittock L., et al. CTLA-4 and multiple sclerosis: the A49G single nucleotide polymorphism shows no association with multiple sclerosis in a Southern Australian population. J Neuroimmunol. 2008;196:139–142. doi: 10.1016/j.jneuroim.2008.02.001. [DOI] [PubMed] [Google Scholar]
  • 41.Muñoz-Valle J.F., Valle Y., Padilla-Gutiérrez J.R., et al. The +49A>G CTLA-4 polymorphism is associated with rheumatoid arthritis in Mexican population. Clin Chim Acta. 2010;411:725–728. doi: 10.1016/j.cca.2010.02.001. [DOI] [PubMed] [Google Scholar]
  • 42.Holopainen P., Naluai A.T., Moodie S., Members of the European Genetics Cluster on Coeliac Disease et al. Candidate gene region 2q33 in European families with coeliac disease. Tissue Antigens. 2004;63:212–222. doi: 10.1111/j.1399-0039.2004.00189.x. [DOI] [PubMed] [Google Scholar]
  • 43.Talwalkar J.A., Lindor K.D. Primary biliary cirrhosis. Lancet. 2003;362:53–61. doi: 10.1016/S0140-6736(03)13808-1. [DOI] [PubMed] [Google Scholar]
  • 44.Gershwin M.E., Mackay I.R. The causes of primary biliary cirrhosis: convenient and inconvenient truths. Hepatology. 2008;47:737–745. doi: 10.1002/hep.22042. [DOI] [PubMed] [Google Scholar]
  • 45.Invernizzi P., Selmi C., Poli F., et al. Human leukocyte antigen polymorphisms in Italian primary biliary cirrhosis: a multicenter study of 664 patients and 1992 healthy controls. Hepatology. 2008;48:1906–1912. doi: 10.1002/hep.22567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Donaldson P.T., Baragiotta A., Heneghan M.A., et al. HLA class II alleles, genotypes, haplotypes, and amino acids in primary biliary cirrhosis: a large-scale study. Hepatology. 2006;44:667–674. doi: 10.1002/hep.21316. [DOI] [PubMed] [Google Scholar]
  • 47.Shimoda S., Nakamura M., Ishibashi H., et al. HLA DRB4 0101-restricted immunodominant T cell autoepitope of pyruvate dehydrogenase complex in primary biliary cirrhosis: evidence of molecular mimicry in human autoimmune diseases. J Exp Med. 1995;181:1835–1845. doi: 10.1084/jem.181.5.1835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Joshita S., Umemura T., Yoshizawa K., Shinshu PBC Study Group et al. Association analysis of cytotoxic T-lymphocyte antigen 4 gene polymorphisms with primary biliary cirrhosis in Japanese patients. J Hepatol. 2010;53:537–541. doi: 10.1016/j.jhep.2010.03.017. [DOI] [PubMed] [Google Scholar]
  • 49.Saverino D., Brizzolara R., Simone R., et al. Soluble CTLA-4 in autoimmune thyroid diseases: relationship with clinical status and possible role in the immune response dysregulation. Clin Immunol. 2007;123:190–198. doi: 10.1016/j.clim.2007.01.003. [DOI] [PubMed] [Google Scholar]
  • 50.Wang X.B., Kakoulidou M., Giscombe R., et al. Abnormal expression of CTLA-4 by T cells from patients with myasthenia gravis: effect of an AT-rich gene sequence. J Neuroimmunol. 2002;130:224–232. doi: 10.1016/S0165-5728(02)00228-X. [DOI] [PubMed] [Google Scholar]
  • 51.Simone R., Brizzolara R., Chiappori A., et al. A functional soluble form of CTLA-4 is present in the serum of celiac patients and correlates with mucosal injury and tTG antibody production. Int Immunol. 2009;21:1037–1045. doi: 10.1093/intimm/dxp069. [DOI] [PubMed] [Google Scholar]
  • 52.Wang X.B., Giscombe R., Yan Z., et al. Expression of CTLA-4 by human monocytes. Scand J Immunol. 2002;55:53–60. doi: 10.1046/j.0300-9475.2001.01019.x. [DOI] [PubMed] [Google Scholar]
  • 53.Liu M.F., Wang C.R., Chen P.C., et al. Increased of expression of soluble cytotoxic T-lymphocyte-associated antigen-4 molecule in patients with systemic lupus erythematosus. Scand J Immunol. 2003;57:568–572. doi: 10.1046/j.1365-3083.2003.01232.x. [DOI] [PubMed] [Google Scholar]
  • 54.Sato S., Fujimoto M., Hasegawa M., et al. Serum soluble CTLA-4 levels are increased in diffuse cutaneous systemic sclerosis. Rheumatology. 2004;43:1261–1266. doi: 10.1093/rheumatology/keh303. [DOI] [PubMed] [Google Scholar]
  • 55.Wong C.K., Lit L.C.W., Tam L.S., et al. Aberrant production of soluble costimulatory molecules CTLA-4, CD28, CD80 and CD86 in patients with systemic lupus erythematosus. Rheumatology. 2005;44:989–994. doi: 10.1093/rheumatology/keh663. [DOI] [PubMed] [Google Scholar]
  • 56.Bergholdt R., Taxvig C., Eising S., et al. BLB variants in type 1 diabetes and their genetic interaction with CTLA4. J Leukoc Biol. 2005;77:579–585. doi: 10.1189/jlb.0904524. [DOI] [PubMed] [Google Scholar]
  • 57.Brunet J.F., Denizot F., Luciani M.F., et al. A new member of the immunoglobulin superfamily — CTLA-4. Nature. 1987;328:267–270. doi: 10.1038/328267a0. [DOI] [PubMed] [Google Scholar]
  • 58.Dariavach P., Mattei M.G., Golstein P., et al. Human Ig superfamily CTLA-4 gene: chromosomal localization and identity of protein sequence between murine and human cytoplasmic domains. Eur J Immunol. 1988;18:1901–1905. doi: 10.1002/eji.1830181206. [DOI] [PubMed] [Google Scholar]
  • 59.Ligers A., Xu C., Saarinen S., et al. The CTLA-4 gene is associated with multiple sclerosis. J Neuroimmunol. 1999;97:182–190. doi: 10.1016/S0165-5728(99)00072-7. [DOI] [PubMed] [Google Scholar]
  • 60.Toussirot E., Saas P., Deschamps M., et al. Increased production of soluble CTLA-4 in patients with spondylarthropathies correlates with disease activity. Arthritis Res Ther. 2009;11:R101. doi: 10.1186/ar2747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Tector M., Khatri B.O., Kozinski K., et al. Biochemical analysis of CTLA-4 immunoreactive material from human blood. BMC Immunol. 2009;10:51–60. doi: 10.1186/1471-2172-10-51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Umemura T., Ota M., Hamano H., et al. Association of autoimmune pancreatitis with cytotoxic T-lymphocyte antigen 4 gene polymorphisms in Japanese patients. Am J Gastroenterol. 2008;103:588–594. doi: 10.1111/j.1572-0241.2007.01750.x. [DOI] [PubMed] [Google Scholar]
  • 63.Lowe R.M., Graham J., Sund G., et al. The length of the CTLA-4 microsatellite (AT)N-repeat affects the risk for type 1 diabetes. Autoimmunity. 2000;32:173–180. doi: 10.3109/08916930008994090. [DOI] [PubMed] [Google Scholar]
  • 64.Chang M.-C., Chang Y.-T., Tien Y.-W., et al. T-cell regulatory gene CTLA-4 polymorphism/haplotype association with autoimmune pancreatitis. Clin Chemi. 2007;53:1700–1705. doi: 10.1373/clinchem.2007.085951. [DOI] [PubMed] [Google Scholar]
  • 65.Grohmann U., Orabona C., Fallarino F., et al. CTLA-4-Ig regulates catabolism in vivo. Nat Immunol. 2002;3:1097–1101. doi: 10.1038/ni846. [DOI] [PubMed] [Google Scholar]
  • 66.Mellor A.L., Munn D.H. Tryptophan catabolism and T-cell tolerance: immunosuppression by starvation? Immunol Today. 1999;20:469–473. doi: 10.1016/S0167-5699(99)01520-0. [DOI] [PubMed] [Google Scholar]
  • 67.Kawa S., Ota M., Yoshizawa K., et al. HLA DRB10405-DQB10401 haplotype is associated with autoimmune pancreatitis in the Japanese population. Gastroenterology. 2002;122:1264–1269. doi: 10.1053/gast.2002.33022. [DOI] [PubMed] [Google Scholar]
  • 68.Long E.O. Regulation of immune responses through inhibitory receptors. Annu Rev Immunol. 1999;17:875–904. doi: 10.1146/annurev.immunol.17.1.875. [DOI] [PubMed] [Google Scholar]
  • 69.Andreevski T.V., Sudomoina M.A., Gusev E.I., et al. Polymorphism A/G in position +49 of CTLA4 exon 1 in multiple sclerosis in Russians. Mol Biol. 2002;36:643–648. doi: 10.1023/A:1019800410254. [DOI] [PubMed] [Google Scholar]
  • 70.Djilali-Saiah I., Schmitz J., Harfouch-Hammoud E., et al. CTLA-4 gene polymorphism is associated with predisposition to celiac disease. Gut. 1998;43:187–189. doi: 10.1136/gut.43.2.187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Orozco G., Torres B., Nunez-Roldan A., et al. Cytotoxic Tlymphocyte antigen-4-CT60 polymorphism in rheumatoid arthritis. Tissue Antigens. 2004;64:667–670. doi: 10.1111/j.1399-0039.2004.00318.x. [DOI] [PubMed] [Google Scholar]
  • 72.Vaidya B., Pearce S. The emerging role of the CTLA-4 gene in autoimmune endocrinopathies. Eur J Endocrinol. 2004;150:619–626. doi: 10.1530/eje.0.1500619. [DOI] [PubMed] [Google Scholar]
  • 73.Giorelli M., Livera P., Defazio G., et al. IFN-beta1a modulates the expression of CTLA-4 and CD28 splice variants in human mononuclear cells: induction of soluble isoforms. J Interferon Cytokine Res. 2001;21:809–812. doi: 10.1089/107999001753238042. [DOI] [PubMed] [Google Scholar]
  • 74.Finger E.B., Bluestone J.A. When ligand becomes receptor — tolerance via B7 signaling on DCs. Nat Immunol. 2002;3:1056–1057. doi: 10.1038/ni1102-1056. [DOI] [PubMed] [Google Scholar]
  • 75.Kaartinen T., Lappalainen J., Haimila K., et al. Genetic variation in ICOS regulates mRNA levels of ICOS and splicing isoforms of CTLA4. Mol Immunol. 2007;447:1644–1651. doi: 10.1016/j.molimm.2006.08.010. [DOI] [PubMed] [Google Scholar]
  • 76.Swain S.L., Huston G., Tonkonogy S., et al. Transforming growth factor-beta and IL-4 cause helper T cell precursors to develop into distinct effector helper cells that differ in lymphokine secretion pattern and cell surface phenotype. J Immunol. 1991;147:2991–3000. [PubMed] [Google Scholar]
  • 77.Catassi C., Fasano A. Celiac disease diagnosis: simple rules are better than complicated algorithms. Am J Med. 2010;123:691–693. doi: 10.1016/j.amjmed.2010.02.019. [DOI] [PubMed] [Google Scholar]
  • 78.Sugai E., Moreno M.L., Hwang H.J., et al. Celiac disease serology in patients with different pretest probabilities: is biopsy avoidable? World J Gastroenterol. 2010;16:3144–315. doi: 10.3748/wjg.v16.i25.3144. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Auto-Immunity Highlights are provided here courtesy of BMC

RESOURCES