Abstract
During the reaction catalyzed by the phosphofructokinase (EC 2.7.1.11) from Escherichia coli, the phosphoryl group transferred from ATP interacts with Thr-125 [Shirakihara, Y. & Evans, P. R. (1988) J. Mol. Biol. 204, 973-994]. The replacement of Thr-125 by serine changes the saturation by fructose 6-phosphate from cooperative to hyperbolic and abolishes the allosteric inhibition by phosphoenolpyruvate. The same changes, a saturation by fructose 6-phosphate that is no longer cooperative and an activity that is no longer inhibited by phosphoenolpyruvate, are observed with wild-type phosphofructokinase when adenosine 5'-[gamma-thio]triphosphate is used instead of ATP as the phosphoryl donor. These two perturbations of the ATP-Thr-125 interaction lead to the suppression of both the allosteric inhibition by phosphoenolpyruvate and the cooperativity of fructose-6-phosphate saturation, as if replacing the neutral oxygen of ATP by sulfur or removing the methyl group of Thr-125 had "locked" phosphofructokinase in its active conformation. The geometry of this ATP-Thr-125 interaction and/or the presence of the methyl group on the beta-carbon of Thr-125 are crucial for the regulatory properties of phosphofructokinase. This interaction could be a hydrogen bond between the neutral oxygen of the gamma-phosphate of ATP and the hydroxyl group of Thr-125.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Auzat I., Le Bras G., Branny P., De La Torre F., Theunissen B., Garel J. R. The role of Glu187 in the regulation of phosphofructokinase by phosphoenolpyruvate. J Mol Biol. 1994 Jan 7;235(1):68–72. doi: 10.1016/s0022-2836(05)80014-2. [DOI] [PubMed] [Google Scholar]
- Berger S. A., Evans P. R. Active-site mutants altering the cooperativity of E. coli phosphofructokinase. Nature. 1990 Feb 8;343(6258):575–576. doi: 10.1038/343575a0. [DOI] [PubMed] [Google Scholar]
- Berger S. A., Evans P. R. Site-directed mutagenesis identifies catalytic residues in the active site of Escherichia coli phosphofructokinase. Biochemistry. 1992 Sep 29;31(38):9237–9242. doi: 10.1021/bi00153a017. [DOI] [PubMed] [Google Scholar]
- Berger S. A., Evans P. R. Steady-state fluorescence of Escherichia coli phosphofructokinase reveals a regulatory role for ATP. Biochemistry. 1991 Aug 27;30(34):8477–8480. doi: 10.1021/bi00098a027. [DOI] [PubMed] [Google Scholar]
- Blangy D., Buc H., Monod J. Kinetics of the allosteric interactions of phosphofructokinase from Escherichia coli. J Mol Biol. 1968 Jan 14;31(1):13–35. doi: 10.1016/0022-2836(68)90051-x. [DOI] [PubMed] [Google Scholar]
- Branny P., De La Torre F., Garel J. R. Cloning, sequencing, and expression in Escherichia coli of the gene coding for phosphofructokinase in Lactobacillus bulgaricus. J Bacteriol. 1993 Sep;175(17):5344–5349. doi: 10.1128/jb.175.17.5344-5349.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deville-Bonne D., Bourgain F., Garel J. R. pH dependence of the kinetic properties of allosteric phosphofructokinase from Escherichia coli. Biochemistry. 1991 Jun 11;30(23):5750–5754. doi: 10.1021/bi00237a017. [DOI] [PubMed] [Google Scholar]
- Deville-Bonne D., Garel J. R. A conformational transition involved in antagonistic substrate binding to the allosteric phosphofructokinase from Escherichia coli. Biochemistry. 1992 Feb 18;31(6):1695–1700. doi: 10.1021/bi00121a017. [DOI] [PubMed] [Google Scholar]
- Evans P. R., Farrants G. W., Hudson P. J. Phosphofructokinase: structure and control. Philos Trans R Soc Lond B Biol Sci. 1981 Jun 26;293(1063):53–62. doi: 10.1098/rstb.1981.0059. [DOI] [PubMed] [Google Scholar]
- Fothergill-Gilmore L. A., Michels P. A. Evolution of glycolysis. Prog Biophys Mol Biol. 1993;59(2):105–235. doi: 10.1016/0079-6107(93)90001-z. [DOI] [PubMed] [Google Scholar]
- Hellinga H. W., Evans P. R. Nucleotide sequence and high-level expression of the major Escherichia coli phosphofructokinase. Eur J Biochem. 1985 Jun 3;149(2):363–373. doi: 10.1111/j.1432-1033.1985.tb08934.x. [DOI] [PubMed] [Google Scholar]
- Kolb E., Hudson P. J., Harris J. I. Phosphofructokinase: complete amino-acid sequence of the enzyme from Bacillus stearothermophilus. Eur J Biochem. 1980 Jul;108(2):587–597. doi: 10.1111/j.1432-1033.1980.tb04754.x. [DOI] [PubMed] [Google Scholar]
- Kotlarz D., Buc H. Phosphofructokinases from Escherichia coli. Methods Enzymol. 1982;90(Pt E):60–70. doi: 10.1016/s0076-6879(82)90107-0. [DOI] [PubMed] [Google Scholar]
- Kundrot C. E., Evans P. R. Designing an allosterically locked phosphofructokinase. Biochemistry. 1991 Feb 12;30(6):1478–1484. doi: 10.1021/bi00220a005. [DOI] [PubMed] [Google Scholar]
- Le Bras G., Deville-Bonne D., Garel J. R. Purification and properties of the phosphofructokinase from Lactobacillus bulgaricus. A non-allosteric analog of the enzyme from Escherichia coli. Eur J Biochem. 1991 Jun 15;198(3):683–687. doi: 10.1111/j.1432-1033.1991.tb16067.x. [DOI] [PubMed] [Google Scholar]
- MONOD J., CHANGEUX J. P., JACOB F. Allosteric proteins and cellular control systems. J Mol Biol. 1963 Apr;6:306–329. doi: 10.1016/s0022-2836(63)80091-1. [DOI] [PubMed] [Google Scholar]
- MONOD J., WYMAN J., CHANGEUX J. P. ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. J Mol Biol. 1965 May;12:88–118. doi: 10.1016/s0022-2836(65)80285-6. [DOI] [PubMed] [Google Scholar]
- Perutz M. F. Mechanisms of cooperativity and allosteric regulation in proteins. Q Rev Biophys. 1989 May;22(2):139–237. doi: 10.1017/s0033583500003826. [DOI] [PubMed] [Google Scholar]
- Rypniewski W. R., Evans P. R. Crystal structure of unliganded phosphofructokinase from Escherichia coli. J Mol Biol. 1989 Jun 20;207(4):805–821. doi: 10.1016/0022-2836(89)90246-5. [DOI] [PubMed] [Google Scholar]
- Schirmer T., Evans P. R. Structural basis of the allosteric behaviour of phosphofructokinase. Nature. 1990 Jan 11;343(6254):140–145. doi: 10.1038/343140a0. [DOI] [PubMed] [Google Scholar]
- Serre M. C., Teschner W., Garel J. R. Specific suppression of heterotropic interactions in phosphofructokinase by the mutation of leucine 178 into tryptophan. J Biol Chem. 1990 Jul 25;265(21):12146–12148. [PubMed] [Google Scholar]
- Shirakihara Y., Evans P. R. Crystal structure of the complex of phosphofructokinase from Escherichia coli with its reaction products. J Mol Biol. 1988 Dec 20;204(4):973–994. doi: 10.1016/0022-2836(88)90056-3. [DOI] [PubMed] [Google Scholar]
- Valdez B. C., French B. A., Younathan E. S., Chang S. H. Site-directed mutagenesis in Bacillus stearothermophilus fructose-6-phosphate 1-kinase. Mutation at the substrate-binding site affects allosteric behavior. J Biol Chem. 1989 Jan 5;264(1):131–135. [PubMed] [Google Scholar]
- Viola R. E., Cleland W. W. Use of pH studies to elucidate the chemical mechanism of yeast hexokinase. Biochemistry. 1978 Oct 3;17(20):4111–4117. doi: 10.1021/bi00613a001. [DOI] [PubMed] [Google Scholar]
- Xu J., Oshima T., Yoshida M. Tetramer-dimer conversion of phosphofructokinase from Thermus thermophilus induced by its allosteric effectors. J Mol Biol. 1990 Oct 20;215(4):597–606. doi: 10.1016/S0022-2836(05)80171-8. [DOI] [PubMed] [Google Scholar]
- Xu J., Seki M., Denda K., Yoshida M. Molecular cloning of phosphofructokinase 1 gene from a thermophilic bacterium, Thermus thermophilus. Biochem Biophys Res Commun. 1991 May 15;176(3):1313–1318. doi: 10.1016/0006-291x(91)90429-b. [DOI] [PubMed] [Google Scholar]