Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1994 Jun 7;91(12):5242–5246. doi: 10.1073/pnas.91.12.5242

The cooperativity and allosteric inhibition of Escherichia coli phosphofructokinase depend on the interaction between threonine-125 and ATP.

I Auzat 1, G Le Bras 1, J R Garel 1
PMCID: PMC43970  PMID: 8202475

Abstract

During the reaction catalyzed by the phosphofructokinase (EC 2.7.1.11) from Escherichia coli, the phosphoryl group transferred from ATP interacts with Thr-125 [Shirakihara, Y. & Evans, P. R. (1988) J. Mol. Biol. 204, 973-994]. The replacement of Thr-125 by serine changes the saturation by fructose 6-phosphate from cooperative to hyperbolic and abolishes the allosteric inhibition by phosphoenolpyruvate. The same changes, a saturation by fructose 6-phosphate that is no longer cooperative and an activity that is no longer inhibited by phosphoenolpyruvate, are observed with wild-type phosphofructokinase when adenosine 5'-[gamma-thio]triphosphate is used instead of ATP as the phosphoryl donor. These two perturbations of the ATP-Thr-125 interaction lead to the suppression of both the allosteric inhibition by phosphoenolpyruvate and the cooperativity of fructose-6-phosphate saturation, as if replacing the neutral oxygen of ATP by sulfur or removing the methyl group of Thr-125 had "locked" phosphofructokinase in its active conformation. The geometry of this ATP-Thr-125 interaction and/or the presence of the methyl group on the beta-carbon of Thr-125 are crucial for the regulatory properties of phosphofructokinase. This interaction could be a hydrogen bond between the neutral oxygen of the gamma-phosphate of ATP and the hydroxyl group of Thr-125.

Full text

PDF
5242

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Auzat I., Le Bras G., Branny P., De La Torre F., Theunissen B., Garel J. R. The role of Glu187 in the regulation of phosphofructokinase by phosphoenolpyruvate. J Mol Biol. 1994 Jan 7;235(1):68–72. doi: 10.1016/s0022-2836(05)80014-2. [DOI] [PubMed] [Google Scholar]
  2. Berger S. A., Evans P. R. Active-site mutants altering the cooperativity of E. coli phosphofructokinase. Nature. 1990 Feb 8;343(6258):575–576. doi: 10.1038/343575a0. [DOI] [PubMed] [Google Scholar]
  3. Berger S. A., Evans P. R. Site-directed mutagenesis identifies catalytic residues in the active site of Escherichia coli phosphofructokinase. Biochemistry. 1992 Sep 29;31(38):9237–9242. doi: 10.1021/bi00153a017. [DOI] [PubMed] [Google Scholar]
  4. Berger S. A., Evans P. R. Steady-state fluorescence of Escherichia coli phosphofructokinase reveals a regulatory role for ATP. Biochemistry. 1991 Aug 27;30(34):8477–8480. doi: 10.1021/bi00098a027. [DOI] [PubMed] [Google Scholar]
  5. Blangy D., Buc H., Monod J. Kinetics of the allosteric interactions of phosphofructokinase from Escherichia coli. J Mol Biol. 1968 Jan 14;31(1):13–35. doi: 10.1016/0022-2836(68)90051-x. [DOI] [PubMed] [Google Scholar]
  6. Branny P., De La Torre F., Garel J. R. Cloning, sequencing, and expression in Escherichia coli of the gene coding for phosphofructokinase in Lactobacillus bulgaricus. J Bacteriol. 1993 Sep;175(17):5344–5349. doi: 10.1128/jb.175.17.5344-5349.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Deville-Bonne D., Bourgain F., Garel J. R. pH dependence of the kinetic properties of allosteric phosphofructokinase from Escherichia coli. Biochemistry. 1991 Jun 11;30(23):5750–5754. doi: 10.1021/bi00237a017. [DOI] [PubMed] [Google Scholar]
  8. Deville-Bonne D., Garel J. R. A conformational transition involved in antagonistic substrate binding to the allosteric phosphofructokinase from Escherichia coli. Biochemistry. 1992 Feb 18;31(6):1695–1700. doi: 10.1021/bi00121a017. [DOI] [PubMed] [Google Scholar]
  9. Evans P. R., Farrants G. W., Hudson P. J. Phosphofructokinase: structure and control. Philos Trans R Soc Lond B Biol Sci. 1981 Jun 26;293(1063):53–62. doi: 10.1098/rstb.1981.0059. [DOI] [PubMed] [Google Scholar]
  10. Fothergill-Gilmore L. A., Michels P. A. Evolution of glycolysis. Prog Biophys Mol Biol. 1993;59(2):105–235. doi: 10.1016/0079-6107(93)90001-z. [DOI] [PubMed] [Google Scholar]
  11. Hellinga H. W., Evans P. R. Nucleotide sequence and high-level expression of the major Escherichia coli phosphofructokinase. Eur J Biochem. 1985 Jun 3;149(2):363–373. doi: 10.1111/j.1432-1033.1985.tb08934.x. [DOI] [PubMed] [Google Scholar]
  12. Kolb E., Hudson P. J., Harris J. I. Phosphofructokinase: complete amino-acid sequence of the enzyme from Bacillus stearothermophilus. Eur J Biochem. 1980 Jul;108(2):587–597. doi: 10.1111/j.1432-1033.1980.tb04754.x. [DOI] [PubMed] [Google Scholar]
  13. Kotlarz D., Buc H. Phosphofructokinases from Escherichia coli. Methods Enzymol. 1982;90(Pt E):60–70. doi: 10.1016/s0076-6879(82)90107-0. [DOI] [PubMed] [Google Scholar]
  14. Kundrot C. E., Evans P. R. Designing an allosterically locked phosphofructokinase. Biochemistry. 1991 Feb 12;30(6):1478–1484. doi: 10.1021/bi00220a005. [DOI] [PubMed] [Google Scholar]
  15. Le Bras G., Deville-Bonne D., Garel J. R. Purification and properties of the phosphofructokinase from Lactobacillus bulgaricus. A non-allosteric analog of the enzyme from Escherichia coli. Eur J Biochem. 1991 Jun 15;198(3):683–687. doi: 10.1111/j.1432-1033.1991.tb16067.x. [DOI] [PubMed] [Google Scholar]
  16. MONOD J., CHANGEUX J. P., JACOB F. Allosteric proteins and cellular control systems. J Mol Biol. 1963 Apr;6:306–329. doi: 10.1016/s0022-2836(63)80091-1. [DOI] [PubMed] [Google Scholar]
  17. MONOD J., WYMAN J., CHANGEUX J. P. ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. J Mol Biol. 1965 May;12:88–118. doi: 10.1016/s0022-2836(65)80285-6. [DOI] [PubMed] [Google Scholar]
  18. Perutz M. F. Mechanisms of cooperativity and allosteric regulation in proteins. Q Rev Biophys. 1989 May;22(2):139–237. doi: 10.1017/s0033583500003826. [DOI] [PubMed] [Google Scholar]
  19. Rypniewski W. R., Evans P. R. Crystal structure of unliganded phosphofructokinase from Escherichia coli. J Mol Biol. 1989 Jun 20;207(4):805–821. doi: 10.1016/0022-2836(89)90246-5. [DOI] [PubMed] [Google Scholar]
  20. Schirmer T., Evans P. R. Structural basis of the allosteric behaviour of phosphofructokinase. Nature. 1990 Jan 11;343(6254):140–145. doi: 10.1038/343140a0. [DOI] [PubMed] [Google Scholar]
  21. Serre M. C., Teschner W., Garel J. R. Specific suppression of heterotropic interactions in phosphofructokinase by the mutation of leucine 178 into tryptophan. J Biol Chem. 1990 Jul 25;265(21):12146–12148. [PubMed] [Google Scholar]
  22. Shirakihara Y., Evans P. R. Crystal structure of the complex of phosphofructokinase from Escherichia coli with its reaction products. J Mol Biol. 1988 Dec 20;204(4):973–994. doi: 10.1016/0022-2836(88)90056-3. [DOI] [PubMed] [Google Scholar]
  23. Valdez B. C., French B. A., Younathan E. S., Chang S. H. Site-directed mutagenesis in Bacillus stearothermophilus fructose-6-phosphate 1-kinase. Mutation at the substrate-binding site affects allosteric behavior. J Biol Chem. 1989 Jan 5;264(1):131–135. [PubMed] [Google Scholar]
  24. Viola R. E., Cleland W. W. Use of pH studies to elucidate the chemical mechanism of yeast hexokinase. Biochemistry. 1978 Oct 3;17(20):4111–4117. doi: 10.1021/bi00613a001. [DOI] [PubMed] [Google Scholar]
  25. Xu J., Oshima T., Yoshida M. Tetramer-dimer conversion of phosphofructokinase from Thermus thermophilus induced by its allosteric effectors. J Mol Biol. 1990 Oct 20;215(4):597–606. doi: 10.1016/S0022-2836(05)80171-8. [DOI] [PubMed] [Google Scholar]
  26. Xu J., Seki M., Denda K., Yoshida M. Molecular cloning of phosphofructokinase 1 gene from a thermophilic bacterium, Thermus thermophilus. Biochem Biophys Res Commun. 1991 May 15;176(3):1313–1318. doi: 10.1016/0006-291x(91)90429-b. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES