Skip to main content
Autoimmunity Highlights logoLink to Autoimmunity Highlights
. 2010 Jul 10;1(1):45–51. doi: 10.1007/s13317-010-0008-2

Role of regulatory T cells in rheumatoid arthritis: facts and hypothesis

Alessia Alunno 1, Elena Bartoloni 1, Giuseppe Nocentini 2, Onelia Bistoni 1, Simona Ronchetti 2, Maria Grazia Petrillo 2, Carlo Riccardi 2, Roberto Gerli 1,
PMCID: PMC4389058  PMID: 26000107

Abstract

Regulatory T cells (Treg) are a CD4+ lymphocyte subset involved in self-tolerance and autoimmunity prevention. There is evidence for a phenotypic and/or functional impairment of this cell subset during the natural history of several chronic autoimmune/inflammatory diseases, including rheumatoid arthritis (RA). Although the intracellular transcription factor FoxP3 is thought to be the master regulator of Treg cell function, a number of other molecules expressed on the cell surface have been proposed for the identification of Treg cells. This is important in order to favour their possible selective isolation and in the development of new therapeutic strategies. In the present paper, available data on phenotypic and functional characterization of Treg cells in both peripheral blood and synovial fluid from RA patients are reviewed and their possible pathogenic role in triggering and perpetuating rheumatoid joint inflammation is discussed.

Keywords: Treg cells, Rheumatoid arthritis, FoxP3 GITR

References

  • 1.Vandenbark A.A., Offner H. Critical evaluation of regulatory T cells in autoimmunity: are the most potent regulatory specificities being ignored? Immunology. 2008;125:1–13. doi: 10.1111/j.1365-2567.2008.02900.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Dieckmann D., Bruett C.H., Ploettner H., et al. Human CD4(+)CD25(+) regulatory, contact-dependent T cells induce interleukin 10-producing, contact-independent type 1-like regulatory T cells. J Exp Med. 2002;196:247–253. doi: 10.1084/jem.20020642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Lan R.Y., Ansari A.A., Lian Z.X., et al. Regulatory T cells: development, function and role in autoimmunity. Autoimmun Rev. 2005;4:351–363. doi: 10.1016/j.autrev.2005.01.007. [DOI] [PubMed] [Google Scholar]
  • 4.Sakaguchi S., Sakaguchi N., Asano M., et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α chain (CD25), breakdown of a single mechanism of self tolerance causes various autoimmune disease. J Immunol. 1995;155:1151–1164. [PubMed] [Google Scholar]
  • 5.Dieckmann D., Plottner H., Berchtold S., et al. Ex vivo isolation and characterization of CD4(+)CD25(+) T cells with regulatory properties from human blood. J Exp Med. 2001;193:1303–1310. doi: 10.1084/jem.193.11.1303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Berthelot J.M., Maugars Y. Role of suppressor T cells in the pathogenesis of autoimmune diseases (including rheumatoid arthritis). Facts and hypotheses. Joint Bone Spine. 2004;71:374–380. doi: 10.1016/j.jbspin.2003.11.004. [DOI] [PubMed] [Google Scholar]
  • 7.Sakaguchi S., Wing K., Yamaguchi T. Dynamics of peripheral tolerance and immune regulation mediated by Treg. Eur J Immunol. 2009;39:2331–2336. doi: 10.1002/eji.200939688. [DOI] [PubMed] [Google Scholar]
  • 8.Bluestone J.A., Abbas A.K. Natural versus adaptative regulatory T cells. Nat Rev Immunol. 2003;3:253–257. doi: 10.1038/nri1032. [DOI] [PubMed] [Google Scholar]
  • 9.Shevach E.M. Mechanisms of foxP3+ T regulatory cell-mediated suppression. Immunity. 2009;30:636–645. doi: 10.1016/j.immuni.2009.04.010. [DOI] [PubMed] [Google Scholar]
  • 10.Curotto de Lafaille M.A., Lafaille J.J. Natural and adaptative foxP3+ regulatory T cells: more of the same or a division of labor? Immunity. 2009;30:626–635. doi: 10.1016/j.immuni.2009.05.002. [DOI] [PubMed] [Google Scholar]
  • 11.Nocentini G., Giunchi L., Ronchetti S., et al. A new member of the tumor necrosis factor/nerve growth factor receptor family inhibits T cell receptor-induced apoptosis. Proc Natl Acad Sci U S A. 1997;94:6216–6221. doi: 10.1073/pnas.94.12.6216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Klein S., Kretz C.C., Krammer P.H., et al. CD127(low/-) and FoxP3+ expression levels characterize different regulatory T cell populations in human peripheral blood. J Invest Dermatol. 2010;130:492–499. doi: 10.1038/jid.2009.313. [DOI] [PubMed] [Google Scholar]
  • 13.Chatila T.A., Blaeser F., Ho N., et al. JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic disregulation syndrome. J Clin Invest. 2000;106:R75–R81. doi: 10.1172/JCI11679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Gambineri E., Torgerson T.R., Ochs H.D. Immune dysregulation, polyendocrinopathy, enteropathy, and X-linked inheritance (IPEX), a syndrome of systemic autoimmunity caused by mutations of FOXP3, a critical regulator of T-cell homeostasis. Curr Opin Rheum. 2003;15:430–435. doi: 10.1097/00002281-200307000-00010. [DOI] [PubMed] [Google Scholar]
  • 15.Fontenot J.D., Gavin M.A., Rudensky A.Y. FoxP3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol. 2003;4:330–336. doi: 10.1038/ni904. [DOI] [PubMed] [Google Scholar]
  • 16.Feuerer M., Hill J.A., Mathis D., et al. FoxP3+ regulatory T cells: differentiation, specification, subphenotypes. Nat Immunol. 2009;10:689–695. doi: 10.1038/ni.1760. [DOI] [PubMed] [Google Scholar]
  • 17.Aerts N.E., Dombrecht E.J., Ebo D.J., et al. Activated T cells complicate the identification of regulatory T cells in rheumatoid arthritis. Cell Immunol. 2008;251:109–115. doi: 10.1016/j.cellimm.2008.04.008. [DOI] [PubMed] [Google Scholar]
  • 18.Gerli R., Nocentini G., Alunno A., et al. Identification of regulatory T cells in systemic lupus erythematosus. Autoimmun Rev. 2009;8:426–430. doi: 10.1016/j.autrev.2009.01.004. [DOI] [PubMed] [Google Scholar]
  • 19.Zhang B., Zhang X., Tang F.L., et al. Clinical significance of increased CD4+CD25+FoxP3+ T cells in patients with new-onset systemic lupus erythematosus. Ann Rheum Dis. 2008;67:1037–1040. doi: 10.1136/ard.2007.083543. [DOI] [PubMed] [Google Scholar]
  • 20.Miyara M., Amoura Z., Parizot C., et al. Global natural regulatory T cell depletion in active systemic lupus erythematosus. J Immunol. 2005;175:392–400. doi: 10.4049/jimmunol.175.12.8392. [DOI] [PubMed] [Google Scholar]
  • 21.Gottenberg J.E., Lavie F., Abbed K., et al. CD4+CD25high regulatory T cells are not impaired in patients with primary Sjögren’s syndrome. J Autoimmun. 2005;24:235–242. doi: 10.1016/j.jaut.2005.01.015. [DOI] [PubMed] [Google Scholar]
  • 22.Valencia X., Yarboro C., Illei G., et al. Deficient CD4+CD25high regulatory T cell function in patients with active systemic lupus erythematosus. J Immunol. 2007;178:2579–2588. doi: 10.4049/jimmunol.178.4.2579. [DOI] [PubMed] [Google Scholar]
  • 23.Mellor-Pita S., Citores M.J., Castejon R., et al. Decrease of regulatory T cells in patients with systemic lupus erythematosus. Ann Rheum Dis. 2006;65:553–554. doi: 10.1136/ard.2005.044974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Barath S., Aleksza M., Tarr T., et al. Measurement of natural (CD4+CD25high) and inducible (CD4+IL-10+) regulatory T cells in patients with systemic lupus erythematosus. Lupus. 2007;16:489–496. doi: 10.1177/0961203307080226. [DOI] [PubMed] [Google Scholar]
  • 25.Crispin J.C., Martinez A., Alcocer-Varela J. Quantification of regulatory T cells in patients with systemic lupus erythematosus. J Autoimmun. 2003;21:273–276. doi: 10.1016/S0896-8411(03)00121-5. [DOI] [PubMed] [Google Scholar]
  • 26.Liu M.F., Wang C.R., Fung L.L., et al. Decreased CD4+CD25+T cells in peripheral blood of patients with systemic lupus erythematosus. Scand J Immunol. 2004;59:198–202. doi: 10.1111/j.0300-9475.2004.01370.x. [DOI] [PubMed] [Google Scholar]
  • 27.Kelchtermans H., De Klerck B., Mitera T., et al. Defective CD4+CD25+ regulatory T cell functioning in collagen induced arthritis: an important factor in pathogenesis, counter-regulated by endogenous IFN-gamma. Arthritis Res Ther. 2005;7:R402–R415. doi: 10.1186/ar1500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Morgan M.E., Sutmuller R.P., Witteveen H.J., et al. CD25+ cell depletion hastens the onset of severe disease in collagen-induced arthritis. Arthritis Rheum. 2003;48:1452–1460. doi: 10.1002/art.11063. [DOI] [PubMed] [Google Scholar]
  • 29.Morgan M.E., Flierman R., van Duivenvoorde L.M., et al. Effective treatment of collagen-induced arthritis by adoptive transfer of CD25+ regulatory T cells. Arthritis Rheum. 2005;52:2212–2221. doi: 10.1002/art.21195. [DOI] [PubMed] [Google Scholar]
  • 30.Cuzzocrea S., Ayroldi E., Di Paola R., et al. Role of glucocorticoid-induced TNF receptor family gene (GITR) in collageninduced arthritis. FASEB J. 2005;19:1253–1265. doi: 10.1096/fj.04-3556com. [DOI] [PubMed] [Google Scholar]
  • 31.Toh M.L., Miossec P. The role of T cells in rheumatoid arthritis: new subsets and new targets. Curr Opin Rheum. 2007;19:284–288. doi: 10.1097/BOR.0b013e32805e87e0. [DOI] [PubMed] [Google Scholar]
  • 32.van Roon J.A., Bijlsma J.W., Lafeber F.P. Diversity of regulatory T cells to control arthritis. Best Pract Res Clin Rheum. 2006;20:897–913. doi: 10.1016/j.berh.2006.06.006. [DOI] [PubMed] [Google Scholar]
  • 33.Cao D., Malmstrom V., Baecher-Allan C., et al. Isolation and functional characterization of regulatory CD25brightCD4+ T cells from target organ of patients with rheumatoid arthritis. Eur J Immunol. 2003;33:215–223. doi: 10.1002/immu.200390024. [DOI] [PubMed] [Google Scholar]
  • 34.Van Amelsfort J.M., Jacobs K.M., Bijlsma J.W., et al. CD4+CD25+ regulatory T cells in rheumatoid arthritis: differences in the presence, phenotype and function between peripheral blood and synovial fluid. Arthritis Rheum. 2004;50:2275–2285. doi: 10.1002/art.20499. [DOI] [PubMed] [Google Scholar]
  • 35.Mottonen M., Heikkinen J., Mustonen L., et al. CD4+CD25+ T cells with phenotypic and functional characteristics of regulatory T cells are enriched in the synovial fluid of patients with rheumatoid arthritis. Clin Exp Immunol. 2005;140:360–367. doi: 10.1111/j.1365-2249.2005.02754.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Liu M.F., Wang C.R., Fung L.L., et al. The presence of cytokine-suppressive CD4+CD25+ T cells in the peripheral blood and synovial fluid of patients with rheumatoid arthritis. Scand J Immunol. 2005;62:312–317. doi: 10.1111/j.1365-3083.2005.01656.x. [DOI] [PubMed] [Google Scholar]
  • 37.Han G.M., O’Neil-Andersen N.J., Zurier R.B., et al. CD4+CD25high T cell numbers are enriched in the peripheral blood of patients with rheumatoid arthritis. Cell Immunol. 2008;253:92–101. doi: 10.1016/j.cellimm.2008.05.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Behrens F., Himsel A., Rehart S., et al. Imbalance in distribution of functional autologous regulatory T cells in rheumatoid arthritis. Ann Rheum Dis. 2007;66:1151–1156. doi: 10.1136/ard.2006.068320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.van Amelsfort J.M., van Roon J.A., Noordegraaf M., et al. Proinflammatory mediator-induced reversal of CD4+CD25+ regulatory T cell-mediated suppression in rheumatoid arthritis. Arthritis Rheum. 2007;56:732–742. doi: 10.1002/art.22414. [DOI] [PubMed] [Google Scholar]
  • 40.Jiao Z., Wang W., Li J., et al. Accumulation of FoxP3-expressing CD4+CD25+ T cells with distinct chemokine receptors in synovial fluid of patients with active rheumatoid arthritis. Scand J Rheumatol. 2007;36:428–433. doi: 10.1080/03009740701482800. [DOI] [PubMed] [Google Scholar]
  • 41.Lin S.C., Chen K.H., Lin C.H., et al. The quantitative analysis of peripheral blood FoxP3-expressing T cells in systemic lupus erythematosus and rheumatoid arthritis patients. Eur J Clin Invest. 2007;37:987–996. doi: 10.1111/j.1365-2362.2007.01882.x. [DOI] [PubMed] [Google Scholar]
  • 42.Lawson C.A., Brown A.K., Bejarano V., et al. Early rheumatoid arthritis is associated with a deficit in the CD4+CD25high regulatory T cell population in peripheral blood. Rheumatology. 2006;45:1210–1217. doi: 10.1093/rheumatology/kel089. [DOI] [PubMed] [Google Scholar]
  • 43.Flores-Borja F., Jury E.C., Mauri C., et al. Defects in CTLA-4 are associated with abnormal regulatory T cell function in rheumatoid arthritis. Proc Natl Acad Sci U S A. 2008;105:19395–19400. doi: 10.1073/pnas.0806855105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Venigalla R.K., Tretter T., Krienke S., et al. Reduced CD4+CD25-T cell sensitivity to the suppressive function of CD4+CD25highCD127-/low regulatory T cells in patients with active systemic lupus erythematosus. Arthritis Rheum. 2008;58:2120–2130. doi: 10.1002/art.23556. [DOI] [PubMed] [Google Scholar]
  • 45.Lim H.W., Broxmeyer H.E., Kim C.H. Regulation of trafficking receptor expression in human forkhead box P3+ regulatory T cells. J Immunol. 2006;177:840–851. doi: 10.4049/jimmunol.177.2.840. [DOI] [PubMed] [Google Scholar]
  • 46.Karagiannidis C., Akdis M., Holopainen P., et al. Glucocorticoids upregulate FOXP3 expression and regulatory T cells in asthma. J Allergy Clin Immunol. 2004;114:1425–1433. doi: 10.1016/j.jaci.2004.07.014. [DOI] [PubMed] [Google Scholar]
  • 47.Raghavan S., Cao D., Widhe M., et al. FoxP3 expression in blood, synovial fluid and synovial tissue during inflammatory arthritis and intra-articular corticosteroid treatment. Ann Rheum Dis. 2009;68:1908–1915. doi: 10.1136/ard.2008.100768. [DOI] [PubMed] [Google Scholar]
  • 48.Ehrenstein M.R., Evans J.G., Singh A., et al. Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNF therapy. J Exp Med. 2004;200:277–285. doi: 10.1084/jem.20040165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Nadkarni S., Mauri C., Ehrenstein M.R. Anti-TNFα therapy induces a distinct regulatory T cell population in patients with rheumatoid arthritis via TGFβ. J Exp Med. 2007;204:33–39. doi: 10.1084/jem.20061531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Toubi E., Kessel A., Mahmoudov Z., et al. Increased spontaneous apoptosis of CD4+CD25+ T cells in patients with active rheumatoid arthritis is reduced by infliximab. Ann N Y Acad Sci. 2005;1051:506–514. doi: 10.1196/annals.1361.095. [DOI] [PubMed] [Google Scholar]
  • 51.Vigna-Perez M., Abud-Mendoza C., Alvarado Sanchez B., et al. Immune effects of therapy with adalimumab in patients with rheumatoid arthritis. Clin Exp Immunol. 2005;141:372–380. doi: 10.1111/j.1365-2249.2005.02859.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Valencia X., Stephens J., Goldbach-Mansky R., et al. TNF downmodulates the function of human CD4+CD25hi T-regulatory cells. Blood. 2006;106:253–261. doi: 10.1182/blood-2005-11-4567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Dombrecht E.J., Aerts N.E., Schuerwegh A.J., et al. Influence of anti-tumor necrosis factor therapy (Adalimumab) on regulatory T cells and dendritic cells in rheumatoid arthritis. Clin Exp Rheumatol. 2006;24:31–37. [PubMed] [Google Scholar]
  • 54.Yoshida H, Hashizume M, Suzuki M et al (2010) Anti-IL-6 receptor antibody suppressed T cell activation by inhibiting IL-2 production and inducing regulatory T cells. Eur J Pharmacol (in press) [DOI] [PubMed]

Articles from Auto-Immunity Highlights are provided here courtesy of BMC

RESOURCES