Skip to main content
Revista de Saúde Pública logoLink to Revista de Saúde Pública
. 2015 Apr 1;49:23. doi: 10.1590/S0034-8910.2015049005425
View full-text in Portuguese

Factors associated with arterial stiffness in children aged 9-10 years

Milena Santos Batista I, José Geraldo Mill II, Taisa Sabrina Silva Pereira III, Carolina Dadalto Rocha Fernandes IV, Maria del Carmen Bisi Molina V
PMCID: PMC4390071  PMID: 25902563

Abstract

OBJECTIVE

To analyze the factors associated with stiffness of the great arteries in prepubertal children.

METHODS

This study with convenience sample of 231 schoolchildren aged 9-10 years enrolled in public and private schools in Vitória, ES, Southeastern Brazil, in 2010-2011. Anthropometric and hemodynamic data, blood pressure, and pulse wave velocity in the carotid-femoral segment were obtained. Data on current and previous health conditions were obtained by questionnaire and notes on the child’s health card. Multiple linear regression was applied to identify the partial and total contribution of the factors in determining the pulse wave velocity values.

RESULTS

Among the students, 50.2% were female and 55.4% were 10 years old. Among those classified in the last tertile of pulse wave velocity, 60.0% were overweight, with higher mean blood pressure, waist circumference, and waist-to-height ratio. Birth weight was not associated with pulse wave velocity. After multiple linear regression analysis, body mass index (BMI) and diastolic blood pressure remained in the model.

CONCLUSIONS

BMI was the most important factor in determining arterial stiffness in children aged 9-10 years.

Keywords: Child, Pulse Wave Analysis, Blood Flow Velocity, Vascular Stiffness, Risk Factors, Overweight

INTRODUCTION

Traditional cardiovascular risk factors and associated alterations can act for decades, even before the onset of clinical manifestations of cardiovascular events. 11 , 22 Arterial stiffness, an important determinant of blood pressure (BP) elevation and a predictor of adverse cardiovascular events, 10 , 17 can manifest as early as in childhood – in children with low levels of physical activity, type 1 diabetes, or obesity. 3 , 4 , 6

The stiffness of the great arteries can be determined by various methods; the most indicated is measurement of pulse wave velocity (PWV), as it is easy to obtain and has good reproducibility. 24 Carotid-femoral PWV has become the most widely used method for assessing the degree of stiffness of the great arteries.

Epidemiological studies have observed an increased incidence of hypertension in children, probably due to its association with overweight and physical inactivity. 7 , 13 Considering the association between arterial stiffness and hypertension, the evaluation of arterial stiffness in children 24 can clarify this association at an early age. Age, sex, body mass index (BMI), and BP are important factors in determining arterial stiffness from childhood. Li et al 8 (2004) and Donald et al 4 (2010) stated that systolic BP (SBP) in childhood was positively associated with arterial stiffness. Donald et al 4 (2010) and Aatola et al 1 (2010) observed that age was positively associated with PWV. According to Núñez et al 1 4 (2010), obese children had higher PWV than their normal-weight peers. The same was observed in the study by Sakuragi et al 19 (2009), where BMI and percentage of body fat were associated with higher carotid-femoral PWV levels in children and adolescents.

In recent years, special attention has been given to the assessment of these risk factors from a life cycle perspective. This approach was based on studies that evaluated the association of birth weight and the development of chronic diseases, confirmed by subsequent studies in different countries. This evidence led to the development of the hypothesis of fetal origins of disease, known as the Barker hypothesis, 2 , 15 which proposes that exposures during critical development periods (pregnancy and early childhood) may lead to permanent metabolic and/or structural changes to ensure the survival of the fetus in adverse conditions; however, these adaptations may increase the risk of developing chronic diseases in adulthood.

The relationship between low birth weight and arterial stiffness remains controversial, especially in low- and middle-income countries, as few studies have assessed this relationship in children from these regions; most studies were conducted in adults. Therefore, it is difficult to determine the exact moment at which the alterations found in the arteries were produced or whether these are typical of hypertension. Studies in children may contribute to a better understanding of this process in countries such as Brazil.

This study aimed to analyze the factors associated with stiffness of the great arteries in prepubertal children.

METHODS

This study had a convenience sample of 231 children aged 9-10 years enrolled in public and private schools in Vitória, ES, Southeastern Brazil, who had already participated in a previous study. 5

The sample size was calculated to reject the null hypothesis, with type I error of 5.0%, statistical power of 90.0%, and minimum difference in PWV of 0.5 m/s between groups. Consequently, the sample needed to comprise 224 children. Families were invited to participate in the study, considering the child’s prior participation in other studies. Data were collected from July 2010 to November 2011 at the Health Sciences Center of the Universidade Federal do Espírito Santo (UFES), using questionnaires and clinical examinations.

In the initial assessment, 250 children aged 9-10 years came to the Cardiovascular Research Clinic (CRC) to be examined. Of these, 19 were excluded for not undergoing the main tests involved in this study (PWV and BP). The sample consisted of 231 children, of whom 50.2% were girls and 55.4% were 10 years old.

The examinations were performed by trained researchers in a calm, quiet, and climate-controlled environment (22°C-24°C). The children made a scheduled visit to the CRC and fasted (10h-14h) before undergoing the blood tests; their BP was measured using the oscillometric method with an automatic device (OMROM® HEM-705CP), and their PWV was measured. The children were seated in comfortable chairs, and chair height was adjusted so that their feet were flat on the floor. The measurements were made on the left arm, which was supported by a movable stand that maintained the brachial artery at heart level. Cuffs appropriately sized to fit the children’s arms were used; to choose the correct size, arm circumference was measured at the midpoint between the acromion and olecranon processes. The OMRON® child cuff was used for subjects with arm circumference 16-22 cm and the OMRON® adult cuff for subjects with arm circumference 23-33 cm. Three BP measurements were obtained, with a two-min interval between them. SBP, diastolic BP (DBP), and heart rate (HR) were determined by the arithmetic mean of the last two measurements. SBP and DBP were classified as normal (≤ 90th percentile for age and sex), borderline (90th-95th percentile) or high (≥ 95th percentile), as recommended by the VI Brazilian Guidelines on Arterial Hypertension. 21 Later, they were re-categorized as normal BP (< 95th percentile) or high BP (≥ 95th percentile).

PWV was obtained after resting in the supine position for five minutes, and the subjects wore clothing that allowed easy access to the right femoral and carotid pulses. A tape measure was used to measure the distance between the sternal manubrium and the femoral pulse. PWV was measured by the simultaneous capture of pulse waves in the right carotid and femoral arteries. Dedicated software (Complior; Artech Medicale, France) assessed the adequacy of pulse waves; for positive cases, PWV was calculated by the ratio between the manubrium-femoral distance and the time delay between the two pulses. The PWV of every child was determined based on the mean, which was calculated automatically from 12 heartbeats at a regular HR. It was classified into tertiles based on the following cut-off points: tertile 1, < 5.1 m/s; tertile 2, 5.1-5.5 m/s; and tertile 3 > 5.5 m/s.

Anthropometric data were collected as recommended by the World Health Organization (WHO). 24 Body weight was measured on an electronic scale (Toledo®, model 2096; Brazil) with precision of 100 g. Height was measured by a portable stadiometer (Seca®, model 206) attached to a flat wall with no baseboard. a BMI was calculated, and the child was classified as normal weight or overweight according to WHO criteria. Waist circumference (WC) was measured using an anthropometric tape (Sanny®) at the midpoint between the lower edge of the lowest rib and the iliac crest. The waist-to-height ratio (W/H) was obtained from the ratio of the waist and height measurements. The assessment of pubertal stage was performed using the criteria proposed by Tanner 23 (1962), and was reported by the children. Data on birth conditions, eating habits, and the child’s current health, as well as the durable consumer goods available at home were obtained through interviews with one of the parents or guardian.

Socioeconomic status was classified based on ownership of consumer goods and education level of the head of the household, as recommended by the Brazilian Association of Research Companies, and grouped into three categories:A+B, C, D+E. b This variable was only used for sample characterization.

Birth weight was recorded based on the information on the child’s health card. Approximately 30.0% of the cards did not include this data. In such cases, this was reported by the mother. Additionally, information on whether the delivery was preterm was collected.

The Kolmogorov-Smirnov test was used to assess the normality of continuous variables. Student’s t-test for independent samples and the Mann-Whitney test were used to compare the means of continuous variables with normal distribution and non-parametric variables, respectively. The Chi-squared test (X2) or Fisher’s exact test were used to compare proportions. One-way analysis of variance (ANOVA), followed by a Tukey test, were used to compare more than two means. The Kruskal-Wallis test was used for non-parametric variables. Pearson’s and Spearman’s correlation coefficients were used to test the correlations of the variables, according to their distribution. A multiple linear regression was used to identify the partial and total contribution of the factors in determining PWV values. To be included in the linear regression model, the variables with non-normal distribution were log-transformed. The residues of linear regression were evaluated for normality. The significance level was set at a < 0.05.

Statistical analyses were performed using SPSS for Windows, version 18.0.

This study was approved by the Research Ethics Committee of the Health Sciences Center of the Universidade Federal do Espírito Santo (Case 144/2010). The children’s participation was voluntary, and their families signed an informed consent form.

RESULTS

The main clinical characteristics of the participants were stratified according to the PWV tertile, with a mean of 5.3 m/s (standard deviation 0.52 m/s), minimum value of 4.1 m/s, and maximum of 7.8 m/s (Table 1). The only factor associated with PWV was nutritional status; 39.0% of the children classified in the highest PWV tertile were overweight, while this ratio was 33.0% (p = 0.01) in the lower tertiles.

Table 1. Distribution of sociodemographic, anthropometric, sex, blood pressure, and birth conditions variables, stratified by pulse wave velocity tertiles. Vitória, ES, Southeastern Brazil, 2010-2011.

Variable Pulse wave velocity (m/s) p Total
< 5.1 5.1 a 5.5 > 5.5 n %

n % n % n %
Sex             0.16    
Masculine 37 33.0 38 34.0 37 33.0   112 50.0
Feminine 50 45.0 35 31.0 27 24.0   112 50.0
Socioeconomic class             0.56    
A+B 44 39.0 33 29.0 36 32.0   113 52.0
C+D 39 37.0 37 36.0 28 27.0   104 48.0
Nutritional status             0.01    
Normal weight 54 44.0 45 36.0 25 20.0   124 56.0
Overweight 33 33.0 28 28.0 38 39.0   99 44.0
Systolic blood pressure*             0.44    
Normal 85 39.0 71 33.0 60 28.0   216 96.0
High 2 25.0 2 25.0 4 50.0   8 4.0
Diastolic blood pressure*             0.88    
Normal 84 38.0 71 33.0 63 29.0   218 97.0
High 3 50.0 2 33.0 1 17.0   6 3.0
Birth weight             0.59    
Normal 74 38.0 64 33.0 58 29.0   196 87.0
Low 13 47.0 9 32.0 6 41.0   28 13.0
Preterm             0.97    
Yes 9 40.0 7 30.0 7 30.0   23 10.0
No 78 39.0 65 33.0 57 28.0   200 90.0

* Fisher’s exact test.

Height was the only variable that was not associated with PWV (Table 2). Mean SBP and DBP increased from the first to the third PWV tertile (p < 0.01). The same occurred with the anthropometric variables WC, W/H, and body weight (p = 0.01; Table 2). The differences between tertiles were due almost exclusively to the increases in BP and in the variables related to the excess weight of the children in the third tertile, when compared with the first two.

Table 2. Means and standard deviations of the hemodynamic and anthropometric variables, stratified by pulse wave velocity tertiles. Vitória, ES, Southeastern Brazil, 2010-2011.

Variable Pulse wave velocity tertile (m/s) p
< 5.1 5.1 a 5.5 > 5.5

n Mean SD n Mean SD n Mean SD
SBP (mm/Hg)a 87 103 9 73 103 9 64 108c 9 < 0.01
DBP (mm/Hg)a 87 62 7 73 63 8 64 66c 7 < 0.01
Weight (kg)a 87 35.1 7.6 73 37.3 9.7 64 41.5c 11 < 0.01
Height (cm)a 87 140 7 73 141 7 64 142 7 0.18
 
 
  n Median P25;P75 n Median P25;P75 n Median P25;P75  

WC (cm)b 87 60.8 55.7;67.2 72 60.6 56;73.2 63 66.3c 59.1;75.6 < 0.01
W/H (cm)b 87 0.43 0.41;0.49 72 0.43 0.39;0.51 63 0.48c 0.42;0.53 < 0.01
BMI (kg/m2)b 87 17.2 15.5;19.9 73 17.6 15.4;22.1 64 20.2c 16.9;23.3 < 0.01

SD: standard deviation; SBP: systolic blood pressure; DBP: diastolic blood pressure; WC: waist circumference; W/H: waist-to-height ratio; BMI: body mass index

a ANOVA for parametric variables.

b Kruskal-Wallis test for nonparametric variables.

c Statistically significant according to Tukey’s test.

Birth weight was not associated with PWV (p = 0.68). The higher the child’s BMI, the greater the PWV: 40.0% of the children with BMI > 20.3 kg/m2 were in the highest PWV tertile (p = 0.01; Table 3).

Table 3. Birth weight, blood pressure, and nutritional status, stratified by pulse wave velocity tertiles. Vitória, ES, Southeastern Brazil, 2010-2011.

Variable Pulse wave velocity (m/s) p Total
< 5.1 5.1-5.5 > 5.5 n %

n % n % n %
Birth weight (kg)             0.68    
≤ 2,999 33 43.0 24 32.0 19 25.0   76 34.0
3,000 to 3,499 28 35.0 29 37.0 22 28.0   79 35.0
≥ 3,500 26 38.0 20 29.0 23 33.0   69 31.0
SBP (mmHg)             0.19    
≤ 100 35 44.0 28 36.0 16 20.0   79 35.0
101 to 107 31 41.0 21 28.0 23 31.0   75 33.0
≥ 108 21 30.0 24 34.0 25 36.0   70 31.0
DBP (mmHg)             0.01    
≤ 59 39 50.0 24 31.0 15 19.0   78 35.0
60 to 65 32 43.0 25 34.0 17 23.0   74 33.0
≥ 66 16 22.0 24 33.0 32 45.0   72 32.0
BMI (kg/m2)             0.01    
≤ 16.4 33 44.0 29 38.0 14 18.0   76 34.0
16.4 to 20.2 36 48.0 18 24.0 21 28.0   75 34.0
≥ 20.3 18 25.0 26 35.0 29 40.0   73 33.0

SBP: systolic blood pressure; DBP: diastolic blood pressure; BMI: body mass index

Anthropometric variables and BP were significantly correlated with PWV (Table 4). However, due to colinearity between some of the anthropometric variables tested, only BMI and W/H were included in the multiple regression model. The other variables in the model were SBP, DBP, and sex.

Table 4. Simple correlation between pulse wave velocity and anthropometric variables, birth weight, and breastfeeding duration. Vitória, ES, Southeastern Brazil, 2010-2011.

Variable Pulse wave velocity (m/s)
r p
SBPa (mmHg) 0.19 < 0.01
DBPa (mmHg) 0.22 < 0.01
WCb (cm) 0.19 < 0.01
W/Hb (cm) 0.18 < 0.01
Weighta (kg) 0.24 < 0.01
Heighta (cm) 0.08 0.23
BMIb (kg/m2) 0.20 < 0.01
Birth weighta (g) 0.08 0.24

SBP: systolic blood pressure; DBP: diastolic blood pressure; WC: waist circumference; W/H: waist-to-height ratio; BMI: body mass index

a Pearson’s correlation.

b Spearman’s correlation.

Residual analysis demonstrated homoscedasticity. The factors that explained the changes in PWV were BMI and DBP (p < 0.01; Table 5).

Table 5. Multiple linear regression* for the dependent variable pulse wave velocity. Vitória, ES, Southeastern Brazil, 2010-2011.

Explanatory variables Estimated coefficient Standard error t Beta P
Constant 4.047 0.317 12.763   < 0.01
BMI (kg/m2) 0.028 0.010 2.684 0.197 < 0.01
DBP (mm/Hg) 0.012 0.005 2.321 0.157 0.02

BMI: body mass index; DBP: diastolic blood pressure

* Adjusted for systolic blood pressure, diastolic blood pressure, and sex.

DISCUSSION

BMI was associated with PWV in children aged 9-10 years. Although other anthropometric variables were also associated, only BMI remained in the final regression model. This finding is similar to that of Sakuragi et al 19 (2009), Núñez et al 14 (2010), and Celik et al 3 (2011), in which a positive association was observed between overweight and arterial stiffness in children and adolescents. Although obesity is an important risk factor for cardiovascular disease, the pathophysiological mechanisms that associate it with arterial stiffness are not fully understood, 18 especially in the age group assessed in the present study.

Unlike other studies, no significant association was observed between birth weight and PWV. The relationship between birth weight and arterial stiffness remains controversial. Martin et al 9 (2000) found a negative correlation between birth weight and carotid artery stiffness, assessed by ultrasound. Miles et al 12 (2011) found no association between arterial stiffness and birth weight, as assessed by carotid-femoral PWV. Conversely, in the assessment of carotid-femoral PWV in adolescents, Salvi et al 20 (2012) found a negative association between low birth weight and PWV. However, birth data was obtained directly from clinical records, thus reducing the chance of recall bias.

Studies assessing arterial stiffness in children are controversial. This is mainly due to the divergent methodologies used to measure arterial stiffness, such as different devices and arterial segments assessed. The distribution of blood components varies depending on the location of the vessel. The central arteries have a higher degree of elasticity because of high elastin/collagen ratio and low influence of smooth muscle tone. In contrast, the peripheral vessels have less elasticity, as they have a lower elastin/collagen ratio. Thus, the measurement method and the arterial segment evaluated must be considered. The results will probably not be the same if measurements are done in different segments. The values obtained in the aortic-brachial segment will be higher than those obtained in the carotid-femoral, considering the amount of elastin in each segment. 24 This study used the carotid-femoral PWV because it is considered to be the best method for assessing stiffness of the great arteries, especially the aorta.

The high frequency of overweight was probably related to the sample selection strategy. The participants had already participated in previous studies. Therefore, it is possible that parents who were more concerned with their child’s weight responded more favorably to the invitation to participate in this study. This bias, however, does not hinder the objectives of this study, which did not aim to estimate the prevalence of structural or functional alterations in children, but rather to associate these variables with an outcome that characterizes stiffness of the great arteries, the carotid-femoral PWV.

Another limitation of this study is its cross-sectional design, which is not suitable for inferring causal association. Cohort studies provide the best conditions for assessing findings. 20 , 26 However, the measurements were checked for quality control and the appropriate methodology was used for establishing the associations found in this study.

This is one of the first studies in Brazil to assess arterial stiffness measured by carotid-femoral PWV in prepubertal children. The results of the present study can contribute to a better understanding of this subject in different locations where the lifestyle differs from that of the countries in which these parameters are usually studied. Arterial stiffness is often measured in adults, but its use in children has been previously reported. Most studies have demonstrated an association between increased PWV, age, and BP. 16 In this study, BP was controlled in the linear regression adjustment to assess PWV, and the age range studied was narrow (9-10 years). Thus, it did not affect the PWV result of in the studied population or the other findings.

Although BP was measured three times under controlled environmental conditions by a trained professional, this measurement cannot be considered as a reflection of the BP of the assessed children. Ideally, measurements are carried out at different times. Nonetheless, children who were in puberty were excluded, thus avoiding potential hormonal effects on the outcome (PWV) and on related factors such as overweight.

Overweight was the most important factor in determining arterial stiffness in this sample. Although it has not been widely studied in Brazil, the evaluation of the vascular structure and function measured by PWV can be useful for the identification of early vascular involvement in children. Therefore, the contribution of this research on the discussion of children’s health is timely, particularly regarding the identification of future cardiovascular problems.

Footnotes

a

World Health Organization. Indicators for assessing infant and young child feeding practices. Conclusions of consensus meeting held 6-8 November 2007 in Washington D.C., USA, 2007. Washington (DC); 2007.

b

Associação Brasileira de Empresas de Pesquisa. Critério de classificação econômica Brasil. São Paulo; 2011 [cited 2010 Oct 15]. Available from: http://www.abep.org/novo/Content.aspx?ContentID=139

Based on the master’s dissertation by Milena Santos Batista, titled: “Condições de nascimento e amamentação e saúde cardiovascular de crianças de 9 e 10 anos”, presented to the Universidade Federal do Espírito Santo in 2013.

REFERENCES

  • 1.Aatola H, Hutri-Kähönen N, Juonala M, Viikarj JS, Hulkkonen J, Laitinen T, et al. Lifetime risk factors and arterial pulse wave velocity in adulthood: the cardiovascular risk in young Finns study. Hypertension. 2010;55(3):806–811. doi: 10.1161/HYPERTENSIONAHA.109.145102. [DOI] [PubMed] [Google Scholar]
  • 2.Barker DJP. The origins of the developmental origins theory. J Inter Med. 2007;261(5):412–417. doi: 10.1111/j.1365-2796.2007.01809.x. [DOI] [PubMed] [Google Scholar]
  • 3.Celik A, Ozçetin M, Yerli Y, Damar IH, Kadı H, Koç F, et al. Increased aortic pulse wave velocity in obese children. Turk Kardiol Dern Ars. 2011;39(7):557–562. doi: 10.5543/tkda.2011.01694. [DOI] [PubMed] [Google Scholar]
  • 4.Donald AE, Charakida M, Falaschetti E, Lawlor D, Halcox J, Golding J, et al. Determinants of vascular phenotype in a large childhood population: the Avon Longitudinal Study of Parents and Children (ALSPAC) Eur Heart J. 2010;31(12):1502–1510. doi: 10.1093/eurheartj/ehq062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Faria CP, Nascimento L, Cade NV, Molina MCB. Prevalência de excesso de peso em crianças de 7 a 10 anos de Vitória-ES, Brasil: um estudo de base escolar. UFES. Rev Bras Pesq Saude. 2011;13(1):31–37. [Google Scholar]
  • 6.Haller H, Meier M. Diabetic nephropathy - current concepts in early diagnosis and treatment of diabetic microvascular complications. Herz. 2004;29(5):496–503. doi: 10.1007/s00059-004-2610-4. [DOI] [PubMed] [Google Scholar]
  • 7.Iampolsky MN, Souza FIS, Sarni RS. Influência do índice de massa corporal e da circunferência abdominal na pressão arterial sistêmica de crianças. Rev Paulista Ped. 2010;28(2):181–187. doi: 10.1590/S0103-05822010000200009. [DOI] [Google Scholar]
  • 8.Li S, Chen W, Srinivasan SR, Berenson GS. Childhood blood pressure as a predictor of arterial stiffness in young adults: the Bogalusa heart study. Hypertension. 2004;43(3):541–546. doi: 10.1161/01HYP.0000115922.98155.23. [DOI] [PubMed] [Google Scholar]
  • 9.Martin H, Hu J, Gennser G, Norman M. Impaired endothelial function and increased carotid stiffness in 9-year-old children with low birthweight. Circulation. 2000;102(22):2739–2744. doi: 10.1161/01.CIR.102.22.2739. [DOI] [PubMed] [Google Scholar]
  • 10.Martyn CN, Greenwald SE. Impaired synthesis of elastin in walls of aorta and large conduit arteries during early development as an initiating event in pathogenesis of systemic hypertension. Lancet. 1997;350(9082):953–955. doi: 10.1016/S0140-6736(96)10508-0. [DOI] [PubMed] [Google Scholar]
  • 11.McGill HC, McMahan CA, Herderick EE, Malcom GT, Tracy RE, Strong JP. Origin of atherosclerosis in childhood and adolescence. Am J ClinNutr. 2000;72(5Suppl):1307–1315. doi: 10.1093/ajcn/72.5.1307s. [DOI] [PubMed] [Google Scholar]
  • 12.Miles KL, McDonnell BJ, Maki-Petaja KM, Yasmin CJR, Wilkinson IB, McEniery CM. Enigma Study investigators. The impact of birth weight on blood pressure and arterial stiffness in later life: the enigma study. J Hypertens. 2011;29(12):2324–2331. doi: 10.1097/HJH.0b013e32834d0ca1. [DOI] [PubMed] [Google Scholar]
  • 13.Monego ET, Jardim PCBV. Determinantes de risco para doenças cardiovasculares em escolares. Arq Bras Cardiol. 2006;87(1):37–45. doi: 10.1590/S0066-782x2006001400006. [DOI] [PubMed] [Google Scholar]
  • 14.Núñez F, Martínez-Costa C, Sánchez-Zahonero J, Morata J, Chorro FJ, Brines J. Medida de la rigidez de la arteria carótida como marcador precoz de lesión vascular en ni-os y adolescentes con factores de riesgo cardiovascular. Rev Esp Cardiol. 2010;63(11):1253–1260. doi: 10.1016/S0300-8932(10)70295-5. [DOI] [PubMed] [Google Scholar]
  • 15.Osmond C, Barker DJP. Fetal, infant, and childhood growth are predictors of coronary heart disease, diabetes, and hypertension in adult men and women. Environ Health Perspect. 2000;108(Suppl 3):545–553. doi: 10.1289/ehp.00108s3545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Pizzi OL, Brandão AA, Pozzan R, Magalhães MEC, Campana EMG, Fonseca FL, et al. Velocidade da onda de pulso, pressão arterial e adipocitocinas em adultos jovens: estudo do Rio de Janeiro. Arq Bras Cardiol. 2013;100(1):60–66. doi: 10.1590/s0066-782x2012005000116. [DOI] [PubMed] [Google Scholar]
  • 17.Redington A, Sarkola EJT, Manlhiot C, Slorach C, Bradley TJ, Hui W, et al. Pressure changes evolution of the arterial structure and function from infancy to adolescence is related to anthropometric and blood pressure changes. Arterioscler Thromb Vasc Biol. 2012;32(10):2516–2524. doi: 10.1161/ATVBAHA.112.252114. [DOI] [PubMed] [Google Scholar]
  • 18.Safar ME, Czemichov S, Blacher J. Obesity, arterial stiffness, and cardiovascular risk. J Am Soc Nephrol. 2006;17(4):109–111. doi: 10.1681/ASN.2005121321. [DOI] [PubMed] [Google Scholar]
  • 19.Sakuragi S, Abhayaratna K, Gravenmaker KJ, O’Reilly C, Srikusalanukul W, Budge MM, et al. Influence of adiposity and physical activity on arterial stiffness in healthy children:the lifestyle o four kids study. Hypertension. 2009;53(4):611–616. doi: 10.1161/HYPERTENSIONAHA.108.123364. [DOI] [PubMed] [Google Scholar]
  • 20.Salvi P, Revera M, Joly L, Reusz G, Iaia M, Benkhedda S, et al. Role of birth weigth and postnaltal growth on pulse wave velocity in teenagers. J Adolesc Health. 2012;51(4):373–379. doi: 10.1016/j.jadohealth.2012.01.009. [DOI] [PubMed] [Google Scholar]
  • 21.Sociedade Brasileira de Cardiologia. Sociedade Brasileira de Hipertensão. Sociedade Brasileira de Nefrologia VI Diretrizes brasileiras de hipertensão. Arq Bras Cardiol. 2010;95(1Suppl 1):1–51. doi: 10.1590/S0066-782X2010001700001. [DOI] [PubMed] [Google Scholar]
  • 22.Stary HC. Natural history and histological classification of atherosclerotic lesions: an update. Arterioscler Thromb Vasc Biol. 2000;20(5):1177–1178. doi: 10.1161/01.atv.20.5.1177. [DOI] [PubMed] [Google Scholar]
  • 23.Tanner JM. Growth at adolescence. 2. Oxford: Blackwell Scientific; 1962. [Google Scholar]
  • 24.Urbina EM, Williams RV, Alpert BS, Collins RT, Daniels SR, Hayman L, et al. Noninvasive assessment of subclinical atherosclerosis in children and adolescents: recommendations for standard assessment for clinical research. A scientific statement from the American Heart Association. Hypertension. 2009;54(5):919–950. doi: 10.1161/HYPERTENSIONAHA.109.192639. [DOI] [PubMed] [Google Scholar]
  • 25.World Health Organization . Use and interpretation of anthropometry. Geneve: 1995. Technical report series, 854. [PMC free article] [PubMed] [Google Scholar]
  • 26.Yu ZB, Han SP, Zhu GZ, Zhu C, Wang XJ, Cao XG, et al. Birth weight and subsequent risk of obesity: a systematic review and meta-analysis. Obes Rev. 2011;12(7):525–542. doi: 10.1111/j.1467-789X.2011.00867.x. [DOI] [PubMed] [Google Scholar]
Rev Saude Publica. 2015 Apr 1;49:23. [Article in Portuguese]

Fatores associados ao aumento da rigidez arterial em crianças de 9 e 10 anos

Milena Santos Batista I, José Geraldo Mill II, Taisa Sabrina Silva Pereira III, Carolina Dadalto Rocha Fernandes IV, Maria del Carmen Bisi Molina V

Abstract

OBJETIVO

Analisar fatores associados à rigidez arterial dos grandes vasos arteriais em crianças pré-púberes.

MÉTODOS

Estudo com amostra de conveniência de 231 escolares de nove e 10 anos de idade matriculados em instituições públicas e privadas de Vitória, ES, 2010-2011. Foram obtidos dados antropométricos e hemodinâmicos, pressão arterial e velocidade de onda de pulso no segmento carotídeo-femoral. Dados sobre condições de saúde atuais e pregressas das crianças foram obtidas por meio de questionário e anotações no cartão de saúde da criança. Foi aplicada regressão linear múltipla para identificar a contribuição parcial e total dos fatores na determinação dos valores da velocidade de onda de pulso.

RESULTADOS

Dentre os escolares, 50,2% eram meninas e 55,4% tinham 10 anos de idade. Entre as classificadas no último tercil de velocidade de onda de pulso, 60,0% apresentavam excesso de peso, maiores médias de pressão arterial, circunferência da cintura e relação cintura/estatura. O peso ao nascer não foi associado à velocidade de onda de pulso. Após análise de regressão linear múltipla, permaneceram no modelo as variáveis índice de massa corporal e pressão arterial diastólica.

CONCLUSÕES

Excesso de peso foi o mais importante fator na determinação da rigidez arterial de crianças.

Keywords: Criança, Análise de Onda de Pulso, Velocidade do Fluxo Sanguíneo, Rigidez Vascular, Fatores de Risco, Sobrepeso


Os fatores de risco cardiovascular tradicionais e as alterações associadas podem atuar por décadas, mesmo antes do aparecimento das manifestações clínicas dos eventos cardiovasculares. 11 , 22 A rigidez arterial, determinante importante da elevação da pressão arterial e preditor de eventos cardiovasculares adversos, 10 , 17 pode já se manifestar na infância, em crianças com baixa atividade física, portadoras de diabetes tipo 1 ou obesas. 3 , 4 , 6

A rigidez das grandes artérias pode ser determinada por vários métodos. Entretanto, a medida da velocidade de onda de pulso (VOP) é a mais recomendada pela sua facilidade de obtenção e boa reprodutibilidade. 24 A VOP carotídeo-femoral tornou-se o método mais amplamente utilizado na avaliação do grau de rigidez dos grandes vasos arteriais.

Pesquisas epidemiológicas mostram aumento da incidência de hipertensão arterial em crianças, provavelmente pela associação dessa condição com o sobrepeso e o sedentarismo. 7 , 13 Considerando a associação entre a rigidez arterial e a elevação da pressão arterial, a avaliação desse parâmetro na população infantil 24 pode esclarecer esse processo em idade precoce. Idade, sexo, índice de massa corporal (IMC) e pressão arterial são fatores importantes na determinação da rigidez arterial desde a infância. Li et al 8 (2004) e Donald et al 4 (2010) consideraram que a pressão arterial sistólica (PAS) na infância é positivamente associada à rigidez arterial. Donald et al 4 (2010) e Aatola et al 1 (2010) observaram que a idade apresentou associação positiva com a VOP. Segundo Núñez et al 14 (2010), crianças obesas apresentaram maior VOP quando comparadas às eutróficas. O mesmo ocorreu no estudo de Sakuragi et al 19 (2009), para quem o IMC e o percentual de gordura corporal associaram-se a maiores níveis de VOP carótido-femoral em crianças e adolescentes.

A avaliação desses fatores de risco na perspectiva do ciclo vital recebeu atenção especial nos últimos anos. Essa abordagem foi feita com base em estudos que avaliaram a relação do peso ao nascer com o desenvolvimento de doenças crônicas, confirmados por estudos subsequentes em diferentes países. Tais evidências levaram ao desenvolvimento da hipótese da origem fetal das doenças, conhecida como hipótese de Barker. 2 , 15 Essa hipótese propõe que exposições ocorridas durante períodos críticos do desenvolvimento (gestação e no início da infância) originariam adaptações metabólicas e/ou estruturais permanentes para garantir a sobrevivência do feto em condições adversas que, por outro lado, aumentariam o risco do desenvolvimento de doenças crônicas na vida adulta.

A relação entre o baixo peso ao nascer e rigidez arterial permanece controversa na literatura, principalmente em países de baixa e média renda, onde não há muitos estudos que avaliaram essa relação em crianças. A maioria dos estudos foi realizada em população adulta. Por isso, é difícil determinar o momento exato em que foram produzidas as alterações encontradas nas artérias ou se essas são próprias da elevação da pressão arterial. Estudos com crianças podem contribuir para maior compreensão desse processo em países como o Brasil.

O objetivo deste estudo foi analisar fatores associados à rigidez arterial dos grandes vasos arteriais em crianças pré-púberes.

MÉTODOS

Estudo com amostra de conveniência realizado com 231 crianças de nove a 10 anos, matriculadas em escolas públicas e privadas no município de Vitória, ES, e que já haviam participado de estudo anterior. 5

O tamanho da amostra foi calculado para rejeitar a hipótese nula com erro tipo I de 5,0%, poder estatístico de 90,0% e diferença mínima intergrupos de 0,5 m/s na VOP. Assim, a amostra deveria ser composta por 224 crianças. As respectivas famílias foram convidadas a participar da pesquisa, levando em conta a participação prévia da criança em outros estudos. A coleta de dados foi realizada de julho de 2010 a novembro de 2011, no Centro de Ciências da Saúde da Universidade Federal do Espírito Santo (UFES), utilizando-se questionários e exames clínicos.

Compareceram à Clínica de Investigação Cardiovascular (CIC) para a realização dos exames, 250 crianças entre nove e 10 anos. Dessas, 19 foram excluídas porque não realizaram os exames principais deste estudo (VOP e PA). A amostra foi composta por 231 crianças, 50,2% meninas e 55,4% com 10 anos de idade.

Os exames foram realizados por pesquisadores treinados, em ambiente calmo e sob condições ambientais de temperatura controladas. As crianças apresentavam-se à CIC em dia pré-agendado, sob jejum (10h a 14h) para a realização de exames, aferição da pressão arterial, pelo método oscilométrico com aparelho automático (OMROM® HEM-705CP), e medida da VOP. Os exames eram feitos por pesquisadores treinados e em ambiente silencioso e com temperatura controlada (22°C a 24°C). As crianças eram acomodadas em cadeiras confortáveis, com altura ajustável e pés apoiados no piso. As medidas eram feitas no braço esquerdo apoiado em suporte móvel de modo que a artéria braquial ficasse no nível do coração. Foram utilizados manguitos de tamanhos apropriados à circunferência do braço da criança. A circunferência do braço era medida no ponto médio entre o acrômio e olécrano para escolha do manguito adequado. Foi utilizado manguito infantil OMRON® para braço com circunferência de 16 a 22 cm e manguito adulto OMRON® para braços com 23 a 33 cm. Foram obtidas três medidas da pressão com intervalo de dois min entre elas. A PAS, pressão artiral diastólica (PAD) e a frequência cardíaca (FC) foram determinadas pela média aritmética das duas últimas medidas. PAS e PAD foram classificadas como normais (≤ percentil 90 para idade e sexo), limítrofes (> percentil 90 e < percentil 95 para idade e sexo) ou elevadas (≥ percentil 95 para idade e sexo), conforme preconizado pelas VI Diretrizes de Hipertensão Arterial. 21 Posteriormente, foram recategorizadas em pressão arterial normal (< percentil 95) ou elevada ( ≥ percentil 95).

A VOP foi obtida após repouso em posição supina por cinco minutos e com vestimenta que permitia o fácil acesso ao pulsos femoral e carotídeo diretos. Uma fita métrica foi usada para medir a distância entre a fúrcula do esterno e o pulso femoral. A VOP foi medida por meio da captura simultânea das ondas de pulso nas artérias carótida e femoral direitas. Um software dedicado (Complior, Artech Medicale, França) verificava a adequação das ondas de pulso e, em caso positivo, calculava a VOP pela razão entre a distância fúrcula-femoral e a defasagem temporal entre os dois pulsos. A VOP de cada criança foi determinada a partir da média feita automaticamente em 12 batimentos cardíacos em frequência cardíaca regular. A VOP foi classificada em tercis a partir dos seguintes pontos de corte. Tercil 1 < 5,1 m/s, tercil 2 5,1-5,5 m/s e tercil 3 > 5,5 m/s.

Os dados antropométricos foram coletados conforme preconizado pela Organização Mundial de Saúde (OMS). 24 Peso corporal foi aferido em balança eletrônica (Toledo®, Modelo 2096, Brasil) com precisão de 100 g. Estatura foi aferida em estadiômetro portátil (Seca®, Modelo 206) afixado a uma parede lisa e sem rodapé. O IMC foi calculado e classificado como eutrófico ou excesso de peso, segundo os parâmetros da OMS. a Circunferência da cintura (CC) foi aferida com fita antropométrica (Sanny®) no ponto médio entre a borda inferior do último arco costal e a crista ilíaca. A relação cintura/estatura (C/E) foi obtida mediante a razão entre a cintura e a estatura. A avaliação do estágio puberal foi realizada utilizando os critérios propostos por Tanner 23 (1962) e foram declarados pelas crianças. Os dados sobre as condições de nascimento, hábitos alimentares e saúde atual da criança, bem como os bens de consumo duráveis disponíveis no domicílio foram obtidos por meio de entrevista com um dos pais ou responsável.

A classe socioeconômica foi classificada com base na posse de bens e escolaridade do chefe da família, conforme recomendado pela Associação Brasileira das Empresas de Pesquisa. b Foi agrupada em três categorias: A+B, C, D+E. Essa variável foi utilizada apenas para caracterização da amostra.

O peso ao nascer foi registrado com base na informação do cartão da criança e da mãe. Aproximadamente 30,0% dos cartões não apresentaram esse dado. Nesses casos, foi referido pela mãe. Além disso, foi obtida a informação se o parto foi prematuro ou não.

O teste Kolmogorov-Smirnov foi utilizado para testar a normalidade das variáveis contínuas. Foram utilizados teste t de Student para amostras independentes e teste de Mann Whitney para comparação de médias das variáveis contínuas com distribuição normal e não-paramétricas, respectivamente. Utilizou-se teste Qui-quadrado (X2) ou teste exato de Fisher para comparação de proporções. A comparação de mais de duas médias foi feita por análise de variância (ANOVA) de uma via seguida do teste de Tukey. O teste Kruskal-Wallis foi utilizado para as variáveis de distribuição não-paramétricas. Os coeficientes de correlação de Pearson e Spearman foram utilizados para testar as correlações das variáveis, conforme distribuição. Regressão linear múltipla foi aplicada para identificar a contribuição parcial e total dos fatores na determinação dos valores de VOP. As variáveis que não apresentavam distribuição normal sofreram transformação logarítmica para entrarem no modelo de regressão linear. Os resíduos da regressão linear foram avaliados para testar a normalidade. O nível de significância considerado foi a < 0,05.

As análises estatísticas foram realizadas no programa SPSS for Windows, versão 18.0.

Esta pesquisa foi aprovada pelo Comitê de Ética em Pesquisa do Centro de Ciências da Saúde da Universidade Federal do Espírito Santo (Processo 144/2010). A participação das crianças foi voluntária e as respectivas famílias assinaram o termo de consentimento livre e esclarecido.

RESULTADOS

As principais características clínicas das crianças foram agrupadas segundo o tercil de VOP, com média de 5,3 m/s (desvio-padrão 0,52 m/s), valor mínimo de 4,1 m/s e máximo de 7,8 m/s (Tabela 1). O único fator que se associou à VOP foi o estado nutricional; 39,0% das crianças classificadas no tercil mais alto de VOP apresentaram excesso de peso, enquanto essa proporção foi de 33,0% (p = 0,01) nos tercis inferiores.

Tabela 1. Distribuição de variáveis sociodemográficas, antropométricas, sexo, pressão arterial e condições de nascimento, relacionadas aos tercis de velocidade de onda de pulso. Vitória, ES, 2010 a 2011.

Variável Velocidade de onda de pulso (m/s) p Total
< 5,1 5,1 a 5,5 > 5,5 n %

n % n % n %
Sexo             0,16    
Masculino 37 33,0 38 34,0 37 33,0   112 50,0
Feminino 50 45,0 35 31,0 27 24,0   112 50,0
Classe socioeconômica             0,56    
A+B 44 39,0 33 29,0 36 32,0   113 52,0
C+D 39 37,0 37 36,0 28 27,0   104 48,0
Estado nutricional             0,01    
Normal 54 44,0 45 36,0 25 20,0   124 56,0
Excesso de peso 33 33,0 28 28,0 38 39,0   99 44,0
Pressão arterial sistólica*             0,44    
Normal 85 39,0 71 33,0 60 28,0   216 96,0
Elevada 2 25,0 2 25,0 4 50,0   8 4,0
Pressão arterial diastólica*             0,88    
Normal 84 38,0 71 33,0 63 29,0   218 97,0
Elevada 3 50,0 2 33,0 1 17,0   6 3,0
Peso ao nascer             0,59    
Normal 74 38,0 64 33,0 58 29,0   196 87,0
Baixo peso ao nascer 13 47,0 9 32,0 6 41,0   28 13,0
Prematuridade             0,97    
Sim 9 40,0 7 30,0 7 30,0   23 10,0
Não 78 39,0 65 33,0 57 28,0   200 90,0

* Teste Exato de Fisher.

A estatura foi a única variável que não se associou à VOP (Tabela 2). As médias da PAS e PAD aumentaram do primeiro para o terceiro tercil da VOP (p < 0,01). O mesmo ocorreu em relação às variáveis antropométricas CC, C/E e peso corporal (p = 0,01) (Tabela 2). As diferenças entre tercis decorreram quase exclusivamente do aumento dos valores pressóricos e das variáveis que traduzem excesso de peso das crianças situadas no terceiro tercil em relação aos dois primeiros.

Tabela 2. Médias e desvios-padrão das variáveis hemodinâmicas e antropométricas, segundo os tercis de velocidade de onda de pulso. Vitória, ES, 2010 a 2011.

Variável Tercil velocidade de onda de pulso (m/s) p
< 5,1 5,1 a 5,5 > 5,5

n Média dp n Média dp n Média dp
PAS (mm/Hg)a 87 103 9 73 103 9 64 108c 9 < 0,01
PAD (mm/Hg)a 87 62 7 73 63 8 64 66c 7 < 0,01
Peso (kg)a 87 35,1 7,6 73 37,3 9,7 64 41,5c 11 < 0,01
Altura (cm)a 87 140 7 73 141 7 64 142 7 0,18
 
 
  n Mediana P25;P75 n Mediana P25;P75 n Mediana P25;P75  

CC (cm)b 87 60,8 55,7;67,2 72 60,6 56;73,2 63 66,3c 59,1;75,6 < 0,01
C/E (cm)b 87 0,43 0,41;0,49 72 0,43 0,39;0,51 63 0,48c 0,42;0,53 < 0,01
IMC (kg/m2)b 87 17,2 15,5;19,9 73 17,6 15,4;22,1 64 20,2c 16,9;23,3 < 0,01

dp: desvio-padrão; PAS: pressão arterial sistólica; PAD: pressão arterial diastólica; CC: circunferência da cintura; C/E: relação cintura/estatura; IMC: índice de massa corporal

a ANOVA para variáveis paramétricas.

b Teste Kruskal-Wallis para variáveis não paramétricas.

c Estatisticamente significante segundo o teste de Tukey.

Peso ao nascer não mostrou associação com VOP (p = 0,68). Quanto maior o IMC da criança, maior a VOP: 40,0% das crianças que apresentaram IMC > 20,3 kg/m2 estavam no tercil mais alto de VOP (p = 0,01) (Tabela 3).

Tabela 3. Peso ao nascer, pressão arterial e estado nutricional, segundo tercis de velocidade de onda de pulso. Vitória, ES, 2010 a 2011.

Variável Velocidade de onda de pulso (m/s) p Total
< 5,1 5,1 a 5,5 > 5,5 n %

n % n % n %
Peso ao nascer (g)             0,68    
≤ 2.999 33 43,0 24 32,0 19 25,0   76 34,0
3.000 a 3.499 28 35,0 29 37,0 22 28,0   79 35,0
≥ 3.500 26 38,0 20 29,0 23 33,0   69 31,0
PAS (mmHg)             0,19    
≤ 100 35 44,0 28 36,0 16 20,0   79 35,0
101 a 107 31 41,0 21 28,0 23 31,0   75 33,0
≥ 108 21 30,0 24 34,0 25 36,0   70 31,0
PAD (mmHg)             0,01    
≤ 59 39 50,0 24 31,0 15 19,0   78 35,0
60 a 65 32 43,0 25 34,0 17 23,0   74 33,0
≥ 66 16 22,0 24 33,0 32 45,0   72 32,0
IMC (kg/m2)             0,01    
≤ 16,4 33 44,0 29 38,0 14 18,0   76 34,0
16,4 a 20,2 36 48,0 18 24,0 21 28,0   75 34,0
≥ 20,3 18 25,0 26 35,0 29 40,0   73 33,0

PAS: pressão arterial sistólica; PAD: pressão arterial diastólica; IMC: índice de massa corporal

As variáveis antropométricas e a pressão arterial correlacionaram-se significativamente com a VOP (Tabela 4). Entretanto, devido à colinearidade entre algumas variáveis antropométricas testadas, apenas o IMC e a RC/E permaneceram no modelo de regressão múltipla. As outras variáveis que entraram no modelo foram PAS, PAD e sexo.

Tabela 4. Correlação simples entre as variáveis antropométricas, peso ao nascer e tempo de amamentação e a velocidade de onda de pulso. Vitória, ES, 2010 a 2011.

Variável Velocidade de onda de pulso (m/s)
r p
PASa (mmHg) 0,19 < 0,01
PADa (mmHg) 0,22 < 0,01
CCb (cm) 0,19 < 0,01
C/Eb (cm) 0,18 < 0,01
Pesoa (kg) 0,24 < 0,01
Alturaa (cm) 0,08 0,23
IMCb (kg/m2) 0,20 < 0,01
Peso ao nascera (g) 0,08 0,24

PAS: pressão arterial sistólica; PAD: pressão arterial diastólica; CC: circunferência da cintura; C/E: relação cintura/estatura; IMC: índice de massa corporal

a Correlação de Pearson.

b Correlação de Spearman.

A análise dos resíduos mostrou homocedasticidade. Os fatores que explicaram as alterações na VOP foram IMC e PAD (p < 0,01) (Tabela 5).

Tabela 5. Regressão linear múltipla* para a variável dependente velocidade de onda de pulso. Vitória, ES, 2010 a 2011.

Variáveis explanatórias Coeficiente estimado Erro padrão t Beta P
Constante 4,047 0,317 12,763   < 0,01
IMC (kg/m2) 0,028 0,010 2,684 0,197 < 0,01
PAD (mm/Hg) 0,012 0,005 2,321 0,157 0,02

IMC: índice de massa corporal; PAD: pressão arterial diastólica

* Análise ajustada para a pressão arterial sistólica, pressão arterial diastólica e sexo.

DISCUSSÃO

O IMC associou-se à VOP em crianças de nove e 10 anos. Embora outras variáveis antropométricas tenham apresentado associação com a rigidez arterial, somente o IMC manteve-se no modelo final de regressão. Esse achado é semelhante ao encontrado por Sakuragi et al 19 (2009), Núñez et al 14 (2010) e Celik et al 3 (2011), em que foi observada associação positiva entre excesso de peso e rigidez arterial em crianças e adolescentes. Apesar da obesidade ser importante fator de risco para doenças cardiovasculares, os mecanismos fisiopatológicos que vinculam a obesidade à rigidez não são totalmente compreendidos, 18 em especial na faixa etária estudada nesta pesquisa.

Não foi observada associação significativa entre peso ao nascer e VOP, ao contrário do descrito em outros estudos. A relação entre peso ao nascer e rigidez arterial permanece controversa na literatura. Martin et al 9 (2000) constataram correlação negativa entre peso ao nascer e rigidez da parede da artéria carótida avaliada por ultrassonografia. No estudo de Miles et al 12 (2011), nenhuma associação foi registrada entre a rigidez arterial e peso ao nascer avaliada pela VOP carotídeo-femoral. No entanto, Salvi et al 20 (2012) observaram associação negativa entre baixo peso ao nascer e VOP em adolescentes quando aferida a VOP carotídeo-femoral. Porém, a informação dos dados de nascimento da criança foi obtida diretamente de registros clínicos, diminuindo a chance de ocorrência de viés de memória.

Os estudos que avaliam a rigidez arterial em crianças são controversos. Isso se deve principalmente às diferentes metodologias empregadas para aferição da rigidez arterial, como diferentes aparelhos e segmentos arteriais avaliados. A distribuição dos componentes arteriais varia conforme a localização do vaso. As artérias centrais têm nível de elasticidade mais elevado, como resultado da alta relação de elastina-colágeno e baixa influência da tonicidade do músculo liso. Já os vasos periféricos possuem menor elasticidade, pois possuem menor razão entre a elastina-colágeno. Assim, deve-se considerar o método utilizado para realização da medida e o segmento arterial avaliado. Provavelmente, não serão obtidos os mesmos resultados quando aferidas em diferentes segmentos. As medidas realizadas no segmento aórtico-braquial serão maiores que as obtidas no segmento carotídeo-femoral, tendo em vista a quantidade de elastina em cada segmento. 24 A VOP carotídeo-femoral foi utilizada no presente estudo por ser considerado o melhor método para avaliar a rigidez arterial dos grandes vasos arteriais, notadamente a aorta.

A elevada frequência de excesso de peso provavelmente relaciona-se à estratégia de constituição da amostra. Os participantes deste estudo já haviam participado de estudos anteriores. Assim, é possível que os pais mais preocupados com o peso dos filhos tenham respondido mais favoravelmente ao convite a esta pesquisa. Esse viés, entretanto, não prejudica os propósitos desta pesquisa, que não pretendia estimar a prevalência de alterações estruturais ou funcionais nas crianças, mas a associação dessas variáveis com um desfecho que caracteriza rigidez dos grandes vasos arteriais, a VOP carotídeo-femoral.

O delineamento transversal é uma limitação deste estudo, pois, por sua natureza, não é adequado para inferir sobre associação causal. Estudos de coorte oferecem as melhores condições para aferição das exposições. 20 , 26 Porém, foi realizado controle de qualidade das aferições e utilizada metodologia adequada para estabelecimento das associações encontradas neste estudo.

Este é um dos primeiros estudos no Brasil a avaliar a rigidez arterial aferida pela VOP carótido-femoral em crianças pré-púberes, numa faixa etária imediatamente anterior ao aparecimento da puberdade na maioria das crianças. Os resultados deste estudo podem contribuir para a melhor compreensão dessa temática em diferentes locais onde o modo de vida seja diferente do conjunto de países em que normalmente são estudados esses parâmetros. A medida de rigidez arterial é feita frequentemente em adultos, porém seu uso em crianças é conhecido. A maioria dos estudos aponta associação entre aumento da VOP, idade e pressão arterial. 16 Nesta pesquisa, a pressão arterial foi controlada no ajuste da regressão linear para avaliar a VOP e a faixa etária estudada era estreita (nove a 10 anos), não representando um problema para o resultado da VOP na população estudada ou sobre os demais achados do estudo.

Embora tenham sido aferidas três medidas da PA em condições ambientais controladas, por aferidor treinado, não podemos considerar que essa medida reflita os níveis pressóricos das crianças avaliadas. O ideal é que sejam realizadas medidas em diferentes momentos. Além disso, excluiram-se crianças que se encontravam na puberdade, evitando potenciais efeitos hormonais no desfecho (VOP) e nos fatores relacionados, como é o caso do excesso de peso.

O excesso de peso foi o mais importante fator na determinação da rigidez arterial de crianças da amostra. Mesmo pouco conhecida em nosso meio, a avaliação da estrutura e função vascular medida pela VOP pode ser útil para a identificação do acometimento vascular precoce em crianças. Assim, a contribuição desta pesquisa pode ser oportuna para a discussão sobre a saúde das crianças, particularmente quanto à identificação de problemas cardiovasculares futuros.

Footnotes

a

World Health Organization. Indicators for assessing infant and young child feeding practices. Conclusions of consensus meeting held 6-8 November 2007 in Washington D.C., USA, 2007. Washington (DC); 2007.

b

Associação Brasileira de Empresas de Pesquisa. Critério de classificação econômica Brasil. São Paulo; 2011 [citado 2010 out 15]. Disponível em: http://www.abep.org/novo/Content.aspx?ContentID=139

Baseado na dissertação de mestrado de Milena Santos Batista, intitulada: “Condições de nascimento e amamentação e saúde cardiovascular de crianças de 9 e 10 anos”, apresentada à Universidade Federal do Espírito Santo, em 2013.


Articles from Revista de Saúde Pública are provided here courtesy of Universidade de São Paulo. Faculdade de Saúde Pública.

RESOURCES